Immediate-Mode Reference
This section contains reference information for the API elements provided by Direct3D® Immediate Mode. Reference material is divided into the following categories:
�SYMBOL 183 \f "Symbol" \s 11 \h �	Interfaces
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3D_OVERLOADS
�SYMBOL 183 \f "Symbol" \s 11 \h �	Callback Functions
�SYMBOL 183 \f "Symbol" \s 11 \h �	Macros
�SYMBOL 183 \f "Symbol" \s 11 \h �	Structures
�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerated Types
�SYMBOL 183 \f "Symbol" \s 11 \h �	Other Types
�SYMBOL 183 \f "Symbol" \s 11 \h �	Return Values

Interfaces
This section contains reference information for the COM interfaces provided by Direct3D's Immediate Mode. The following interfaces are covered:
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3D2
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DDevice
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DDevice2
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DExecuteBuffer
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DLight
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DMaterial2
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DTexture2
�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirect3DViewport2

IDirect3D2
Applications use the methods of the IDirect3D2 interface to create Direct3D objects and set up the environment. This section is a reference to the methods of this interface. For a conceptual overview, see IDirect3D2 interface.
The IDirect3D2 interface is obtained by calling the QueryInterface method from a DirectDraw object.
The major difference between IDirect3D2 and the IDirect3D interface is the addition of the CreateDevice method.
The methods of the IDirect3D2 interface can be organized into the following groups:
Creation �CreateDevice���CreateLight ���CreateMaterial ���CreateViewport �����Enumeration �EnumDevices ���FindDevice �����
The IDirect3D2 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3D2 and LPDIRECT3D types are defined as pointers to the IDirect3D2 and IDirect3D interfaces:
typedef struct IDirect3D *LPDIRECT3D;
typedef struct IDirect3D2 *LPDIRECT3D2;
IDirect3D2::CreateDevice
The IDirect3D2::CreateDevice method creates a Direct3D device to be used with the DrawPrimitive methods.
HRESULT CreateDevice(
 REFCLSID rclsid,
 LPDIRECTDRAWSURFACE lpDDS,
 LPDIRECT3DDEVICE2 * lplpD3DDevice2
);

Parameters
rclsid
Class identifier for the new device. This can be IID_IDirect3DHALDevice, IID_IDirect3DMMXDevice, IID_IDirect3DRampDevice, or IID_IDirect3DRGBDevice.
lpDDS
Address of a DirectDraw surface that describes the new device.
lplpD3DDevice2
Address that points to the new IDirect3DDevice2 interface when the method returns.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3D2 interface. In previous versions of Direct3D, devices could be created only by calling the IDirectDrawSurface::QueryInterface method; devices created in this manner can only be used with execute buffers.
When you call IDirect3D2::CreateDevice, you create a device object that is separate from a DirectDraw surface object. This device uses a DirectDraw surface as a rendering target.
IDirect3D2::CreateLight
The IDirect3D2::CreateLight method allocates a Direct3DLight object. This object can then be associated with a viewport by using the IDirect3DViewport2::AddLight method.
HRESULT CreateLight(
 LPDIRECT3DLIGHT* lplpDirect3DLight,
 IUnknown* pUnkOuter
);

Parameters
lplpDirect3DLight
Address that will be filled with a pointer to an IDirect3DLight interface if the call succeeds.
pUnkOuter
This parameter is provided for future compatibility with COM aggregation features. Currently, however, the IDirect3D2::CreateLight method returns an error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3D interface.
IDirect3D2::CreateMaterial
The IDirect3D2::CreateMaterial method allocates a Direct3DMaterial2 object.
HRESULT CreateMaterial(
 LPDIRECT3DMATERIAL2* lplpDirect3DMaterial2,
 IUnknown* pUnkOuter
);

Parameters
lplpDirect3DMaterial2
Address that will be filled with a pointer to an IDirect3DMaterial2 interface if the call succeeds.
pUnkOuter
This parameter is provided for future compatibility with COM aggregation features. Currently, however, the IDirect3D2::CreateMaterial method returns an error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error. For a list of possible return codes, see Direct3D Immediate-Mode Return Values.
Remarks
In the IDirect3D interface, this method retrieved a pointer to an IDirect3DMaterial interface, not an IDirect3DMaterial2 interface.
IDirect3D2::CreateViewport
The IDirect3D2::CreateViewport method creates a Direct3DViewport object. The viewport is associated with a Direct3DDevice object by using the IDirect3DDevice2::AddViewport method.
HRESULT CreateViewport(
 LPDIRECT3DVIEWPORT2* lplpD3DViewport2,
 IUnknown* pUnkOuter
);

Parameters
lplpD3DViewport
Address that will be filled with a pointer to an IDirect3DViewport2 interface if the call succeeds.
pUnkOuter
This parameter is provided for future compatibility with COM aggregation features. Currently, however, the IDirect3D2::CreateViewport method returns an error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
In the IDirect3D interface, this method retrieves a pointer to an IDirect3DViewport interface, not an IDirect3DViewport2 interface.
IDirect3D2::EnumDevices
The IDirect3D2::EnumDevices method enumerates all Direct3D device drivers installed on the system.
HRESULT EnumDevices(
 LPD3DENUMDEVICESCALLBACK lpEnumDevicesCallback,
 LPVOID lpUserArg
);

Parameters
lpEnumDevicesCallback
Address of the D3DENUMDEVICESCALLBACK callback function that the enumeration procedure will call every time a match is found.
lpUserArg
Address of application-defined data passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
MMX devices are enumerated only by IDirect3D2::EnumDevices, not by its predecessor, IDirect3D::EnumDevices. If you use the QueryInterface method to create an IDirect3D interface from IDirect3D2 before you enumerate the Direct3D drivers, the enumeration will behave like IDirect3D::EnumDevices — no MMX devices will be enumerated.
To use execute buffers with an MMX device, you must call the IDirect3D2::CreateDevice method to create an MMX IDirect3DDevice2 interface and then use the QueryInterface method to create an IDirect3DDevice interface from IDirect3DDevice2.
IDirect3D2::FindDevice
The IDirect3D2::FindDevice method finds a device with specified characteristics and retrieves a description of it.
HRESULT FindDevice(
 LPD3DFINDDEVICESEARCH lpD3DFDS,
 LPD3DFINDDEVICERESULT lpD3DFDR
);

Parameters
lpD3DFDS
Address of the D3DFINDDEVICESEARCH structure describing the device to be located.
lpD3DFDR
Address of the D3DFINDDEVICERESULT structure describing the device if it is found.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error. For a list of possible return codes, see Direct3D Immediate-Mode Return Values.
Remarks
This method is unchanged from its implementation in the IDirect3D interface.
IDirect3D::Initialize
The IDirect3D2::Initialize method is not implemented.
HRESULT Initialize(
 REFIID lpREFIID
);

IDirect3DDevice
Applications use the methods of the IDirect3DDevice interface to retrieve and set the capabilities of Direct3D devices. This section is a reference to the methods of these interface. For a conceptual overview, see Devices.
The IDirect3DDevice interface supports applications that work with execute buffers. It has been extended by the IDirect3DDevice2 interface, which supports the DrawPrimitive methods.
The Direct3DDevice object is obtained by calling the QueryInterface method from a DirectDrawSurface object that was created as a 3-D–capable surface.
The methods of the IDirect3DDevice interface can be organized into the following groups. Note that in some cases IDirect3DDevice methods are documented in the reference to the IDirect3DDevice2 interface.
Execute buffers �CreateExecuteBuffer ���Execute �����Information �EnumTextureFormats ���GetCaps ���GetDirect3D ���GetPickRecords ���GetStats �����Matrices �CreateMatrix ���DeleteMatrix ���GetMatrix ���SetMatrix �����Miscellaneous �Initialize ���Pick ���SwapTextureHandles �����Scenes �BeginScene ���EndScene �����Viewports �AddViewport ���DeleteViewport ���NextViewport ��
The IDirect3DDevice interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3DDEVICE type is defined as a pointer to the IDirect3DDevice interface:
typedef struct IDirect3DDevice	 *LPDIRECT3DDEVICE;

IDirect3DDevice::CreateExecuteBuffer
The IDirect3DDevice::CreateExecuteBuffer method allocates an execute buffer for a display list.
HRESULT CreateExecuteBuffer(
 LPD3DEXECUTEBUFFERDESC lpDesc,
 LPDIRECT3DEXECUTEBUFFER *lplpDirect3DExecuteBuffer,
 IUnknown *pUnkOuter
);

Parameters
lpDesc
Address of a D3DEXECUTEBUFFERDESC structure that describes the Direct3DExecuteBuffer object to be created. The call will fail if a buffer of at least the specified size cannot be created.
lplpDirect3DExecuteBuffer
Address of a pointer that will be filled with the address of the new Direct3DExecuteBuffer object.
pUnkOuter
This parameter is provided for future compatibility with COM aggregation features. Currently, however, this method returns an error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
The display list may be read by hardware DMA into VRAM for processing. All display primitives in the buffer that have indices to vertices must also have those vertices in the same buffer.
The D3DEXECUTEBUFFERDESC structure describes the execute buffer to be created. At a minimum, the application must specify the size required. If the application specifies D3DDEBCAPS_VIDEOMEMORY in the dwCaps member, Direct3D will attempt to keep the execute buffer in video memory.
The application can use the IDirect3DExecuteBuffer::Lock method to request that the memory be moved. When this method returns, it will adjust the contents of the D3DEXECUTEBUFFERDESC structure to indicate whether the data resides in system or video memory.
IDirect3DDevice::CreateMatrix
The IDirect3DDevice::CreateMatrix method creates a matrix.
HRESULT CreateMatrix(
 LPD3DMATRIXHANDLE lpD3DMatHandle
);

Parameters
lpD3DMatHandle
Address of a variable that will contain a handle to the matrix that is created. The call will fail if a buffer of at least the size of the matrix cannot be created.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR_INVALIDPARAMS.
See Also
IDirect3DDevice::DeleteMatrix, IDirect3DDevice::SetMatrix
IDirect3DDevice::DeleteMatrix
The IDirect3DDevice::DeleteMatrix method deletes a matrix handle. This matrix handle must have been created by using the IDirect3DDevice::CreateMatrix method.
HRESULT DeleteMatrix(
 D3DMATRIXHANDLE d3dMatHandle
);

