
Conversations with
Kafka

Getting to know Kafka better from the Clojure REPL

@pimunozg

Nacho Muñoz - 25/01/2018

About Kafka
• Distributed commit log

• Pub/Sub messaging system

• Typically used for

• Activity Tracking

• Messaging

• Stream Processing

• Commit log

• Metrics and logging

Kafka Protocol

• Binary Protocol

• Broker - Broker

• Client - Broker

• All request sent to a broker from
a specific client will be
processed in the order they
were sent.

Request types
• 31 different request

types

• Protocol evolution based
on:

• Adding new request
types

• Update existing ones
with new information

Request header

Example: Metadata Request

• Allows the client to get information about:

• Topics existence

• Number of partitions for a given topic

• Associative list of partitions and leaders

• Current cluster controller

• Any broker can handle it

Kafka protocol
implementation

• AbstractResponse / AbstractRequest

• toStruct (protected) / common constructor (Struct +
version)

• Schema to describe fields and types contained in Struct
instances

• Each request and response types keep track of different
versions in a public static field schemaVersions
facilitating protocol evolution and bidirectional wire
compatibility

Kafka protocol
implementation

Introducing Scoop

• A utility to send low-level request to Kafka

• Responses are translated to Clojure data structures

• Request are expressed as Clojure maps

• Kafka protocol fuzzer when combined with generative
testing

Introducing Scoop

Scoop implementation

1. Protocol primitive level communication with Kafka

2. AbstractResponse translation into Clojure map

3. Create request types specification using clojure.spec

4. Clojure map translation into AbstractRequest

5. Leverage clojure.test.check generators

1. Protocol level
communication with Kafka

• Reuse private methods from AdminClient to send
requests to Kafka

• Expose those methods using Java reflection

2. AbstractResponse
translation into Clojure map
• Two steps

1. response->struct

2. struct->map

• We use Java reflection again to expose a protected
method: toStruct(version)

• Once we have an instance of Struct we just follow its
Schema to figure out fields and type of data while
extracting the values from the Struct itself

3. Request types specification
using clojure.spec

• Send requests to Kafka using plain Clojure maps

• Validate the request before sending it

• Generate valid requests based on the specification

• Take into account request types versioning: one spec per
request type and version (e.g. ::metadata-request-
v1, ::metadata-request-v2, …)

4. Clojure map translation
into AbstractRequest

• All the requests types shared a common constructor that
receives a Struct and a version

• Two steps:

1. map->struct using an equivalent Schema than the
one expected by the request type

2. struct->request using Java reflection to dynamically
invoke the request-type’s constructor

Demo

Demo

Improvements

• Crash awareness

• Visualise offended request flow in a sequence diagram

• Less reliance on Java reflection

Resources

• Scoop code - https://github.com/nachomdo/scoop

• Proto-REPL - https://github.com/jasongilman/proto-repl

• Kafka code - https://github.com/apache/kafka

• Clojure.Spec - https://clojure.org/guides/spec

Thanks!

