Permalink
Switch branches/tags
Find file Copy path
74e146a Jul 21, 2015
n0fate change a mode
0 contributors

Users who have contributed to this file

807 lines (657 sloc) 28 KB
# ############################################################################
# Documentation #
#############################################################################
# Author: Todd Whiteman
# Date: 7th May, 2003
# Verion: 1.1
# Homepage: http://home.pacific.net.au/~twhitema/des.html
#
# Modifications to 3des CBC code by Matt Johnston 2004 <matt at ucc asn au>
#
# This algorithm is a pure python implementation of the DES algorithm.
# It is in pure python to avoid portability issues, since most DES
# implementations are programmed in C (for performance reasons).
#
# Triple DES class is also implemented, utilising the DES base. Triple DES
# is either DES-EDE3 with a 24 byte key, or DES-EDE2 with a 16 byte key.
#
# See the README.txt that should come with this python module for the
# implementation methods used.
"""A pure python implementation of the DES and TRIPLE DES encryption algorithms
pyDes.des(key, [mode], [IV])
pyDes.triple_des(key, [mode], [IV])
key -> String containing the encryption key. 8 bytes for DES, 16 or 24 bytes
for Triple DES
mode -> Optional argument for encryption type, can be either
pyDes.ECB (Electronic Code Book) or pyDes.CBC (Cypher Block Chaining)
IV -> Optional argument, must be supplied if using CBC mode. Must be 8 bytes
Example:
from pyDes import *
data = "Please encrypt my string"
k = des("DESCRYPT", " ", CBC, "\0\0\0\0\0\0\0\0")
d = k.encrypt(data)
print "Encypted string: " + d
print "Decypted string: " + k.decrypt(d)
See the module source (pyDes.py) for more examples of use.
You can slo run the pyDes.py file without and arguments to see a simple test.
Note: This code was not written for high-end systems needing a fast
implementation, but rather a handy portable solution with small usage.
"""
# Modes of crypting / cyphering
ECB = 0
CBC = 1
#############################################################################
# DES #
#############################################################################
class des:
"""DES encryption/decrytpion class
Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes.
pyDes.des(key,[mode], [IV])
key -> The encryption key string, must be exactly 8 bytes
mode -> Optional argument for encryption type, can be either pyDes.ECB
(Electronic Code Book), pyDes.CBC (Cypher Block Chaining)
IV -> Optional string argument, must be supplied if using CBC mode.
Must be 8 bytes in length.
"""
# Permutation and translation tables for DES
__pc1 = [56, 48, 40, 32, 24, 16, 8,
0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26,
18, 10, 2, 59, 51, 43, 35,
62, 54, 46, 38, 30, 22, 14,
6, 61, 53, 45, 37, 29, 21,
13, 5, 60, 52, 44, 36, 28,
20, 12, 4, 27, 19, 11, 3
]
# number left rotations of pc1
__left_rotations = [
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
]
# permuted choice key (table 2)
__pc2 = [
13, 16, 10, 23, 0, 4,
2, 27, 14, 5, 20, 9,
22, 18, 11, 3, 25, 7,
15, 6, 26, 19, 12, 1,
40, 51, 30, 36, 46, 54,
29, 39, 50, 44, 32, 47,
43, 48, 38, 55, 33, 52,
45, 41, 49, 35, 28, 31
]
# initial permutation IP
__ip = [57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,
56, 48, 40, 32, 24, 16, 8, 0,
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6
]
# Expansion table for turning 32 bit blocks into 48 bits
__expansion_table = [
31, 0, 1, 2, 3, 4,
3, 4, 5, 6, 7, 8,
7, 8, 9, 10, 11, 12,
11, 12, 13, 14, 15, 16,
15, 16, 17, 18, 19, 20,
19, 20, 21, 22, 23, 24,
23, 24, 25, 26, 27, 28,
27, 28, 29, 30, 31, 0
]
# The (in)famous S-boxes
__sbox = [ # S1
[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13], # S2
[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9], # S3
[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12], # S4
[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14], # S5
[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3], # S6
[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13], # S7
[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12], # S8
[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
]
# 32-bit permutation function P used on the output of the S-boxes
__p = [
15, 6, 19, 20, 28, 11,
27, 16, 0, 14, 22, 25,
4, 17, 30, 9, 1, 7,
23, 13, 31, 26, 2, 8,
18, 12, 29, 5, 21, 10,
3, 24
]
# final permutation IP^-1
__fp = [
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25,
32, 0, 40, 8, 48, 16, 56, 24
]
# Type of crypting being done
ENCRYPT = 0x00
DECRYPT = 0x01
# Initialisation
def __init__(self, key, mode=ECB, IV=None):
if len(key) != 8:
raise ValueError("Invalid DES key size. Key must be exactly 8 bytes long.")
