Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

exp_mixture_model

Maximum likelihood estimation and model selection for the exponential mixture model (i.e., mixture of exponential distributions)

When you use this code, please cite the following paper:

Makoto Okada, Kenji Yamanishi, Naoki Masuda. Long-tailed distributions of inter-event times as mixtures of exponential distributions. arXiv:19xx.xxxxx

Installation

exp_mixture_model is hosted on PyPI. So, one can install it by running

pip install exp_mixture_model

If you want to install from source, clone the exp_mixture_model git repository by running

git clone https://github.com/naokimas/exp_mixture_model.git

Then, navigate to the top-level of the cloned directory and run

python setup.py install

You can test our code by running

python setup.py test

If you use Anaconda, you may install required packages by running

conda install --file requirements.txt

Quick Use

Fit an EMM to data stored in a file (e.g. sample.dat) by running

python emmfit.py -f sample.dat -k 10
  • '10' is the initial number of components.
  • 'sample.dat' is provided as part of this package. It is synthetic data that we generated by running
from emm import generate_emm
x = generate_emm(1000, 10)

To select the best model among EMMs with different numbers of components, don't specify 'k' and instead specify the model selection criterion using '-c' as follows.

python emmfit.py -f sample.dat -c DNML
  • One can specify either 'marginal_log_likelihood', 'joint_log_likelihood', 'AIC', 'BIC', 'AIC_LVC', 'BIC_LVC', 'NML_LVC', or 'DNML' as the argument of '-c'.
  • Default is 'DNML'.

Check details of the usage by running

python emmfit.py --help

Usage

Fit an EMM to data by running

from exp_mixture_model import EMM
x = [1.5, 2.3, ...]  # data can be either a list or numpy array
#
# Alternatively, one can load data from a file using numpy as follows.
#
# import numpy as np
# x = np.loadtxt("sample.dat")
#
model = EMM()
pi, mu = model.fit(x)  # estimate the parameters
model.print_result()  # print 'k_final' (i.e., the estimated effective number of components) and the estimated parameters
model.plot_survival_probability()  # plot the survival probability (= cumulative complementary distribution function) for the estimated EMM and the given data 'x'.

Select the number of components based on a model selection criterion by running

from exp_mixture_model import EMMs
x = [1.5, 2.3, ...]
emms = EMMs()
emms.fit(x)  # fit EMMs with different values of 'k', i.e., the number of components. The default uses 13 values of 'k'. This process is computationally heavy.
best_model = emms.select('DNML')  # select the best number of components under the 'DNML' criterion. One can specify either 'marginal_log_likelihood', 'joint_log_likelihood', 'AIC', 'BIC', 'AIC_LVC', 'BIC_LVC', 'NML_LVC', or 'DNML' as the argument of 'emms.select'.
emms.print_result_table()  # print the values of 'k_final', likelihoods, and 'DNML' for each 'k' value
best_model.print_result() # print 'k_final' and the estimated parameter values of the selected EMM

About

Maximum likelihood estimation and model selection of the exponential mixture model (i.e., mixture of exponential distributions)

Resources

License

Releases

No releases published

Packages

No packages published

Languages