Parameters
d3dMatHandle
Matrix handle to be deleted.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR_INVALIDPARAMS.
See Also
IDirect3DDevice::CreateMatrix, IDirect3DDevice::SetMatrix
IDirect3DDevice::Execute
The IDirect3DDevice::Execute method executes a buffer.
HRESULT Execute(
 LPDIRECT3DEXECUTEBUFFER lpDirect3DExecuteBuffer,
 LPDIRECT3DVIEWPORT lpDirect3DViewport,
 DWORD dwFlags
);

Parameters
lpDirect3DExecuteBuffer
Address of the execute buffer to be executed.
lpDirect3DViewport
Address of the Direct3DViewport object that describes the transformation context into which the execute buffer will be rendered.
dwFlags
Flags specifying whether or not objects in the buffer should be clipped. This parameter must be one of the following values:
D3DEXECUTE_CLIPPED ���Clip any primitives in the buffer that are outside or partially outside the viewport. ��D3DEXECUTE_UNCLIPPED ���All primitives in the buffer are contained within the viewport. ��
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
See Also
D3DEXECUTEDATA, D3DINSTRUCTION, IDirect3DExecuteBuffer::Validate
IDirect3DDevice::GetMatrix
The IDirect3DDevice::GetMatrix method retrieves a matrix from a matrix handle. This matrix handle must have been created by using the IDirect3DDevice::CreateMatrix method.
HRESULT GetMatrix(
 D3DMATRIXHANDLE D3DMatHandle,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
D3DMatHandle
Handle to the matrix to be retrieved.
lpD3DMatrix
Address of a D3DMATRIX structure that contains the matrix when the method returns.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR_INVALIDPARAMS.
See Also
IDirect3DDevice::CreateMatrix, IDirect3DDevice::DeleteMatrix, IDirect3DDevice::SetMatrix
IDirect3DDevice::GetPickRecords
The IDirect3DDevice::GetPickRecords method retrieves the pick records for a device.
HRESULT GetPickRecords(
 LPDWORD lpCount,
 LPD3DPICKRECORD lpD3DPickRec
);

Parameters
lpCount
Address of a variable that contains the number of D3DPICKRECORD structures to retrieve.
lpD3DPickRec
Address that will contain an array of D3DPICKRECORD structures when the method returns.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error.
Remarks
An application typically calls this method twice. In the first call, the second parameter is set to NULL, and the first parameter retrieves a count of all relevant D3DPICKRECORD structures. The application then allocates sufficient memory for those structures and calls the method again, specifying the newly allocated memory for the second parameter.
IDirect3DDevice::Initialize
The IDirect3DDevice::Initialize method is not implemented.
HRESULT Initialize(
 LPDIRECT3D lpd3d,
 LPGUID lpGUID,
 LPD3DDEVICEDESC lpd3ddvdesc
);

IDirect3DDevice::Pick
The IDirect3DDevice::Pick method executes a buffer without performing any rendering, but returns a z-ordered list of offsets to the primitives that intersect the upper-left corner of the rectangle specified by lpRect.
This call fails if the Direct3DExecuteBuffer object is locked.
HRESULT Pick(
 LPDIRECT3DEXECUTEBUFFER lpDirect3DExecuteBuffer,
 LPDIRECT3DVIEWPORT lpDirect3DViewport,
 DWORD dwFlags,
 LPD3DRECT lpRect
);

Parameters
lpDirect3DExecuteBuffer
Address of an execute buffer from which the z-ordered list is retrieved.
lpDirect3DViewport
Address of a viewport in the list of viewports associated with this Direct3DDevice object.
dwFlags
No flags are currently defined for this method.
lpRect
Address of a D3DRECT structure specifying the device coordinates to be picked. Currently, only primitives that intersect the x1, y1 coordinates of this rectangle are returned. The x2, y2 coordinates are ignored.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
D3DERR_EXECUTE_LOCKED �DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
The coordinates are specified in device-pixel space.
All Direct3DExecuteBuffer objects must be attached to a Direct3DDevice object in order for this method to succeed.
See Also
IDirect3DDevice::GetPickRecords
IDirect3DDevice::SetMatrix
The IDirect3DDevice::SetMatrix method applies a matrix to a matrix handle. This matrix handle must have been created by using the IDirect3DDevice::CreateMatrix method.
HRESULT SetMatrix(
 D3DMATRIXHANDLE d3dMatHandle,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
d3dMatHandle
Matrix handle to be set.
lpD3DMatrix
Address of a D3DMATRIX structure that describes the matrix to be set.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR_INVALIDPARAMS.
Remarks
Transformations inside the execute buffer include a handle to a matrix. The IDirect3DDevice::SetMatrix method enables an application to change this matrix without having to lock and unlock the execute buffer.
See Also
IDirect3DDevice::CreateMatrix, IDirect3DDevice::GetMatrix, IDirect3DDevice::DeleteMatrix
IDirect3DDevice2
The IDirect3DDevice2 interface helps applications work with the DrawPrimitive methods; this is in contrast to the IDirect3DDevice interface, which applications use to work with execute buffers. You can create a Direct3DDevice2 object by calling the IDirect3D2::CreateDevice method.
For a conceptual overview, see Devices and The DrawPrimitive Methods.
The methods of the IDirect3DDevice2 interface can be organized into the following groups:
Information �EnumTextureFormats ���GetCaps ���GetDirect3D ���GetStats �����Miscellaneous �MultiplyTransform���SwapTextureHandles �����Getting and Setting States �GetClipStatus���GetCurrentViewport���GetLightState���GetRenderState���GetRenderTarget���GetTransform���SetClipStatus���SetCurrentViewport���SetLightState���SetRenderState ���SetRenderTarget���SetTransform �����Rendering �Begin���BeginIndexed ���DrawIndexedPrimitive ���DrawPrimitive ���End ���Index ���Vertex�����Scenes �BeginScene ���EndScene �����Viewports �AddViewport ���DeleteViewport ���NextViewport �����
The IDirect3DDevice2 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The IDirect3DDevice2 interface is not intended to be used with execute buffers. If you need to use some of the methods in the IDirect3DDevice interface that are not supported in IDirect3DDevice2, you can call IDirect3DDevice2::QueryInterface to retrieve a pointer to an IDirect3DDevice interface. The following methods from the IDirect3DDevice interface are not supported by IDirect3DDevice2:
IDirect3DDevice::CreateExecuteBuffer��IDirect3DDevice::CreateMatrix��IDirect3DDevice::DeleteMatrix��IDirect3DDevice::Execute��IDirect3DDevice::GetMatrix��IDirect3DDevice::GetPickRecords��IDirect3DDevice::Initialize��IDirect3DDevice::Pick��IDirect3DDevice::SetMatrix��
The LPDIRECT3DDEVICE2 type is defined as a pointer to the IDirect3DDevice2 interface:
typedef struct IDirect3DDevice2 *LPDIRECT3DDEVICE2;

IDirect3DDevice2::AddViewport
The IDirect3DDevice2::AddViewport method adds the specified viewport to the list of viewport objects associated with the device.
HRESULT AddViewport(
 LPDIRECT3DVIEWPORT2 lpDirect3DViewport2
);

Parameters
lpDirect3DViewport2
Address of the IDirect3DViewport2 interface that should be associated with this Direct3DDevice object.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
In the IDirect3DDevice interface, this method requires a pointer to an IDirect3DViewport interface, not an IDirect3DViewport2 interface.
IDirect3DDevice2::Begin
The IDirect3DDevice2::Begin method indicates the start of a sequence of rendered primitives. This method defines the type of these primitives and the type of vertices on which they are based. The only method you can legally call between calls to IDirect3DDevice2::Begin and IDirect3DDevice2::End is IDirect3DDevice2::Vertex.
HRESULT Begin(
 D3DPRIMITIVETYPE d3dpt,
 D3DVERTEXTYPE d3dvt,
 DWORD dwFlags
);

Parameters
d3dpt
One of the members of the D3DPRIMITIVETYPE enumerated type.
d3dvt
Indicates the type of vertices to be used in rendering this primitive. Only vertices of this type will be accepted before the corresponding IDirect3DDevice2::End.
This must be one of the members of the D3DVERTEXTYPE enumerated type, as specified in a call to the IDirect3DDevice2::Vertex method.
dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP�The application has already done the required clipping, so the system should not necessarily clip the primitives. (This flag is a hint; the system may clip the primitive even when this flag is specified, under some circumstances.) ��D3DDP_DONOTUPDATEEXTENTS�Disables the updating of the screen rectangle affected by this rendering call. Using this flag can potentially help performance, but the extents returned by IDirect3DDevice2::GetClipStatus will not have been updated to account for the data rendered by this call.��D3DDP_OUTOFORDER�A hint to the system that the primitives can be rendered out of order. Note that back-to-back calls to DrawPrimitive methods using this flag may cause triangles from the primitives to be interleaved. The DrawPrimitive methods that use this flag are Begin, BeginIndexed, DrawIndexedPrimitive, and DrawPrimitive.��D3DDP_WAIT�Causes the method to wait until the polygons have been rendered before it returns, instead of returning as soon as the polygons have been sent to the card. (On scene-capture cards, the method returns as soon as the card responds.)
This flag is typically used for debugging. Applications should not attempt to use this flag to ensure that a scene is up-to-date before continuing.��
Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method fails if it is called after a call to the IDirect3DDevice2::Begin or IDirect3DDevice2::BeginIndexed method that has no bracketing call to IDirect3DDevice2::End method. Rendering calls that specify the wrong vertex type or that perform state changes will cause rendering of this primitive to fail.
This method was first introduced in the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::BeginIndexed, IDirect3DDevice2::End, IDirect3DDevice2::Vertex
IDirect3DDevice2::BeginIndexed
The IDirect3DDevice2::BeginIndexed method defines the start of a primitive based on indexing into an array of vertices. This method fails if it is called after a call to the IDirect3DDevice2::Begin or IDirect3DDevice2::BeginIndexed method that has no corresponding call to IDirect3DDevice2::End. The only method you can legally call between calls to IDirect3DDevice2::BeginIndexed and IDirect3DDevice2::End is IDirect3DDevice2::Index.
HRESULT BeginIndexed(
 D3DPRIMITIVETYPE dptPrimitiveType,
 D3DVERTEXTYPE dvtVertexType,
 LPVOID lpvVertices,
 DWORD dwNumVertices,
 DWORD dwFlags
);