self.block_size = 8
self.key_size = 8
self.__padding = ''
# Set the passed in variables
self.setMode(mode)
if IV:
self.setIV(IV)
self.L = []
self.R = []
self.Kn = [[0] * 48] * 16 # 16 48-bit keys (K1 - K16)
self.final = []
self.setKey(key)
def getKey(self):
"""getKey() -> string"""
return self.__key
def setKey(self, key):
"""Will set the crypting key for this object. Must be 8 bytes."""
self.__key = key
self.__create_sub_keys()
def getMode(self):
"""getMode() -> pyDes.ECB or pyDes.CBC"""
return self.__mode
def setMode(self, mode):
"""Sets the type of crypting mode, pyDes.ECB or pyDes.CBC"""
self.__mode = mode
def getIV(self):
"""getIV() -> string"""
return self.__iv
def setIV(self, IV):
"""Will set the Initial Value, used in conjunction with CBC mode"""
if not IV or len(IV) != self.block_size:
raise ValueError("Invalid Initial Value (IV), must be a multiple of " + str(self.block_size) + " bytes")
self.__iv = IV
def getPadding(self):
"""getPadding() -> string of length 1. Padding character."""
return self.__padding
def __String_to_BitList(self, data):
"""Turn the string data, into a list of bits (1, 0)'s"""
l = len(data) * 8
result = [0] * l
pos = 0
for c in data:
i = 7
ch = ord(c)
while i >= 0:
if ch & (1 << i) != 0:
result[pos] = 1
else:
result[pos] = 0
pos += 1
i -= 1
return result
def __BitList_to_String(self, data):
"""Turn the list of bits -> data, into a string"""
result = ''
pos = 0
c = 0
while pos < len(data):
c += data[pos] << (7 - (pos % 8))
if (pos % 8) == 7:
result += chr(c)
c = 0
pos += 1
return result
def __permutate(self, table, block):
"""Permutate this block with the specified table"""
return map(lambda x: block[x], table)
# Transform the secret key, so that it is ready for data processing
# Create the 16 subkeys, K[1] - K[16]
def __create_sub_keys(self):
"""Create the 16 subkeys K[1] to K[16] from the given key"""
key = self.__permutate(des.__pc1, self.__String_to_BitList(self.getKey()))
i = 0
# Split into Left and Right sections
self.L = key[:28]
self.R = key[28:]
while i < 16:
j = 0
# Perform circular left shifts
while j < des.__left_rotations[i]:
self.L.append(self.L[0])
del self.L[0]
self.R.append(self.R[0])
del self.R[0]
j += 1
# Create one of the 16 subkeys through pc2 permutation
self.Kn[i] = self.__permutate(des.__pc2, self.L + self.R)
i += 1
# Main part of the encryption algorithm, the number cruncher :)
def __des_crypt(self, block, crypt_type):
"""Crypt the block of data through DES bit-manipulation"""
block = self.__permutate(des.__ip, block)
self.L = block[:32]
self.R = block[32:]
# Encryption starts from Kn[1] through to Kn[16]
if crypt_type == des.ENCRYPT:
iteration = 0
iteration_adjustment = 1
# Decryption starts from Kn[16] down to Kn[1]
else:
iteration = 15
iteration_adjustment = -1
i = 0
while i < 16:
# Make a copy of R[i-1], this will later become L[i]
tempR = self.R[:]
# Permutate R[i - 1] to start creating R[i]
self.R = self.__permutate(des.__expansion_table, self.R)
# Exclusive or R[i - 1] with K[i], create B[1] to B[8] whilst here
self.R = map(lambda x, y: x ^ y, self.R, self.Kn[iteration])
B = [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42],
self.R[42:]]
# Optimization: Replaced below commented code with above
#j = 0
#B = []
#while j < len(self.R):
# self.R[j] = self.R[j] ^ self.Kn[iteration][j]
# j += 1
# if j % 6 == 0:
# B.append(self.R[j-6:j])
# Permutate B[1] to B[8] using the S-Boxes
j = 0
Bn = [0] * 32
pos = 0
while j < 8:
# Work out the offsets
m = (B[j][0] << 1) + B[j][5]
n = (B[j][1] << 3) + (B[j][2] << 2) + (B[j][3] << 1) + B[j][4]
# Find the permutation value
v = des.__sbox[j][(m << 4) + n]
# Turn value into bits, add it to result: Bn
Bn[pos] = (v & 8) >> 3
Bn[pos + 1] = (v & 4) >> 2
Bn[pos + 2] = (v & 2) >> 1
Bn[pos + 3] = v & 1
pos += 4
j += 1
# Permutate the concatination of B[1] to B[8] (Bn)
self.R = self.__permutate(des.__p, Bn)
# Xor with L[i - 1]
self.R = map(lambda x, y: x ^ y, self.R, self.L)
# Optimization: This now replaces the below commented code
#j = 0
#while j < len(self.R):
# self.R[j] = self.R[j] ^ self.L[j]
# j += 1
# L[i] becomes R[i - 1]
self.L = tempR
i += 1
iteration += iteration_adjustment
# Final permutation of R[16]L[16]
self.final = self.__permutate(des.__fp, self.R + self.L)
return self.final
# Data to be encrypted/decrypted
def crypt(self, data, crypt_type):
"""Crypt the data in blocks, running it through des_crypt()"""
# Error check the data
if not data:
return ''
if len(data) % self.block_size != 0:
if crypt_type == des.DECRYPT: # Decryption must work on 8 byte blocks
raise ValueError(
"Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n.")
