
Security Assessment of an Online Judge Web Application

Authors

Md Minhazul Islam (29)
Ruddro Mohammad Khorshad Aziz (32)

 Sabuj Kumar Modak (08)

University of Information Technology & Sciences
Department of IT

Abstract
A website is a compilation of web pages and related material that is accessible through a single
domain name and made available on at least one web server. Web sites have an identity called Domain
name and a URL to find. Though the website is related to the collection of some web pages, there are
many more in it. A website's structure is always changing as new technologies and features are added
in order to improve the user experience and produce high-quality results. When an object is created
there is always a risk of being destroyed or damaged. Web sites also have the risk of it. Attacks on
websites happen frequently every day. A website vulnerability is a flaw or improper configuration in
the code of a website or online application that enables an attacker to take some level of control over
the website and maybe the hosting server. To prevent this here comes Web security. Web security
consists of objectives that can help to ensure security for a web site. Vulnerability is a software
problem, configuration error, or other weakness in the website/web application, its elements, or its
procedures constitutes a website vulnerability. Attackers can get unauthorized access to an
organization's systems, processes, and mission-critical assets thanks to web application flaws.

1. Introduction:
The internet is ever-expanding, and there are
currently around 2 billion different websites in
total. On average, just 5% of websites on the
internet are active. The remaining 4–5 are
inactive, which means they haven't had any
updates or new postings in a while. The typical
person spends a large portion of their day on
websites. The typical internet user in the US
visits more than 100 different websites per day.

According to estimates, cybercrime costs the
American economy $3.5 billion annually.
According to some estimates, between 30 000
and 50 000 websites are hacked daily. Small
firms are the target of 43% of cyber-attacks.
Daily growth in both the population and the
necessity of website security are both trends.
Automated tools like vulnerability scanners and
botnets are used to automatically exploit the
majority of vulnerabilities. Cybercriminals use
specialized programs that trawl the internet for
certain Systems, such as Word Press or Joomla,

searching for widespread and well-known
vulnerabilities. Once identified these flaws are
subsequently used to gain access to vulnerable
websites and steal data, send spam and other
undesirable information, or deface them.
Websites can be infected, data can be collected,
and in certain situations, computer resources can
even be taken over by malicious software. When
an attacker gains access to a site, they can use it
to reroute traffic and infect users with malicious
software. This means that if your website is not
secured, hackers may exploit it to infect users
with malware.

Because of all of this, every day, the need for
internet security grows, making it crucial to
safeguard your website and the data it contains
right away. Our work is to use those scanners on
our targeted website and find the vulnerabilities
of that website, then research how to prevent
them to make our targeted website secure.

Fig: Website Front page & System model

1. Objectives:
Every piece of work has goals. That refers to
the actions we will do, the lessons we will
acquire from doing this work, and the
advantages of doing this work. This work's
primary goals are also listed. In the security
industry, “Vulnerability Assessment” is the
term used to describe the work we undertake.
An assessment of a network's vulnerabilities
seeks to identify them and provide the best
mitigation or remedy to lessen or eliminate the
risks.

Utilizing automated network security scanning
technique. An information system's security
flaws are systematically examined during a
vulnerability assessment. It determines
whether the system is vulnerable to any known
flaws, rates their seriousness, and, as
necessary, makes remedy or mitigation
recommendations.

Examples of threats that vulnerability assessment
can include:

• Code injection attacks include SQL injection,

XSS, and others.
• Increase in privileges as a result of

inadequate authentication methods.
• Software that includes default settings that

aren't secure, like admin passwords that
are easy to guess.

Vulnerability assessment is to protect the
system's and website's privacy. The owner of the
system might not be aware of a vulnerability in it.
These can be used by hackers to access the server
and do damage. In order to prevent those
vulnerabilities from appearing on our targeted
website, we must first identify the high threat
vulnerabilities, research how they operate, and
identify their primary purposes.

3. System Model
Every website includes a blueprint for how the operation will be managed and the data flow diagram
will develop. We can get a clear sense of how the process works on the website from the model, and
we'll use that to determine the operating order. That is also present on our target website,
MBSTU Online Judge. That shows the process flow of that website.

http://103.28.121.75/index.do

4. Vulnerability Scanning
Vulnerability scans examine particular areas of
your network for faults that threat actors are
likely to use to gain access or conduct a
recognized sort of cyber-attack. When utilized
appropriately, they can add a crucial layer of
protection to assist protect the sensitive data
held by your firm. The purpose of external
scanning is to determine what a hacker would
see if he attempted to probe the website
MBSTU Online Judge. Tool use is necessary for
the vulnerability scan. The tool used to scan
MBSTU Online Judge are: Nmap & Acunetix.