Parameters
dptPrimitiveType
Type of primitive to be rendered by this command. This must be one of the members of the D3DPRIMITIVETYPE enumerated type. Note that the D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not indexed.
dvtVertexType
Indicates the types of the vertices used. This must be one of the members of the D3DVERTEXTYPE enumerated type.
lpvVertices
Pointer to the list of vertices to be used in the primitive sequence.
dwNumVertices
Number of vertices in the above array.
dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP�The application has already done the required clipping, so the system should not necessarily clip the primitives. (This flag is a hint; the system may clip the primitive even when this flag is specified, under some circumstances.) ��D3DDP_DONOTUPDATEEXTENTS�Disables the updating of the screen rectangle affected by this rendering call. Using this flag can potentially help performance, but the extents returned by IDirect3DDevice2::GetClipStatus will not have been updated to account for the data rendered by this call.��D3DDP_OUTOFORDER�A hint to the system that the primitives can be rendered out of order. Note that back-to-back calls to DrawPrimitive methods using this flag may cause triangles from the primitives to be interleaved. The DrawPrimitive methods that use this flag are Begin, BeginIndexed, DrawIndexedPrimitive, and DrawPrimitive.��D3DDP_WAIT�Causes the method to wait until the polygons have been rendered before it returns, instead of returning as soon as the polygons have been sent to the card. (On scene-capture cards, the method returns as soon as the card responds.)
This flag is typically used for debugging. Applications should not attempt to use this flag to ensure that a scene is up-to-date before continuing.��
Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
D3DERR_INVALIDRAMPTEXTURE�Ramp mode is being used and the texture handle in the current material does not match the current texture handle that is set as a render state. ��DDERR_INVALIDPARAMS �One of the arguments is invalid. ��
Remarks
This method was first introduced in the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::Begin, IDirect3DDevice2::End, IDirect3DDevice2::Index
IDirect3DDevice2::BeginScene
The IDirect3DDevice2::BeginScene method begins a scene.
Applications must call the IDirect3DDevice2::BeginScene method before performing any rendering, and must call IDirect3DDevice2::EndScene when rendering is complete.
This method is unchanged from its implementation in the IDirect3DDevice interface.
HRESULT BeginScene();
Parameters
None.
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error.
See Also
IDirect3DDevice2::EndScene
IDirect3DDevice2::DeleteViewport
The IDirect3DDevice2::DeleteViewport method removes the specified viewport from the list of viewport objects associated with the device.
HRESULT DeleteViewport(
 LPDIRECT3DVIEWPORT2 lpDirect3DViewport2
);

Parameters
lpDirect3DViewport2
Address of the Direct3DViewport2 object that should be disassociated with this Direct3DDevice2 object.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
In the IDirect3DDevice interface, this method requires a pointer to an IDirect3DViewport interface, not an IDirect3DViewport2 interface.
IDirect3DDevice2::DrawIndexedPrimitive
The IDirect3DDevice2::DrawIndexedPrimitive method renders the specified geometric primitive based on indexing into an array of vertices.
HRESULT DrawIndexedPrimitive(
 D3DPRIMITIVETYPE d3dptPrimitiveType,
 D3DVERTEXTYPE d3dvtVertexType,
 LPVOID lpvVertices,
 DWORD dwVertexCount,
 LPWORD dwIndices,
 DWORD dwIndexCount,
 DWORD dwFlags
);

Parameters
d3dptPrimitiveType
Type of primitive to be rendered by this command. This must be one of the members of the D3DPRIMITIVETYPE enumerated type.
Note that the D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not indexed.
d3dvtVertexType
Indicates the types of the vertices used. This must be one of the members of the D3DVERTEXTYPE enumerated type.
lpvVertices
Pointer to the list of vertices to be used in the primitive sequence.
dwVertexCount
Defines the number of vertices in the list.
Notice that this parameter is used differently from the dwVertexCount parameter in the IDirect3DDevice2::DrawPrimitive method. In that method, the dwVertexCount parameter gives the number of vertices to draw, but here it gives the total number of vertices in the array pointed to by the lpvVertices parameter. When you call IDirect3DDevice2::DrawIndexedPrimitive, you specify the number of vertices to draw in the dwIndexCount parameter.
dwIndices
Pointer to a list of WORDs that are to be used to index into the specified vertex list when creating the geometry to render.
dwIndexCount
Specifies the number of indices provided for creating the geometry.
dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP�The application has already done the required clipping, so the system should not necessarily clip the primitives. (This flag is a hint; the system may clip the primitive even when this flag is specified, under some circumstances.) ��D3DDP_DONOTUPDATEEXTENTS�Disables the updating of the screen rectangle affected by this rendering call. Using this flag can potentially help performance, but the extents returned by IDirect3DDevice2::GetClipStatus will not have been updated to account for the data rendered by this call.��D3DDP_OUTOFORDER�A hint to the system that the primitives can be rendered out of order. Note that back-to-back calls to DrawPrimitive methods using this flag may cause triangles from the primitives to be interleaved. The DrawPrimitive methods that use this flag are Begin, BeginIndexed, DrawIndexedPrimitive, and DrawPrimitive.��D3DDP_WAIT�Causes the method to wait until the polygons have been rendered before it returns, instead of returning as soon as the polygons have been sent to the card. (On scene-capture cards, the method returns as soon as the card responds.)
This flag is typically used for debugging. Applications should not attempt to use this flag to ensure that a scene is up-to-date before continuing.��
Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
D3DERR_INVALIDRAMPTEXTURE�Ramp mode is being used and the texture handle in the current material does not match the current texture handle that is set as a render state. ��DDERR_INVALIDPARAMS �One of the arguments is invalid. ��
Remarks
In current versions of DirectX, IDirect3DDevice2::DrawIndexedPrimitive can sometimes generate an update rectangle that is larger than it strictly needs to be. If a large number of vertices need to be processed, this can have a negative impact on the performance of your application. If you are using D3DTLVERTEX vertices and the system is processing more vertices than you need, you should use the D3DDP_DONOTCLIP and D3DDP_DONOTUPDATEEXTENTS flags to solve the problem.
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::DrawPrimitive
IDirect3DDevice2::DrawPrimitive
The IDirect3DDevice2::DrawPrimitive method renders the specified array of vertices as a sequence of geometric primitives of the specified type.
HRESULT DrawPrimitive(
 D3DPRIMITIVETYPE dptPrimitiveType,
 D3DVERTEXTYPE dvtVertexType,
 LPVOID lpvVertices,
 DWORD dwVertexCount,
 DWORD dwFlags
);

Parameters
dptPrimitiveType
Type of primitive to be rendered by this command. This must be one of the members of the D3DPRIMITIVETYPE enumerated type.
dvtVertexType
Indicates the types of the vertices used. This must be one of the members of the D3DVERTEXTYPE enumerated type.
lpvVertices
Pointer to the array of vertices to be used in the primitive sequence.
dwVertexCount
Defines the number of vertices in the array.
dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP�The application has already done the required clipping, so the system should not necessarily clip the primitives. (This flag is a hint; the system may clip the primitive even when this flag is specified, under some circumstances.) ��D3DDP_DONOTUPDATEEXTENTS�Disables the updating of the screen rectangle affected by this rendering call. Using this flag can potentially help performance, but the extents returned by IDirect3DDevice2::GetClipStatus will not have been updated to account for the data rendered by this call.��D3DDP_OUTOFORDER�A hint to the system that the primitives can be rendered out of order. Note that back-to-back calls to DrawPrimitive methods using this flag may cause triangles from the primitives to be interleaved. The DrawPrimitive methods that use this flag are Begin, BeginIndexed, DrawIndexedPrimitive, and DrawPrimitive.��D3DDP_WAIT�Causes the method to wait until the polygons have been rendered before it returns, instead of returning as soon as the polygons have been sent to the card. (On scene-capture cards, the method returns as soon as the card responds.)
This flag is typically used for debugging. Applications should not attempt to use this flag to ensure that a scene is up-to-date before continuing.��
Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
D3DERR_INVALIDRAMPTEXTURE�Ramp mode is being used and the texture handle in the current material does not match the current texture handle that is set as a render state. ��DDERR_INVALIDPARAMS �One of the arguments is invalid. ��
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::DrawIndexedPrimitive
IDirect3DDevice2::End
The IDirect3DDevice2::End method signals the completion of a primitive sequence. This method fails if no corresponding call to the IDirect3DDevice2::Begin method was made.
HRESULT End(
 DWORD dwFlags
);

Parameters
dwFlags
Reserved. A flag word that should be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
D3DERR_INVALIDRAMPTEXTURE�Ramp mode is being used and the texture handle in the current material does not match the current texture handle that is set as a render state. ��DDERR_INVALIDPARAMS �One of the arguments is invalid. ��
Remarks
This method fails if the vertex count is incorrect for the primitive type. It fails without drawing if it is called before a sufficient number of vertices is specified. If the number of Vertex or index calls made is not evenly divisible by 3 (in the case of triangles), or 2 (in the case of lineList), the remainder will be ignored.
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::Begin
IDirect3DDevice2::EndScene
The IDirect3DDevice2::EndScene method ends a scene that was begun by calling the IDirect3DDevice2::BeginScene method.
HRESULT EndScene();
Parameters
None.
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error.
Remarks
When this method succeeds, the scene will have been rendered and the device surface will hold the contents of the rendering.
This method is unchanged from its implementation in the IDirect3DDevice interface.
See Also
IDirect3DDevice2::BeginScene
IDirect3DDevice2::EnumTextureFormats
The IDirect3DDevice2::EnumTextureFormats method queries the current driver for a list of supported texture formats.
HRESULT EnumTextureFormats(
 LPD3DENUMTEXTUREFORMATSCALLBACK lpd3dEnumTextureProc,
 LPVOID lpArg
);