if not self.getPadding():
raise ValueError("Invalid data length, data must be a multiple of " + str(
self.block_size) + " bytes\n. Try setting the optional padding character")
else:
data += (self.block_size - (len(data) % self.block_size)) * self.getPadding()
# print "Len of data: %f" % (len(data) / self.block_size)
if self.getMode() == CBC:
if self.getIV():
iv = self.__String_to_BitList(self.getIV())
else:
raise ValueError("For CBC mode, you must supply the Initial Value (IV) for ciphering")
# Split the data into blocks, crypting each one seperately
i = 0
dict = {}
result = []
#cached = 0
#lines = 0
while i < len(data):
# Test code for caching encryption results
#lines += 1
#if dict.has_key(data[i:i+8]):
#print "Cached result for: %s" % data[i:i+8]
# cached += 1
# result.append(dict[data[i:i+8]])
# i += 8
# continue
block = self.__String_to_BitList(data[i:i + 8])
# Xor with IV if using CBC mode
if self.getMode() == CBC:
if crypt_type == des.ENCRYPT:
block = map(lambda x, y: x ^ y, block, iv)
#j = 0
#while j < len(block):
# block[j] = block[j] ^ iv[j]
# j += 1
processed_block = self.__des_crypt(block, crypt_type)
if crypt_type == des.DECRYPT:
processed_block = map(lambda x, y: x ^ y, processed_block, iv)
#j = 0
#while j < len(processed_block):
# processed_block[j] = processed_block[j] ^ iv[j]
# j += 1
iv = block
else:
iv = processed_block
else:
processed_block = self.__des_crypt(block, crypt_type)
# Add the resulting crypted block to our list
#d = self.__BitList_to_String(processed_block)
#result.append(d)
result.append(self.__BitList_to_String(processed_block))
#dict[data[i:i+8]] = d
i += 8
# print "Lines: %d, cached: %d" % (lines, cached)
# Remove the padding from the last block
if crypt_type == des.DECRYPT and self.getPadding():
#print "Removing decrypt pad"
s = result[-1]
while s[-1] == self.getPadding():
s = s[:-1]
result[-1] = s
# Return the full crypted string
return ''.join(result)
def encrypt(self, data, pad=''):
"""encrypt(data, [pad]) -> string
data : String to be encrypted
pad : Optional argument for encryption padding. Must only be one byte
The data must be a multiple of 8 bytes and will be encrypted
with the already specified key. Data does not have to be a
multiple of 8 bytes if the padding character is supplied, the
data will then be padded to a multiple of 8 bytes with this
pad character.
"""
self.__padding = pad
return self.crypt(data, des.ENCRYPT)
def decrypt(self, data, pad=''):
"""decrypt(data, [pad]) -> string
data : String to be encrypted
pad : Optional argument for decryption padding. Must only be one byte
The data must be a multiple of 8 bytes and will be decrypted
with the already specified key. If the optional padding character
is supplied, then the un-encypted data will have the padding characters
removed from the end of the string. This pad removal only occurs on the
last 8 bytes of the data (last data block).
"""
self.__padding = pad
return self.crypt(data, des.DECRYPT)
#############################################################################
# Triple DES #
#############################################################################
class triple_des:
"""Triple DES encryption/decrytpion class
This algorithm uses the DES-EDE3 (when a 24 byte key is supplied) or
the DES-EDE2 (when a 16 byte key is supplied) encryption methods.
Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes.
pyDes.des(key, [mode], [IV])
key -> The encryption key string, must be either 16 or 24 bytes long
mode -> Optional argument for encryption type, can be either pyDes.ECB
(Electronic Code Book), pyDes.CBC (Cypher Block Chaining)
IV -> Optional string argument, must be supplied if using CBC mode.
Must be 8 bytes in length.
"""
def __init__(self, key, mode=ECB, IV=None):
self.block_size = 8
self.setMode(mode)
self.__padding = ''
self.__iv = IV
self.setKey(key)
def getKey(self):
"""getKey() -> string"""
return self.__key
def setKey(self, key):
"""Will set the crypting key for this object. Either 16 or 24 bytes long."""
self.key_size = 24 # Use DES-EDE3 mode
if len(key) != self.key_size:
if len(key) == 16: # Use DES-EDE2 mode
self.key_size = 16
else:
raise ValueError("Invalid triple DES key size. Key must be either 16 or 24 bytes long")
if self.getMode() == CBC and (not self.getIV() or len(self.getIV()) != self.block_size):
raise ValueError("Invalid IV, must be 8 bytes in length") ## TODO: Check this
# modes get handled later, since CBC goes on top of the triple-des
self.__key1 = des(key[:8])
self.__key2 = des(key[8:16])
if self.key_size == 16:
self.__key3 = self.__key1
else:
self.__key3 = des(key[16:])
self.__key = key
def getMode(self):
"""getMode() -> pyDes.ECB or pyDes.CBC"""
return self.__mode
def setMode(self, mode):
"""Sets the type of crypting mode, pyDes.ECB or pyDes.CBC"""
self.__mode = mode
def getIV(self):
"""getIV() -> string"""
return self.__iv
def setIV(self, IV):
"""Will set the Initial Value, used in conjunction with CBC mode"""
self.__iv = IV
def xorstr(self, x, y):
"""Returns the bitwise xor of the bytes in two strings"""
if len(x) != len(y):
raise "string lengths differ %d %d" % (len(x), len(y))
ret = ''
for i in range(len(x)):
ret += chr(ord(x[i]) ^ ord(y[i]))
return ret
def encrypt(self, data, pad=''):
"""encrypt(data, [pad]) -> string
data : String to be encrypted
pad : Optional argument for encryption padding. Must only be one byte
The data must be a multiple of 8 bytes and will be encrypted
with the already specified key. Data does not have to be a
multiple of 8 bytes if the padding character is supplied, the
data will then be padded to a multiple of 8 bytes with this
pad character.
"""
if self.getMode() == ECB:
# simple
data = self.__key1.encrypt(data, pad)
data = self.__key2.decrypt(data)
return self.__key3.encrypt(data)
if self.getMode() == CBC:
raise "This code hasn't been tested yet"
if len(data) % self.block_size != 0:
raise "CBC mode needs datalen to be a multiple of blocksize (ignoring padding for now)"
# simple
lastblock = self.getIV()
retdata = ''
for i in range(0, len(data), self.block_size):
thisblock = data[i:i + self.block_size]
# the XOR for CBC
thisblock = self.xorstr(lastblock, thisblock)
thisblock = self.__key1.encrypt(thisblock)
thisblock = self.__key2.decrypt(thisblock)
lastblock = self.__key3.encrypt(thisblock)
retdata += lastblock
return retdata
raise "Not reached"
def decrypt(self, data, pad=''):
"""decrypt(data, [pad]) -> string
data : String to be encrypted
pad : Optional argument for decryption padding. Must only be one byte
The data must be a multiple of 8 bytes and will be decrypted
with the already specified key. If the optional padding character
is supplied, then the un-encypted data will have the padding characters
removed from the end of the string. This pad removal only occurs on the
last 8 bytes of the data (last data block).
"""
if self.getMode() == ECB:
# simple
data = self.__key3.decrypt(data)
data = self.__key2.encrypt(data)
return self.__key1.decrypt(data, pad)
if self.getMode() == CBC:
if len(data) % self.block_size != 0:
raise "Can only decrypt multiples of blocksize"
lastblock = self.getIV()
retdata = ''
for i in range(0, len(data), self.block_size):
# can I arrange this better? probably...
cipherchunk = data[i:i + self.block_size]
thisblock = self.__key3.decrypt(cipherchunk)
thisblock = self.__key2.encrypt(thisblock)
thisblock = self.__key1.decrypt(thisblock)
retdata += self.xorstr(lastblock, thisblock)
lastblock = cipherchunk
return retdata
raise "Not reached"
#############################################################################
# Examples #
#############################################################################
def example_triple_des():
from time import time
# Utility module
from binascii import unhexlify as unhex
# example shows triple-des encryption using the des class
print "Example of triple DES encryption in default ECB mode (DES-EDE3)\n"
print "Triple des using the des class (3 times)"
t = time()
k1 = des(unhex("133457799BBCDFF1"))
k2 = des(unhex("1122334455667788"))
k3 = des(unhex("77661100DD223311"))
d = "Triple DES test string, to be encrypted and decrypted..."