4.1 Nmap scanning

Network Mapper is referred to as Nmap. A
network's IP addresses and ports can be scanned
with this free and open-source Linux command-
line tool in order to find installed programs.
Network administrators can use Nmap to identify
the devices that are connected to their network,
find open ports and services, and find security
holes.
For this website we tried Nmap host discovery
and then Namp Vulnerability scanner.

Fig: Nmap Port Scan

Fig: Nmap Vuln Scan

Nmap port scan shows the report of which
ports are active in the network or website.
From the report we see that there are two
ports open in that website, one is 22/TCP
which state is OPEN and the service defined to
SSH. Secure Shell (SSH) is a network protocol
that allows users to access the server remotely.
SSH protocol's default settings are to listen on
TCP port 22 for connections.

Other one is 80/TCP which state is open and it
accepts HTTP service. Hypertext Transfer
Technology, a widely used internet
communication protocol, is assigned port
number 80. (HTTP). Unencrypted web pages
are transmitted and received using this
network port by default.

It indicates that utilizing this port, uuencoded
data transmission occurs between the user's
browser and the server. From this there is a
security issue arrives which we indicate as
Insecure Http login process. And we search for
vulnerability using Nmap, and lot of report
arrived, further we scan through Acunetix for a
better and specified view.

4.1.1 Http Insecure login process

A crucial element discovered for a website in
the modern era when scanning the MBSTU
Online Judge with Nmap. This site uses http
port, not an https one, as we can see.

Due to the wide range of attacks that can be
used to extract a user's password from them,
serving login forms over HTTP is particularly
risky. By sniffing the network or altering the
served page while it is being transmitted,
network eavesdroppers could steal a user's
password.

We know that with encryption and
authentication, HTTPS equals HTTP.

The sole distinction between the two protocols is

that HTTPS. Employs TLS (SSL) to encrypt and
digitally sign requests and answers made using
regular HTTP.

Public key cryptography is a technique used by
TLS; it consists of two keys—a public key and a
private key—with the public key being
distributed to client devices via the server's SSL
certificate. The public and private keys are used
by the client and server to agree on new session
keys to encrypt subsequent communications once
the client and server establish a connection.

Then, using these session keys, all HTTP requests
and responses are encrypted so that anyone
intercepting communications can only see a
random string of characters rather than the
plaintext.

Since both the http request and response are in
plain text, this is already known. In order to open
a user account on this website, we enable a packet
capturing session. Then, after examining the http
packet, we discovered the plain-text versions of
our username and password. Even though there is
no vulnerability here, if someone attempts to
capture a packet using this site while still on the
same network, they will discover someone else's
credentials. So, security is a concern here. This is
the reason why our team included it in the
vulnerability assessment.

4.1.2 How to fix this issue:

Install and set up an SSL/TLS certificate on your
server to resolve this problem. Numerous
businesses offer both free and paid certificates.
It's possible that the cloud platform you're using
has its own methods for turning on HTTPS.

Fig: Captured packet list using Wireshark Packet Capture

After selecting and following this login ok 200 http stream, we can see the actual stream that passed
through the network to the server.

Fig: Credentials in Plain text

We found that without encoded HTTP request, that passes to the website. Here the username and
password is visible. If people from the same network capture and monitors the packets, the credential
will be visible.

 4.2 Acunetix scanning

Acunetix is an automated tool for assessing the
security of web applications, auditing your web
apps for exploitable flaws like SQL Injection
and Cross-Site Scripting. In order to counter
the growth in threats at the web application
layer, it is an automated web application
security testing. Through a series of attacks,

Acunetix WVS evaluates the security of a website.
Then, it offers succinct descriptions of any
vulnerabilities it discovered along with advice on
how to remedy them.
After performing a scan on our targeted website,
we have found some vulnerabilities that are high
and low.

Fig: Web scan result of Host 103.28.121.75

Fig: Integrated scan results

• We have found 2 high level vulnerability and many medium and low level vulnerability.
Those medium and Low level vulnerabilities are not so harmful for a website like the High
level vulnerabilities. So in this assessment, we will discuss only about the High level
vulnerabilities.

 4.2.1 Vulnerability Found

• SQL injection
• Cross-Site Scripting (XSS)
• Vulnerable Java-script Library
• Clickjacking X-frame options header

Fig: High Vulnerability

Fig: Medium and Low Vulnerability

4.3 SQL Injection

SQL injection attacks, also called SQLi attacks,
are a type of vulnerability in the code of
websites and web apps that allows attackers to
hijack back-end processes and access, extract,
and delete confidential information from
databases.