Parameters
lpd3dEnumTextureProc
Address of the D3DENUMTEXTUREFORMATSCALLBACK callback function that the enumeration procedure will call for each texture format.
lpArg
Address of application-defined data passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DDevice interface.
IDirect3DDevice2::GetCaps
The IDirect3DDevice2::GetCaps method retrieves the capabilities of the Direct3DDevice2 object.
HRESULT GetCaps(
 LPD3DDEVICEDESC lpD3DHWDevDesc,
 LPD3DDEVICEDESC lpD3DHELDevDesc
);

Parameters
lpD3DHWDevDesc
Address of the D3DDEVICEDESC structure that will contain the hardware features of the device.
lpD3DHELDevDesc
Address of the D3DDEVICEDESC structure that will contain the software emulation being provided.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method does not retrieve the capabilities of the display device. To retrieve this information, use the IDirectDraw2::GetCaps method.
This method is unchanged from its implementation in the IDirect3DDevice interface.
IDirect3DDevice2::GetClipStatus
The IDirect3DDevice2::GetClipStatus method gets the current clip status.
HRESULT GetClipStatus(
 LPD3DCLIPSTATUS lpD3DClipStatus
);

Parameters
lpD3DClipStatus
Address of a D3DCLIPSTATUS structure that describes the current clip status.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::SetClipStatus
IDirect3DDevice2::GetCurrentViewport
The IDirect3DDevice2::GetCurrentViewport method retrieves the current viewport.
HRESULT GetCurrentViewport(
 LPDIRECT3DVIEWPORT2 *lplpd3dViewport2
);

Parameters
lplpd3dViewport2
Address that contains a pointer to the current viewport when the method returns. A reference is taken to the viewport object.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDPARAMS �One of the arguments is invalid. ��D3DERR_NOCURRENTVIEWPORT �No current viewport has been set by a call to the IDirect3DDevice2::SetCurrentViewport method. ��
Remarks
This method increases the reference count of the viewport interface retrieved in the lplpd3dViewport2 parameter. The application must release this interface when it is no longer needed.
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::SetCurrentViewport
IDirect3DDevice2::GetDirect3D
The IDirect3DDevice2::GetDirect3D method retrieves the current IDirect3D2 interface.
HRESULT GetDirect3D(
 LPDIRECT3D2 *lplpD3D2
);

Parameters
lplpD3D2
Address that will contain the interface when the method returns.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error. For a list of possible return codes, see Direct3D Immediate-Mode Return Values.
Remarks
In the IDirect3DDevice interface, this method retrieves the current IDirect3D interface instead of an IDirect3D2 interface.
IDirect3DDevice2::GetLightState
The IDirect3DDevice2::GetLightState method gets a single Direct3D Device lighting-related state value.
HRESULT GetLightState(
 D3DLIGHTSTATETYPE dwLightStateType,
 LPDWORD lpdwLightState
);

Parameters
dwLightStateType
Device state variable that is being queried. This parameter can be any of the members of the D3DLIGHTSTATETYPE enumerated type.
lpdwLightState
Address of a variable that will contain the Direct3D Device light state when the method returns.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::SetLightState
IDirect3DDevice2::GetRenderState
The IDirect3DDevice2::GetRenderState method gets a single Direct3D Device rendering state parameter.
HRESULT GetRenderState(
 D3DRENDERSTATETYPE dwRenderStateType,
 LPDWORD lpdwRenderState
);

Parameters
dwRenderStateType
Device state variable that is being queried. This parameter can be any of the members of the D3DRENDERSTATETYPE enumerated type.
lpdwRenderState
Address of a variable that will contain the Direct3D Device render state when the method returns.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::SetRenderState
IDirect3DDevice2::GetRenderTarget
The IDirect3DDevice2::GetRenderTarget method retrieves a pointer to the DirectDraw surface that is being used as a render target.
HRESULT GetRenderTarget(
 LPDIRECTDRAWSURFACE *lplpRenderTarget
);

Parameters
lplpRenderTarget
Address that will contain a pointer to the DirectDraw surface object that is being used as a render target by this Direct3D device.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::SetRenderTarget
IDirect3DDevice2::GetStats
The IDirect3DDevice2::GetStats method retrieves statistics about a device.
HRESULT GetStats(
 LPD3DSTATS lpD3DStats
);

Parameters
lpD3DStats
Address of a D3DSTATS structure that will be filled with the statistics.

Return Values
If the method succeeds, the return value isD3D_OK .
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DDevice interface.
IDirect3DDevice2::GetTransform
The IDirect3DDevice2::GetTransform method gets a matrix describing a transformation state.
HRESULT GetTransform(
 D3DTRANSFORMSTATETYPE dtstTransformStateType,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
dtstTransformStateType
Device state variable that is being modified. This parameter can be any of the members of the D3DTRANSFORMSTATETYPE enumerated type.
lpD3DMatrix
Address of a D3DMATRIX structure describing the transformation.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::SetTransform
IDirect3DDevice2::Index
The IDirect3DDevice2::Index method adds a new index to the currently started primitive.
HRESULT Index(
 WORD wVertexIndex
);

Parameters
wVertexIndex
Index of the next vertex to be added to the currently started primitive sequence.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
D3DERR_INVALIDRAMPTEXTURE�Ramp mode is being used and the texture handle in the current material does not match the current texture handle that is set as a render state. ��DDERR_INVALIDPARAMS �One of the arguments is invalid. ��
Remarks
This method was introduced with the IDirect3DDevice2 interface.
IDirect3DDevice2::MultiplyTransform
The IDirect3DDevice2::MultiplyTransform method modifies the current world matrix by combining it with a specified matrix. The multiplication order is lpD3DMatrix times dtstTransformStateType.
HRESULT MultiplyTransform(
 D3DTRANSFORMSTATETYPE dtstTransformStateType,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
dtstTransformStateType
One of the members of the D3DTRANSFORMSTATETYPE enumerated type. Only the D3DTRANSFORMSTATE_WORLD setting is likely to be useful. The matrix referred to by this parameter is modified by this method.
lpD3DMatrix
Address of a D3DMATRIX structure that modifies the current transformation.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
An application might use the IDirect3DDevice2::MultiplyTransform method to work with hierarchies of transformations. For example, the geometry and transformations describing an arm might be arranged in the following hierarchy:
shoulder_transformation
 upper_arm geometry
 elbow transformation
 lower_arm geometry
 wrist transformation
 hand geometry

An application might use the following series of calls to render this hierarchy. (Not all of the parameters are shown in this pseudocode.)
IDirect3DDevice2::SetTransform(D3DTRANSFORMSTATE_WORLD,
 shoulder_transform)
IDirect3DDevice2::DrawPrimitive(upper_arm)
IDirect3DDevice2::MultiplyTransform(D3DTRANSFORMSTATE_WORLD,
 elbow_transform)
IDirect3DDevice2::DrawPrimitive(lower_arm)
IDirect3DDevice2::MultiplyTransform(D3DTRANSFORMSTATE_WORLD,
 wrist_transform)
IDirect3DDevice2::DrawPrimitive(hand)

This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::DrawPrimitive, IDirect3DDevice2::SetTransform
IDirect3DDevice2::NextViewport
The IDirect3DDevice2::NextViewport method enumerates the viewports associated with the device.
HRESULT NextViewport(
 LPDIRECT3DVIEWPORT2 lpDirect3DViewport2,
 LPDIRECT3DVIEWPORT2 *lplpDirect3DViewport2,
 DWORD dwFlags
);

Parameters
lpDirect3DViewport2
Address of a viewport in the list of viewports associated with this Direct3DDevice2 object.
lplpDirect3DViewport2
Address of the next viewport in the list of viewports associated with this Direct3DDevice2 object.
dwFlags
Flags specifying which viewport to retrieve from the list of viewports. The default setting is D3DNEXT_NEXT.
D3DNEXT_HEAD �Retrieve the item at the beginning of the list. ��D3DNEXT_NEXT �Retrieve the next item in the list. ��D3DNEXT_TAIL �Retrieve the item at the end of the list. ��
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
If you attempt to retrieve the next viewport in the list when you are at the end of the list, this method returns D3D_OK but lplpDirect3DViewport2 is NULL.
In the IDirect3DDevice interface, this method requires pointers to IDirect3DViewport interfaces, not IDirect3DViewport2 interfaces.
IDirect3DDevice2::SetClipStatus
The IDirect3DDevice2::SetClipStatus method sets the current clip status.
HRESULT SetClipStatus(
 LPD3DCLIPSTATUS lpD3DClipStatus
);

Parameters
lpD3DClipStatus
Address of a D3DCLIPSTATUS structure that describes the new settings for the clip status.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::GetClipStatus
IDirect3DDevice2::SetCurrentViewport
The IDirect3DDevice2::SetCurrentViewport method sets the current viewport.
HRESULT SetCurrentViewport(
 LPDIRECT3DVIEWPORT2 lpd3dViewport2
);

Parameters
lpd3dViewport2
Address of the viewport that will become the current viewport if the method is successful.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
Applications must call this method before calling any rendering functions. Before calling this method, applications must have already called the IDirect3DDevice2::AddViewport method to add the viewport to the device.
Before the first call to IDirect3DDevice2::SetCurrentViewport, the current viewport for the device is invalid, and any attempts to render using the device will fail.
This method increases the reference count of the viewport interface specified by the lpd3dViewport2 parameter and releases the previous viewport, if any.
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::GetCurrentViewport
IDirect3DDevice2::SetLightState
The IDirect3DDevice2::SetLightState method sets a single Direct3D Device lighting-related state value.
HRESULT SetLightState(
 D3DLIGHTSTATETYPE dwLightStateType,
 DWORD dwLightState
);

Parameters
dwLightStateType
Device state variable that is being modified. This parameter can be any of the members of the D3DLIGHTSTATETYPE enumerated type.
dwLightState
New value for the Direct3D Device light state. The meaning of this parameter is dependent on the value specified for dwLightStateType. For example, if dwLightStateType were D3DLIGHTSTATE_COLORMODEL, the second parameter would be one of the members of the D3DCOLORMODEL enumerated type.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::GetLightState, IDirect3DDevice2::SetRenderState, IDirect3DDevice2::SetTransform
IDirect3DDevice2::SetRenderState
The IDirect3DDevice2::SetRenderState method sets a single Direct3D Device rendering state parameter.
HRESULT SetRenderState(
 D3DRENDERSTATETYPE dwRenderStateType,
 DWORD dwRenderState
);