print "Key1: %s" % k1.getKey()
print "Key2: %s" % k2.getKey()
print "Key3: %s" % k3.getKey()
print "Data: %s" % d
e1 = k1.encrypt(d)
e2 = k2.decrypt(e1)
e3 = k3.encrypt(e2)
print "Encrypted: " + e3
d3 = k3.decrypt(e3)
d2 = k2.encrypt(d3)
d1 = k1.decrypt(d2)
print "Decrypted: " + d1
print "DES time taken: %f (%d crypt operations)" % (time() - t, 6 * (len(d) / 8))
print ""
# Example below uses the triple-des class to achieve the same as above
print "Now using triple des class"
t = time()
t1 = triple_des(unhex("133457799BBCDFF1112233445566778877661100DD223311"))
print "Key: %s" % t1.getKey()
print "Data: %s" % d
td1 = t1.encrypt(d)
print "Encrypted: " + td1
td2 = t1.decrypt(td1)
print "Decrypted: " + td2
print "Triple DES time taken: %f (%d crypt operations)" % (time() - t, 6 * (len(d) / 8))
def example_des():
from time import time
# example of DES encrypting in CBC mode with the IV of "\0\0\0\0\0\0\0\0"
print "Example of DES encryption using CBC mode\n"
t = time()
k = des("DESCRYPT", CBC, "\0\0\0\0\0\0\0\0")
data = "DES encryption algorithm"
print "Key : " + k.getKey()
print "Data : " + data
d = k.encrypt(data)
print "Encrypted: " + d
d = k.decrypt(d)
print "Decrypted: " + d
print "DES time taken: %f (6 crypt operations)" % (time() - t)
print ""
def __test__():
example_des()
example_triple_des()
def __fulltest__():
# This should not produce any unexpected errors or exceptions
from binascii import unhexlify as unhex
from binascii import hexlify as dohex
__test__()
print ""
k = des("\0\0\0\0\0\0\0\0", CBC, "\0\0\0\0\0\0\0\0")
d = k.encrypt("DES encryption algorithm")
if k.decrypt(d) != "DES encryption algorithm":
print "Test 1 Error: Unencypted data block does not match start data"
k = des("\0\0\0\0\0\0\0\0", CBC, "\0\0\0\0\0\0\0\0")
d = k.encrypt("Default string of text", '*')
if k.decrypt(d, "*") != "Default string of text":
print "Test 2 Error: Unencypted data block does not match start data"
k = des("\r\n\tABC\r\n")
d = k.encrypt("String to Pad", '*')
if k.decrypt(d) != "String to Pad***":
print "'%s'" % k.decrypt(d)
print "Test 3 Error: Unencypted data block does not match start data"
k = des("\r\n\tABC\r\n")
d = k.encrypt(unhex("000102030405060708FF8FDCB04080"), unhex("44"))
if k.decrypt(d, unhex("44")) != unhex("000102030405060708FF8FDCB04080"):
print "Test 4a Error: Unencypted data block does not match start data"
if k.decrypt(d) != unhex("000102030405060708FF8FDCB0408044"):
print "Test 4b Error: Unencypted data block does not match start data"
k = triple_des("MyDesKey\r\n\tABC\r\n0987*543")
d = k.encrypt(unhex(
"000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"))
if k.decrypt(d) != unhex(
"000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"):
print "Test 5 Error: Unencypted data block does not match start data"
k = triple_des("\r\n\tABC\r\n0987*543")
d = k.encrypt(unhex(
"000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"))
if k.decrypt(d) != unhex(
"000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"):
print "Test 6 Error: Unencypted data block does not match start data"
def __filetest__():
from time import time
f = open("pyDes.py", "rb+")
d = f.read()
f.close()
t = time()
k = des("MyDESKey")
d = k.encrypt(d, " ")
f = open("pyDes.py.enc", "wb+")
f.write(d)
f.close()
d = k.decrypt(d, " ")
f = open("pyDes.py.dec", "wb+")
f.write(d)
f.close()
print "DES file test time: %f" % (time() - t)
def __profile__():
import profile
profile.run('__fulltest__()')
#profile.run('__filetest__()')
if __name__ == '__main__':
__test__()
#__fulltest__()
#__filetest__()
#__profile__()