A SQL injection attack consists of insertion or
“injection” of a SQL query via the input data
from the client to the application. A successful
SQL injection exploit can read sensitive data
from the database, modify database data
(Insert/Update/Delete),execute administration
operations on the database (such as shutdown
the DBMS), recover the content of a given file
present on the DBMS file system and in some
cases issue commands to the operating system.
SQL injection attacks are a type of injection
attack, in which SQL commands are injected
into data-plane input in order to affect the
execution of predefined SQL commands.

4.3.1 What Can Attackers Do With a SQL

Injection Attack?

SQLi attacks make use of vulnerabilities in code at

the point where it accesses a database. By

hijacking this code, attackers are able to access,

modify, and even delete secured data. When SQLi

attacks are successful, attackers can:

• Log in to an app or a website front end without

a password.

• Access, extract, and delete stored data from

secured databases.

• Create their own database records or modify

existing records, opening the door for further

attacks.

Fig: SQL Injection Demonstration

4.3.2 Examples of SQL:

In SQL: select id, firstname, lastname from
authors. If one provided: Firstname: evil'ex and
Lastname: Newman. The query string becomes:

Select id, firstname, lastname from authors
where firstname = 'evil'ex' and lastname
='newman'

Which the database attempts to run as:
Incorrect syntax near il' as the database tried to
execute evil. A safe version of the above SQL
statement could be coded in Java as:

4.3.3 Preventing SQL Injection Attacks

Despite the significant dangers posed by SQLi

attacks, they're easy to prevent once you learn

some secure coding best practices that include

foundational procedures:

• Discover vulnerabilities

• Repair vulnerabilities

• Remediate vulnerabilities

• Mitigate impact

Testing is the key to discovering vulnerabilities

in code. Opt for robust tools like dynamic

analysis (DAST) that looks at the app from the

outside in as an attacker would, and static

analysis tools (SAST) that looks for

vulnerabilities at the code level. Look for areas

where the app connects to a database and try

to pass it unusual values.

For example, if you put in a value that contains a

single quote, does the program treat that

character as user data, or does it treat it as code?

If we include a tautological test (like ' OR '1=1') in

we input, are you able to gain access as though we

entered a valid password?

Once you have discovered vulnerabilities, it's time

to repair them. The best way to do this is by using

parameters any time you need to make SQL

queries to a database, entering placeholder values

in your statements and then passing user-

inputted values to the statements at the time of

execution.

If your programming language does not support

parameters, you can remediate your code by

sanitizing or escaping input before passing it to a

database. This lets your app know that user input

is data rather than code it should execute.

Mitigation is also an important process to help

reduce risk, but without addressing the

underlying flaw. As an example, rather than

looking to your app's code, you might mitigate a

flaw by examining database accounts used by

your app and making sure that they have the

smallest amount of privileges needed to read or

insert data to your database.

Fig: Example of SQL injection

4.4 Cross Site Scripting (XSS)

Cross site scripting (also known as XSS) is a

common attack vector that injects malicious

code into a vulnerable web application. XSS

differs from other web attack vectors (e.g., SQL

injections), in that it does not directly target

the application itself. Instead, the users of the

web application are the ones at risk.

A successful cross site scripting attack can have

devastating consequences for an online

business’s reputation and its relationship with

its clients.

Depending on the severity of the attack, user

accounts may be compromised, Trojan horse

programs activated and page content modified,

misleading users into willingly surrendering

their private data. Finally, session cookies

could be revealed, enabling a perpetrator to

impersonate valid users and abuse their

private accounts.

4.4.1 How Does Cross Site Scripting Work?

XSS is an injection attack that exploits the fact that

browsers cannot differentiate between valid

scripts and attacker-controlled scripts. XSS

attacks bypass the same-origin policy, which is

designed to prevent scripts that originate in one

website from interacting with other scripts from

different websites.

When the same-origin policy is not properly

enforced, attackers can inject a script that

modifies the web page. For example, the script can

allow an attacker to impersonate a pre-

authenticated user. It also allows attackers to

input malicious code, which is then executed by

the browser, or execute JavaScript that modifies

content on the page.

XSS can cause serious issues. Attackers often

leverage XSS to steal session cookies and

impersonate the user. Attackers can also use XSS

to deface websites, spread malware, phish for

user credentials, support social engineering

techniques, and more.

Fig: Working method of XSS

4.4.1 XSS Example with Code

Suppose there's a URL on Google's site,
http://www.google.com/search?q=flowers,whi
ch returns HTML documents containing the
fragment <p>your search for 'flowers' returned
the following results :< /p> i.e., the value of the
query parameter q is inserted into the page
returned by Google.