Parameters
dwRenderStateType
Device state variable that is being modified. This parameter can be any of the members of the D3DRENDERSTATETYPE enumerated type.
dwRenderState
New value for the Direct3D Device render state. The meaning of this parameter is dependent on the value specified for dwRenderStateType. For example, if dwRenderStateType were D3DRENDERSTATE_SHADEMODE, the second parameter would be one of the members of the D3DSHADEMODE enumerated type.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::GetRenderState, IDirect3DDevice2::SetLightState, IDirect3DDevice2::SetTransform
IDirect3DDevice2::SetRenderTarget
The IDirect3DDevice2::SetRenderTarget method permits the application to easily route rendering output to a new DirectDraw surface as a render target.
HRESULT SetRenderTarget(
 LPDIRECTDRAWSURFACE lpNewRenderTarget,
 DWORD dwFlags
);

Parameters
lpNewRenderTarget
Pointer to the previously created DirectDraw surface object to which future rendering on this Direct3D Device will be directed.
dwFlags
A flag word that should be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The error may be one of the following values:
DDERR_INVALIDPARAMS �One of the arguments is invalid. ��DDERR_INVALIDSURFACETYPE �The surface passed as the first parameter is invalid. ��
Remarks
When you change the rendering target, all of the handles associated with the previous rendering target become invalid. This means that you will have to reacquire all of the texture handles. If you are using ramp mode, you should also update the texture handles inside materials, by calling the IDirect3DMaterial2::SetMaterial method. Any execute buffers (which have embedded handles) also need to be updated. The IDirect3DDevice2::SetRenderState method is most useful to applications that use the DrawPrimitive methods, especially when these applications do not use ramp mode.
If the new render target surface has different dimensions from the old (length, width, pixel-format), this method marks the viewport as invalid. The viewport may be revalidated after calling IDirect3DDevice2::SetRenderTarget by calling IDirect3DViewport2::SetViewport to restate viewport parameters that are compatible with the new surface.
Capabilities do not change with changes in the properties of the render target surface. Both the Direct3D HAL and the software rasterizers have only one opportunity to expose capabilities to the application. The system cannot expose different sets of capabilities depending on the format of the destination surface.
If a z-buffer is attached to the new render target, it replaces the previous z-buffer for the context. Otherwise, the old z-buffer is detached and z-buffering is disabled.
If more than one z-buffer is attached to the render target, this function fails.
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::GetRenderTarget
IDirect3DDevice2::SetTransform
The IDirect3DDevice2::SetTransform method sets a single Direct3D Device transformation-related state.
HRESULT SetTransform(
 D3DTRANSFORMSTATETYPE dtstTransformStateType,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
dtstTransformStateType
Device state variable that is being modified. This parameter can be any of the members of the D3DTRANSFORMSTATETYPE enumerated type.
lpD3DMatrix
Address of a D3DMATRIX structure that modifies the current transformation.

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value is an error. The method returns DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks
This method was introduced with the IDirect3DDevice2 interface.
See Also
IDirect3DDevice2::GetTransform, IDirect3DDevice2::SetLightState, IDirect3DDevice2::SetRenderState
IDirect3DDevice2::SwapTextureHandles
The IDirect3DDevice2::SwapTextureHandles method swaps two texture handles.
HRESULT SwapTextureHandles(
 LPDIRECT3DTEXTURE2 lpD3DTex1,
 LPDIRECT3DTEXTURE2 lpD3DTex2
);

Parameters
lpD3DTex1 and lpD3DTex2
Addresses of the textures whose handles will be swapped when the method returns.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error.
Remarks
This method is useful when an application is changing all the textures in a complicated object.
In the IDirect3DDevice interface, this method requires pointers to IDirect3DTexture interfaces, not IDirect3DTexture2 interfaces.
IDirect3DDevice2::Vertex
The IDirect3DDevice2::Vertex method adds a new Direct3D vertex to the currently started primitive.
HRESULT Vertex(
 LPVOID lpVertexType
);

Parameters
lpVertexType
Pointer to the next Direct3D vertex to be added to the currently started primitive sequence. This can be any of the Direct3D vertex types: D3DLVERTEX, D3DTLVERTEX, or D3DVERTEX

Return Values
If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:
D3DERR_INVALIDRAMPTEXTURE�Ramp mode is being used and the texture handle in the current material does not match the current texture handle that is set as a render state. ��DDERR_INVALIDPARAMS �One of the arguments is invalid. ��
Remarks
This method was introduced with the IDirect3DDevice2 interface.
IDirect3DExecuteBuffer
Applications use the methods of the IDirect3DExecuteBuffer interface to set up and control Direct3D execute buffers. This section is a reference to the methods of this interface. For a conceptual overview, see Execute Buffers.
The methods of the IDirect3DExecuteBuffer interface can be organized into the following groups:
Execute data �GetExecuteData ���SetExecuteData �����Lock and unlock �Lock ���Unlock �����Miscellaneous �Initialize ���Optimize ���Validate ��
The IDirect3DExecuteBuffer interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3DEXECUTEBUFFER type is defined as a pointer to the IDirect3DExecuteBuffer interface:
typedef struct IDirect3DExecuteBuffer *LPDIRECT3DEXECUTEBUFFER;

IDirect3DExecuteBuffer::GetExecuteData
The IDirect3DExecuteBuffer::GetExecuteData method retrieves the execute data state of the Direct3DExecuteBuffer object. The execute data is used to describe the contents of the Direct3DExecuteBuffer object.
HRESULT GetExecuteData(
 LPD3DEXECUTEDATA lpData
);

Parameters
lpData
Address of a D3DEXECUTEDATA structure that will be filled with the current execute data state of the Direct3DExecuteBuffer object.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
D3DERR_EXECUTE_LOCKED �DDERR_INVALIDOBJECT�DDERR_INVALIDPARAMS
Remarks
This call fails if the Direct3DExecuteBuffer object is locked.
See Also
IDirect3DExecuteBuffer::SetExecuteData
IDirect3DExecuteBuffer::Initialize
The IDirect3DExecuteBuffer::Initialize method is provided for compliance with the COM protocol.
HRESULT Initialize(
 LPDIRECT3DDEVICE lpDirect3DDevice,
 LPD3DEXECUTEBUFFERDESC lpDesc
);

Parameters
lpDirect3DDevice
Address of the device representing the Direct3D object.
lpDesc
Address of a D3DEXECUTEBUFFERDESC structure that describes the Direct3DExecuteBuffer object to be created. The call fails if a buffer of at least the specified size cannot be created.

Return Values
The method returns DDERR_ALREADYINITIALIZED because the Direct3DExecuteBuffer object is initialized when it is created.
IDirect3DExecuteBuffer::Lock
The IDirect3DExecuteBuffer::Lock method obtains a direct pointer to the commands in the execute buffer.
HRESULT Lock(
 LPD3DEXECUTEBUFFERDESC lpDesc
);

Parameters
lpDesc
Address of a D3DEXECUTEBUFFERDESC structure. When the method returns, the lpData member will be set to point to the actual data to which the application has access. This data may reside in system or video memory, and is specified by the dwCaps member. The application may use the IDirect3DExecuteBuffer::Lock method to request that Direct3D move the data between system or video memory.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
D3DERR_EXECUTE_LOCKED �DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS �DDERR_WASSTILLDRAWING
Remarks
This call fails if the Direct3DExecuteBuffer object is locked—that is, if another thread is accessing the buffer, or if a IDirect3DDevice::Execute method that was issued on this buffer has not yet completed.
See Also
IDirect3DExecuteBuffer::Unlock
IDirect3DExecuteBuffer::Optimize
The IDirect3DExecuteBuffer::Optimize method is not currently supported.
HRESULT Optimize();
IDirect3DExecuteBuffer::SetExecuteData
The IDirect3DExecuteBuffer::SetExecuteData method sets the execute data state of the Direct3DExecuteBuffer object. The execute data is used to describe the contents of the Direct3DExecuteBuffer object.
HRESULT SetExecuteData(
 LPD3DEXECUTEDATA lpData
);

Parameters
lpData
Address of a D3DEXECUTEDATA structure that describes the execute buffer layout.

Return Values
If the method succeeds, the return value is D3D_OK .
If the method fails, the return value may be one of the following values:
D3DERR_EXECUTE_LOCKED �DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This call fails if the Direct3DExecuteBuffer object is locked.
See Also
IDirect3DExecuteBuffer::GetExecuteData
IDirect3DExecuteBuffer::Unlock
The IDirect3DExecuteBuffer::Unlock method releases the direct pointer to the commands in the execute buffer. This must be done prior to calling the IDirect3DDevice::Execute method for the buffer.
HRESULT Unlock();
Parameters
None.
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
D3DERR_EXECUTE_NOT_LOCKED �DDERR_INVALIDOBJECT
See Also
IDirect3DExecuteBuffer::Lock
IDirect3DExecuteBuffer::Validate
The IDirect3DExecuteBuffer::Validate method is not currently implemented.
HRESULT Validate(
 LPDWORD lpdwOffset,
 LPD3DVALIDATECALLBACK lpFunc,
 LPVOID lpUserArg,
 DWORD dwReserved
);

IDirect3DLight
Applications use the methods of the IDirect3DLight interface to retrieve and set the capabilities of lights. This section is a reference to the methods of this interface. For a conceptual overview, see Lights.
The IDirect3DLight interface is obtained by calling the IDirect3D2::CreateLight method.
The methods of the IDirect3DLight interface can be organized into the following groups:
Get and set �GetLight ���SetLight �����Initialization �Initialize �����
The IDirect3DLight interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3DLIGHT type is defined as a pointer to the IDirect3DLight interface:
typedef struct IDirect3DLight *LPDIRECT3DLIGHT;

IDirect3DLight::GetLight
The IDirect3DLight::GetLight method retrieves the light information for the Direct3DLight object.
HRESULT GetLight(
 LPD3DLIGHT lpLight
);

Parameters
lpLight
Address of a D3DLIGHT2 structure that will be filled with the current light data.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
See Also
IDirect3DLight::SetLight
IDirect3DLight::Initialize
The IDirect3DLight::Initialize method is provided for compliance with the COM protocol.
HRESULT Initialize(
 LPDIRECT3D lpDirect3D
);

Parameters
lpDirect3D
Address of the Direct3D structure representing the Direct3D object.

Return Values
The method returns DDERR_ALREADYINITIALIZED because the Direct3DLight object is initialized when it is created.
IDirect3DLight::SetLight
The IDirect3DLight::SetLight method sets the light information for the Direct3DLight object.
HRESULT SetLight(
 LPD3DLIGHT lpLight
);

Parameters
lpLight
Address of a D3DLIGHT2 structure that will be used to set the current light data.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
See Also
IDirect3DLight::GetLight
IDirect3DMaterial2
Applications use the methods of the IDirect3DMaterial2 interface to retrieve and set the properties of materials. This section is a reference to the methods of this interface. For a conceptual overview, see Materials.
The IDirect3DMaterial2 interface is an extension of the IDirect3DMaterial interface. You create this interface by calling the IDirect3D2::CreateMaterial method.
The methods of the IDirect3DMaterial2 interface can be organized into the following groups:
Handles �GetHandle �����Materials �GetMaterial ���SetMaterial ��
The IDirect3DMaterial2 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3DMATERIAL2 and LPDIRECT3DMATERIAL types are defined as pointers to the IDirect3DMaterial2 and IDirect3DMaterial interfaces:
typedef struct IDirect3DMaterial2 *LPDIRECT3DMATERIAL2;
typedef struct IDirect3DMaterial *LPDIRECT3DMATERIAL;

IDirect3DMaterial2::GetHandle
The IDirect3DMaterial2::GetHandle method obtains the material handle of the Direct3DMaterial object. This handle is used in all Direct3D methods in which a material is to be referenced. A material can be used by only one device at a time.
If the device is destroyed, the material is disassociated from the device.
HRESULT GetHandle(
 LPDIRECT3DDEVICE2 lpDirect3DDevice2,
 LPD3DMATERIALHANDLE lpHandle
);

Parameters
lpDirect3DDevice2
Address of the Direct3DDevice2 object in which the material is being used.
lpHandle
Address of a variable that will be filled with the material handle corresponding to the Direct3DMaterial object.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is DDERR_INVALIDOBJECT.
Remarks
In the IDirect3DMaterial interface, this method uses a pointer to a Direct3DMaterial object instead of a Direct3DMaterial2 object.
IDirect3DMaterial2::GetMaterial
The IDirect3DMaterial2::GetMaterial method retrieves the material data for the Direct3DMaterial object.
HRESULT GetMaterial(
 LPD3DMATERIAL lpMat
);

Parameters
lpMat
Address of a D3DMATERIAL structure that will be filled with the current material properties.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DMaterial interface.
See Also
IDirect3DMaterial2::SetMaterial
IDirect3DMaterial::Initialize
The IDirect3DMaterial2::Initialize method is not implemented.
HRESULT Initialize(
 LPDIRECT3D lpDirect3D
);

IDirect3DMaterial::Reserve
The IDirect3DMaterial2::Reserve method is not implemented.
HRESULT Reserve();
IDirect3DMaterial2::SetMaterial
The IDirect3DMaterial2::SetMaterial method sets the material data for the Direct3DMaterial object.
HRESULT SetMaterial(
 LPD3DMATERIAL lpMat
);

Parameters
lpMat
Address of a D3DMATERIAL structure that contains the material properties.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DMaterial interface.
See Also
IDirect3DMaterial2::GetMaterial
IDirect3DMaterial::Unreserve
The IDirect3DMaterial2::Unreserve method is not implemented.
HRESULT Unreserve();
IDirect3DTexture2
Applications use the methods of the IDirect3DTexture2 interface to retrieve and set the properties of textures. This section is a reference to the methods of this interface. For a conceptual overview, see Textures.
The IDirect3DTexture2 interface is an extension of the IDirect3DTexture interface. You create this interface by calling the IDirectDrawSurface::QueryInterface method from the DirectDrawSurface object that was created as a texture map.
The methods of the IDirect3DTexture2 interface can be organized into the following groups:
Handles �GetHandle �����Loading �Load �����Palette information �PaletteChanged ��
The IDirect3DTexture2 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3DTEXTURE2 and LPDIRECT3DTEXTURE types are defined as pointers to the IDirect3DTexture2 and IDirect3DTexture interfaces:
typedef struct IDirect3DTexture2 *LPDIRECT3DTEXTURE2;
typedef struct IDirect3DTexture *LPDIRECT3DTEXTURE;

IDirect3DTexture2::GetHandle
The IDirect3DTexture2::GetHandle method obtains the texture handle for the Direct3DTexture2 object. This handle is used in all Direct3D methods in which a texture is to be referenced.
HRESULT GetHandle(
 LPDIRECT3DDEVICE2 lpDirect3DDevice2,
 LPD3DTEXTUREHANDLE lpHandle
);

Parameters
lpDirect3DDevice2
Address of the Direct3DDevice2 object into which the texture is to be loaded.
lpHandle
Address that will contain the texture handle corresponding to the Direct3DTexture2 object.

Return Values
If the method succeeds, the return value is D3D_OK .
If the method fails, the return value may be one of the following values:
DDERR_INVALIDPARAMS
Remarks
In the IDirect3DTexture interface, this method uses a pointer to a Direct3DDevice object instead of a Direct3DDevice2 object.
IDirect3DTexture::Initialize
The IDirect3DTexture2::Initialize method is not implemented.
HRESULT Initialize(
 LPDIRECT3DDEVICE lpD3DDevice,
 LPDIRECTDRAWSURFACE lpDDSurface
);

IDirect3DTexture2::Load
The IDirect3DTexture2::Load method loads a texture that was created with the DDSCAPS_ALLOCONLOAD flag, which indicates that memory for the DirectDraw surface is not allocated until this method loads the surface.
HRESULT Load(
 LPDIRECT3DTEXTURE2 lpD3DTexture2
);

Parameters
lpD3DTexture2
Address of the texture to load.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error. For a list of possible return values, see Direct3D Immediate-Mode Return Values.
Remarks
In the IDirect3DTexture interface, this method uses a pointer to a Direct3DTexture object instead of a Direct3DTexture2 object.
See Also
IDirect3DTexture::Unload
IDirect3DTexture2::PaletteChanged
The IDirect3DTexture2::PaletteChanged method informs the driver that the palette has changed on a surface.
HRESULT PaletteChanged(
 DWORD dwStart,
 DWORD dwCount
);

Parameters
dwStart
Index of first palette entry that has changed.
dwCount
Number of palette entries that have changed.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error. For a list of possible return values, see Direct3D Immediate-Mode Return Values.
Remarks
This method is particularly useful for applications that play video clips and therefore require palette-changing capabilities.
This method is unchanged from its implementation in the IDirect3DTexture interface.
IDirect3DTexture::Unload
The IDirect3DTexture2::Unload method is not implemented.
HRESULT Unload();
IDirect3DViewport2
Applications use the methods of the IDirect3DViewport2 interface to retrieve and set the properties of viewports. This section is a reference to the methods of this interface. For a conceptual overview, see Viewports and Transformations.
The IDirect3DViewport2 interface is an extension of the IDirect3DViewport interface. You create the IDirect3DViewport2 interface by calling the IDirect3D2::CreateViewport method.
The methods of the IDirect3DViewport2 interface can be organized into the following groups:
Backgrounds �GetBackground ���GetBackgroundDepth ���SetBackground ���SetBackgroundDepth �����Lights �AddLight ���DeleteLight ���LightElements ���NextLight �����Materials and viewports �Clear ���GetViewport ���GetViewport2 ���SetViewport ���SetViewport2 �����Transformation �TransformVertices �����
IDirect3DViewport2 is identical to IDirect3DViewport except for two new methods: GetViewport2 and SetViewport2. The IDirect3DViewport2 interface differs from the IDirect3DViewport interface primarily in its use of the D3DVIEWPORT2 structure. This structure introduces a closer correspondence between window size and viewport size than is true for the D3DVIEWPORT structure.
The IDirect3DViewport interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:
AddRef �QueryInterface �Release
The LPDIRECT3DVIEWPORT2 and LPDIRECT3DVIEWPORT types are defined as pointers to the IDirect3DViewport2 and IDirect3DViewport interfaces:
typedef struct IDirect3DViewport2 *LPDIRECT3DVIEWPORT2;
typedef struct IDirect3DViewport *LPDIRECT3DVIEWPORT;

IDirect3DViewport2::AddLight
The IDirect3DViewport2::AddLight method adds the specified light to the list of Direct3DLight objects associated with this viewport.
HRESULT AddLight(
 LPDIRECT3DLIGHT lpDirect3DLight
);

Parameters
lpDirect3DLight
Address of the Direct3DLight object that should be associated with this Direct3DDevice object.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
IDirect3DViewport2::Clear
The IDirect3DViewport2::Clear method clears the viewport or a set of rectangles in the viewport to the current background material.
HRESULT Clear(
 DWORD dwCount,
 LPD3DRECT lpRects,
 DWORD dwFlags
);

Parameters
dwCount
Number of rectangles pointed to by lpRects.
lpRects
Address of an array of D3DRECT structures.
dwFlags
Flags indicating what to clear: the rendering target, the z-buffer, or both.
D3DCLEAR_TARGET �Clear the rendering target to the background material (if set). ��D3DCLEAR_ZBUFFER �Clear the z-buffer or set it to the current background depth field (if set). ��
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
IDirect3DViewport2::DeleteLight
The IDirect3DViewport2::DeleteLight method removes the specified light from the list of Direct3DLight objects associated with this viewport.
HRESULT DeleteLight(
 LPDIRECT3DLIGHT lpDirect3DLight
);

Parameters
lpDirect3DLight
Address of the Direct3DLight object that should be disassociated with this Direct3DDevice object.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
IDirect3DViewport2::GetBackground
The IDirect3DViewport2::GetBackground method retrieves the handle to a material that represents the current background associated with the viewport.
HRESULT GetBackground(
 LPD3DMATERIALHANDLE lphMat,
 LPBOOL lpValid
);