Suppose further that the data is not validated,
filtered or escaped.
Evil.org could put up a page that causes the
following URL to be loaded in the browser (e.g.,
in an invisible<iframe>):

http://www.google.com/search?q=flowers+%
3Cscript%3Eevil_script () %3C/script%3E

When a victim loads this page from
www.evil.org, the browser will load the iframe
from the URL above. The document loaded into
the iframe will now contain the
fragment<p>your search for 'flowers
<script>evil_script () </script>'returned the
following results :< /p>

Loading this page will cause the browser to
execute evil_script (). Furthermore, this script
will execute in the context of a page loaded
from www.google.com.

4.4.2 Impact of Cross Site Scripting (XSS)
When attackers succeed in exploiting XSS
vulnerabilities, they can gain access to account
credentials.

They can also spread web worms or access the
user’s computer and view the user’s browser
history or control the browser remotely.

After gaining control to the victim’s system,
attackers can also analyze and use other
intranet applications. By exploiting XSS
vulnerabilities, an attacker can perform
malicious actions, such as:

• Hijack an account.
• Spread web worms.
• Access browser history and clipboard

contents.
• Control the browser remotely.
• Scan and exploit intranet appliances and

applications.

4.4.1 How to Prevent XSS attack

Preventing cross-site scripting is trivial in some
cases but can be much harder depending on the
complexity of the application and the ways it
handles user-controllable data.

In general, effectively preventing XSS
vulnerabilities is likely to involve a combination of
the following measures:

Filter input on arrival: At the point where user
input is received, filter as strictly as possible
based on what is expected or valid input.

Encode data on output: At the point where user-
controllable data is output in HTTP responses,
encode the output to prevent it from being
interpreted as active content. Depending on the
output context, this might require applying
combinations of HTML, URL, JavaScript, and CSS
encoding.

Use appropriate response headers: To prevent
XSS in HTTP responses that aren't intended to
contain any HTML or JavaScript, you can use the
Content-Type and X-Content-Type-Options
headers to ensure that browsers interpret the
responses in the way you intend.

Content Security Policy: As a last line of defense,
you can use Content Security Policy (CSP) to
reduce the severity of any XSS vulnerabilities that
still occur.

5. Conclusion
To successfully manage the network security,
regular vulnerability assessments are crucial. By
demonstrating which portions of your network
require patching and where to begin, they assist
in reducing security breaches. In this article, we
test a website for vulnerabilities. On this website,
we ran a scanner to look for vulnerabilities and
threat levels. We conducted study on high levels
of vulnerabilities, discovered the reasons why
they occur, and finally demonstrated the steps we
should take to prevent those vulnerabilities.

5. References
• http://103.28.121.75/index.do [Access

Date: 10 November 2022, 20:34 GMT+6]
• https://www.contrastsecurity.com/glossar

y/cross-site-scripting-prevention[Access
Date: 11 November 2022, 13:54 GMT+6]

• https://www.veracode.com/security/xss
[Access Date: 11 November, 2022, 17:20
GMT+6]

• https://www.imperva.com/learn/applicati
on-security/cross-site-scripting-xss-
attacks/[Access Date: 12 November 2022,
20:30 GMT+6]

• https://portswigger.net/web-
security/cross-site-scripting[Access Date:
14 November 2022, 10:20 GMT+6]

• https://www.veracode.com/security/sql-
injection[Access Date: 14 November 2022,
9:20 GMT+6]

• https://owasp.org/www-
community/attacks/SQL_Injection[Access
Date: 15 November 2022, 10:00 GMT+6]

• https://www.cloudflare.com/en-
gb/learning/ssl/why-is-http-not-
secure/[Access Date: 15 November 2022,
5:00 GMT+6]

http://103.28.121.75/index.do
https://www.contrastsecurity.com/glossary/cross-site-scripting-prevention
https://www.contrastsecurity.com/glossary/cross-site-scripting-prevention
https://www.veracode.com/security/xss
https://www.imperva.com/learn/application-security/cross-site-scripting-xss-attacks/
https://www.imperva.com/learn/application-security/cross-site-scripting-xss-attacks/
https://www.imperva.com/learn/application-security/cross-site-scripting-xss-attacks/
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/cross-site-scripting
https://www.veracode.com/security/sql-injection
https://www.veracode.com/security/sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://www.cloudflare.com/en-gb/learning/ssl/why-is-http-not-secure/
https://www.cloudflare.com/en-gb/learning/ssl/why-is-http-not-secure/
https://www.cloudflare.com/en-gb/learning/ssl/why-is-http-not-secure/