Parameters
lphMat
Address that will contain the handle of the material being used as the background.
lpValid
Address of a variable that will be filled to indicate whether a background is associated with the viewport. If this parameter is FALSE, no background is associated with the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
See Also
IDirect3DViewport2::SetBackground
IDirect3DViewport2::GetBackgroundDepth
The IDirect3DViewport2::GetBackgroundDepth method retrieves a DirectDraw surface that represents the current background-depth field associated with the viewport.
HRESULT GetBackgroundDepth(
 LPDIRECTDRAWSURFACE* lplpDDSurface,
 LPBOOL lpValid
);

Parameters
lplpDDSurface
Address that will be initialized to point to a DirectDrawSurface object representing the background depth.
lpValid
Address of a variable that is set to FALSE if no background depth is associated with the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
See Also
IDirect3DViewport2::SetBackgroundDepth
IDirect3DViewport2::GetViewport
The IDirect3DViewport2::GetViewport method retrieves the viewport registers of the viewport. In the IDirect3DViewport2 interface, this method has been superseded by the IDirect3DViewport2::GetViewport2 method.
HRESULT GetViewport(
 LPD3DVIEWPORT lpData
);

Parameters
lpData
Address of a D3DVIEWPORT structure representing the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT_dx5_DDERR_INVALIDOBJECT_ddraw �DDERR_INVALIDPARAMS_dx5_DDERR_INVALIDPARAMS_ddraw
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
See Also
IDirect3DViewport2::GetViewport2, IDirect3DViewport2::SetViewport
IDirect3DViewport2::GetViewport2
The IDirect3DViewport2::GetViewport2 method retrieves the viewport registers of the viewport.
HRESULT GetViewport2(
 LPD3DVIEWPORT2 lpData
);

Parameters
lpData
Address of a D3DVIEWPORT2 structure representing the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
See Also
IDirect3DViewport2::SetViewport2
IDirect3DViewport2::Initialize
The IDirect3DViewport2::Initialize method is not implemented.
HRESULT Initialize(
 LPDIRECT3D lpDirect3D
);

IDirect3DViewport2::LightElements
The IDirect3DViewport2::LightElements method is not currently implemented.
HRESULT LightElements(
 DWORD dwElementCount,
 LPD3DLIGHTDATA lpData
);

IDirect3DViewport2::NextLight
The IDirect3DViewport2::NextLight method enumerates the Direct3DLight objects associated with the viewport.
HRESULT NextLight(
 LPDIRECT3DLIGHT lpDirect3DLight,
 LPDIRECT3DLIGHT* lplpDirect3DLight,
 DWORD dwFlags
);

Parameters
lpDirect3DLight
Address of a light in the list of lights associated with this viewport object.
lplpDirect3DLight
Address of a pointer that will contain the requested light in the list of lights associated with this viewport object. The requested light is specified in the dwFlags parameter.
dwFlags
Flags specifying which light to retrieve from the list of lights. The default setting is D3DNEXT_NEXT.
D3DNEXT_HEAD �Retrieve the item at the beginning of the list. ��D3DNEXT_NEXT �Retrieve the next item in the list. ��D3DNEXT_TAIL �Retrieve the item at the end of the list. ��
Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
IDirect3DViewport2::SetBackground
The IDirect3DViewport2::SetBackground method sets the background associated with the viewport.
HRESULT SetBackground(
 D3DMATERIALHANDLE hMat
);

Parameters
hMat
Material handle that will be used as the background.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
See Also
IDirect3DViewport2::GetBackground
IDirect3DViewport2::SetBackgroundDepth
The IDirect3DViewport2::SetBackgroundDepth method sets the background-depth field for the viewport.
HRESULT SetBackgroundDepth(
 LPDIRECTDRAWSURFACE lpDDSurface
);

Parameters
lpDDSurface
Address of the DirectDrawSurface object representing the background depth.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
The z-buffer is filled with the specified depth field when the IDirect3DViewport2::Clear method is called and the D3DCLEAR_ZBUFFER flag is specified. The bit depth must be 16 bits.
This method is unchanged from its implementation in the IDirect3DViewport interface.
See Also
IDirect3DViewport2::GetBackgroundDepth
IDirect3DViewport2::SetViewport
The IDirect3DViewport2::SetViewport method sets the viewport registers of the viewport. In the IDirect3DViewport2 interface, this method has been superseded by the IDirect3DViewport2::SetViewport2 method.
HRESULT SetViewport(
 LPD3DVIEWPORT lpData
);

Parameters
lpData
Address of a D3DVIEWPORT structure that contains the new viewport.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
This method is unchanged from its implementation in the IDirect3DViewport interface.
See Also
IDirect3DViewport2::GetViewport, IDirect3DViewport2::SetViewport2
IDirect3DViewport2::SetViewport2
The IDirect3DViewport2::SetViewport2 method sets the viewport registers of the viewport.
HRESULT SetViewport2(
 LPD3DVIEWPORT2 lpData
);

Parameters
lpData
Address of a D3DVIEWPORT2 structure that contains the new viewport.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
See Also
IDirect3DViewport2::GetViewport2
IDirect3DViewport2::TransformVertices
The IDirect3DViewport2::TransformVertices method transforms a set of vertices by the transformation matrix.
HRESULT TransformVertices(
 DWORD dwVertexCount,
 LPD3DTRANSFORMDATA lpData,
 DWORD dwFlags,
 LPDWORD lpOffscreen
);

Parameters
dwVertexCount
Number of vertices in the lpData parameter to be transformed.
lpData
Address of a D3DTRANSFORMDATA structure that contains the vertices to be transformed.
dwFlags
One of the following flags. See the comments section following the parameter description for a discussion of how to use these flags.
D3DTRANSFORM_CLIPPED �D3DTRANSFORM_UNCLIPPED
lpOffscreen
Address of a variable that is set to a nonzero value if the resulting vertices are all off-screen.

Return Values
If the method succeeds, the return value is D3D_OK .
If the method fails, the return value may be one of the following values:
DDERR_INVALIDOBJECT �DDERR_INVALIDPARAMS
Remarks
If the dwFlags parameter is set to D3DTRANSFORM_CLIPPED, this method uses the current transformation matrix to transform a set of vertices, checking the resulting vertices to see if they are within the viewing frustum. The homogeneous part of the D3DLVERTEX structure within lpData will be set if the vertex is clipped; otherwise only the screen coordinates will be set. The clip intersection of all the vertices transformed is returned in lpOffscreen. That is, if lpOffscreen is nonzero, all the vertices were off-screen and not straddling the viewport. The drExtent member of the D3DTRANSFORMDATA structure will also be set to the 2-D bounding rectangle of the resulting vertices.
If the dwFlags parameter is set to D3DTRANSFORM_UNCLIPPED, this method uses the current transformation matrix to transform a set of vertices. In this case, the system assumes that all the resulting coordinates will be within the viewing frustum. The drExtent member of the D3DTRANSFORMDATA structure will be set to the bounding rectangle of the resulting vertices.
The dwClip member of D3DTRANSFORMDATA can help the transformation module determine whether the geometry will need clipping against the viewing volume. Before transforming a geometry, high-level software often can test whether bounding boxes or bounding spheres are wholly within the viewing volume, allowing clipping tests to be skipped, or wholly outside the viewing volume, allowing the geometry to be skipped entirely.
This method is unchanged from its implementation in the IDirect3DViewport interface.
D3D_OVERLOADS
C++ programmers who define D3D_OVERLOADS can use the extensions documented here to simplify their code in Direct3D Immediate Mode applications. D3D_OVERLOADS was introduced with DirectX® 5. This section is a reference to the D3D_OVERLOADS extensions.
These extensions must be defined with C++ linkage. If D3D_OVERLOADS is defined and the inclusion of D3dtypes.h or D3d.h is surrounded by extern "C", link errors will result. For example, the following syntax would generate link errors because of C linkage of D3D_OVERLOADS functionality:
#define D3D_OVERLOADS
extern "C" {
#include <d3d.h>
};

The D3D_OVERLOADS extensions can be organized into the following groups:
Constructors �D3DLVERTEX���D3DTLVERTEX���D3DVECTOR���D3DVERTEX�����Operators �Access Grant Operators���Addition Operator���Assignment Operators���Bitwise Equality Operator���D3DMATRIX���Division Operator���Multiplication Operator���Subtraction Operator���Unary Operators���Vector Dominance Operators�����Helper functions �CrossProduct���DotProduct���Magnitude���Max���Maximize���Min���Minimize���Normalize���SquareMagnitude��
D3D_OVERLOADS Constructors
This section contains reference information for the constructors provided by the D3D_OVERLOADS C++ extensions.
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLVERTEX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTLVERTEX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVECTOR
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVERTEX

D3DLVERTEX Constructors
The D3D_OVERLOADS constructors for the D3DLVERTEX structure offer a convenient way for C++ programmers to create lit vertices.
_D3DLVERTEX() { }
_D3DLVERTEX(const D3DVECTOR& v,
 D3DCOLOR _color, D3DCOLOR _specular,
 float _tu, float _tv)
 { x = v.x; y = v.y; z = v.z; dwReserved = 0;
 color = _color; specular = _specular;
 tu = _tu; tv = _tv;
 }

D3DTLVERTEX Constructors
The D3D_OVERLOADS constructors for the D3DTLVERTEX structure offer a convenient way for C++ programmers to create transformed and lit vertices.
_D3DTLVERTEX() { }
_D3DTLVERTEX(const D3DVECTOR& v, float _rhw,
 D3DCOLOR _color, D3DCOLOR _specular,
 float _tu, float _tv)
 { sx = v.x; sy = v.y; sz = v.z; rhw = _rhw;
 color = _color; specular = _specular;
 tu = _tu; tv = _tv;
 }

D3DVECTOR Constructors
The D3D_OVERLOADS constructors for the D3DVECTOR structure offer a convenient way for C++ programmers to create vectors.
_D3DVECTOR() { }
_D3DVECTOR(D3DVALUE f);
_D3DVECTOR(D3DVALUE _x, D3DVALUE _y, D3DVALUE _z);
_D3DVECTOR(const D3DVALUE f[3]);

These constructors are defined as follows:
inline _D3DVECTOR::_D3DVECTOR(D3DVALUE f)
 { x = y = z = f; }

inline _D3DVECTOR::_D3DVECTOR(D3DVALUE _x, D3DVALUE _y, D3DVALUE _z)
 { x = _x; y = _y; z = _z; }

inline _D3DVECTOR::_D3DVECTOR(const D3DVALUE f[3])
 { x = f[0]; y = f[1]; z = f[2]; }

D3DVERTEX Constructors
The D3D_OVERLOADS constructors for the D3DVERTEX structure offer a convenient way for C++ programmers to create lit vertices.
_D3DVERTEX() { }
_D3DVERTEX(const D3DVECTOR& v, const D3DVECTOR& n, float _tu, float _tv)
 { x = v.x; y = v.y; z = v.z;
 nx = n.x; ny = n.y; nz = n.z;
 tu = _tu; tv = _tv;
 }

D3D_OVERLOADS Operators
This section contains reference information for the operators provided by the D3D_OVERLOADS C++ extensions.
�SYMBOL 183 \f "Symbol" \s 11 \h �	Access Grant Operators
�SYMBOL 183 \f "Symbol" \s 11 \h �	Addition Operator
�SYMBOL 183 \f "Symbol" \s 11 \h �	Assignment Operators
�SYMBOL 183 \f "Symbol" \s 11 \h �	Bitwise Equality Operator
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DMATRIX
�SYMBOL 183 \f "Symbol" \s 11 \h �	Division Operator
�SYMBOL 183 \f "Symbol" \s 11 \h �	Multiplication Operator
�SYMBOL 183 \f "Symbol" \s 11 \h �	Subtraction Operator
�SYMBOL 183 \f "Symbol" \s 11 \h �	Unary Operators
�SYMBOL 183 \f "Symbol" \s 11 \h �	Vector Dominance Operators

Access Grant Operators (D3D_OVERLOADS)
The bracket ("[]") operators are overloaded operators for the D3D_OVERLOADS extensions. You can use empty brackets ("[]") for access grants, "v[0]" to access the x component of a vector, "v[1]" to access the y component, and "v[2]" to access the z component. These operators are defined as follows:
const D3DVALUE&operator[](int i) const;
D3DVALUE&operator[](int i);

inline const D3DVALUE&
_D3DVECTOR::operator[](int i) const
{
 return (&x)[i];
}

inline D3DVALUE&
_D3DVECTOR::operator[](int i)
{
 return (&x)[i];
}

Addition Operator (D3D_OVERLOADS)
This binary operator is an overloaded operator for the D3D_OVERLOADS extensions. The addition operator is defined as follows:
_D3DVECTOR operator + (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator + (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x+v2.x, v1.y+v2.y, v1.z+v2.z);
}

Assignment Operators (D3D_OVERLOADS)
The assignment operators are overloaded operators for the D3D_OVERLOADS extensions. Both scalar and vector forms of the "*=" and "/=" operators have been implemented. (In the vector form, multiplication and division are memberwise.)
_D3DVECTOR& operator += (const _D3DVECTOR& v);
_D3DVECTOR& operator -= (const _D3DVECTOR& v);
_D3DVECTOR& operator *= (const _D3DVECTOR& v);
_D3DVECTOR& operator /= (const _D3DVECTOR& v);
_D3DVECTOR& operator *= (D3DVALUE s);
_D3DVECTOR& operator /= (D3DVALUE s);

The assignment operators are defined as follows:
inline _D3DVECTOR&
_D3DVECTOR::operator += (const _D3DVECTOR& v)
{
 x += v.x; y += v.y; z += v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator -= (const _D3DVECTOR& v)
{
 x -= v.x; y -= v.y; z -= v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator *= (const _D3DVECTOR& v)
{
 x *= v.x; y *= v.y; z *= v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator /= (const _D3DVECTOR& v)
{
 x /= v.x; y /= v.y; z /= v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator *= (D3DVALUE s)
{
 x *= s; y *= s; z *= s;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator /= (D3DVALUE s)
{
 x /= s; y /= s; z /= s;
 return *this;
}

Bitwise Equality Operator (D3D_OVERLOADS)
This binary operator is an overloaded operator for the D3D_OVERLOADS extensions. The bitwise-equality operator is defined as follows:
int operator == (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline int
operator == (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1.x==v2.x && v1.y==v2.y && v1.z == v2.z;
}

D3DMATRIX (D3D_OVERLOADS)
The D3D_OVERLOADS implementation of the D3DMATRIX structure implements a parentheses ("()") operator. This operator offers convenient access to values in the matrix for C++ programmers. Instead of having to refer to the structure members by name, C++ programmers can refer to them by row and column number, and simply index these numbers as needed.
typedef struct _D3DMATRIX {
#if (defined __cplusplus) && (defined D3D_OVERLOADS)
 union {
 struct {
#endif

 D3DVALUE _11, _12, _13, _14;
 D3DVALUE _21, _22, _23, _24;
 D3DVALUE _31, _32, _33, _34;
 D3DVALUE _41, _42, _43, _44;

#if (defined __cplusplus) && (defined D3D_OVERLOADS)
 };
 D3DVALUE m[4][4];
 };
 _D3DMATRIX() { }

 D3DVALUE& operator()(int iRow, int iColumn) { return m[iRow][iColumn]; }
 const D3DVALUE& operator()(int iRow, int iColumn) const { return m[iRow][iColumn]; }
#endif
} D3DMATRIX, *LPD3DMATRIX;

See Also
D3DMATRIX
Division Operator (D3D_OVERLOADS)
This binary operator is an overloaded operator for the D3D_OVERLOADS extensions. Both scalar and vector forms of this operator have been implemented. The division operator is defined as follows:
_D3DVECTOR operator / (const _D3DVECTOR& v, D3DVALUE s);
_D3DVECTOR operator / (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator / (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x/v2.x, v1.y/v2.y, v1.z/v2.z);
}

inline _D3DVECTOR
operator / (const _D3DVECTOR& v, D3DVALUE s)
{
 return _D3DVECTOR(v.x/s, v.y/s, v.z/s);
}

Multiplication Operator (D3D_OVERLOADS)
This binary operator is an overloaded operator for the D3D_OVERLOADS extensions. Both scalar and vector forms of this operator have been implemented. The multiplication operator is defined as follows:
_D3DVECTOR operator * (const _D3DVECTOR& v, D3DVALUE s);
_D3DVECTOR operator * (D3DVALUE s, const _D3DVECTOR& v);
_D3DVECTOR operator * (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator * (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x*v2.x, v1.y*v2.y, v1.z*v2.z);
}

inline _D3DVECTOR
operator * (const _D3DVECTOR& v, D3DVALUE s)
{
 return _D3DVECTOR(s*v.x, s*v.y, s*v.z);
}

inline _D3DVECTOR
operator * (D3DVALUE s, const _D3DVECTOR& v)
{
 return _D3DVECTOR(s*v.x, s*v.y, s*v.z);
}

Subtraction Operator (D3D_OVERLOADS)
This binary operator is an overloaded operator for the D3D_OVERLOADS extensions. The subtraction operator is defined as follows:
_D3DVECTOR operator - (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator - (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x-v2.x, v1.y-v2.y, v1.z-v2.z);
}

Unary Operators (D3D_OVERLOADS)
The unary operators are overloaded operators for the D3D_OVERLOADS extensions. The unary operators are defined as follows:
_D3DVECTOR operator + (const _D3DVECTOR& v);
_D3DVECTOR operator - (const _D3DVECTOR& v);

inline _D3DVECTOR
operator + (const _D3DVECTOR& v)
{
 return v;
}

inline _D3DVECTOR
operator - (const _D3DVECTOR& v)
{
 return _D3DVECTOR(-v.x, -v.y, -v.z);
}

Vector Dominance Operators (D3D_OVERLOADS)
These binary operators are overloaded operators for the D3D_OVERLOADS extensions. Vector v1 dominates vector v2 if any component of v1 is greater than the corresponding component of v2. Therefore, it is possible for neither of the two specified vectors to dominate the other.
int operator < (const _D3DVECTOR& v1, const _D3DVECTOR& v2);
int operator <= (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

The vector-dominance operators are defined as follows:
inline int
operator < (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1[0] < v2[0] && v1[1] < v2[1] && v1[2] < v2[2];
}

inline int
operator <= (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1[0] <= v2[0] && v1[1] <= v2[1] && v1[2] <= v2[2];
}

D3D_OVERLOADS Helper Functions
This section contains reference information for the helper functions provided by the D3D_OVERLOADS C++ extensions.
�SYMBOL 183 \f "Symbol" \s 11 \h �	CrossProduct
�SYMBOL 183 \f "Symbol" \s 11 \h �	DotProduct
�SYMBOL 183 \f "Symbol" \s 11 \h �	Magnitude
�SYMBOL 183 \f "Symbol" \s 11 \h �	Max
�SYMBOL 183 \f "Symbol" \s 11 \h �	Maximize
�SYMBOL 183 \f "Symbol" \s 11 \h �	Min
�SYMBOL 183 \f "Symbol" \s 11 \h �	Minimize
�SYMBOL 183 \f "Symbol" \s 11 \h �	Normalize
�SYMBOL 183 \f "Symbol" \s 11 \h �	SquareMagnitude

CrossProduct
This helper function returns the cross product of the specified vectors. CrossProduct is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
_D3DVECTOR CrossProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:
inline _D3DVECTOR
CrossProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 _D3DVECTOR result;

 result[0] = v1[1] * v2[2] - v1[2] * v2[1];
 result[1] = v1[2] * v2[0] - v1[0] * v2[2];
 result[2] = v1[0] * v2[1] - v1[1] * v2[0];

 return result;
}

See Also
DotProduct
DotProduct
This helper function returns the dot product of the specified vectors. DotProduct is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
D3DVALUE DotProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:
inline D3DVALUE
DotProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1.x*v2.x + v1.y * v2.y + v1.z*v2.z;
}

See Also
CrossProduct
Magnitude
This helper function returns the absolute value of the specified vector. Magnitude is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
D3DVALUE Magnitude (const _D3DVECTOR& v);

This function is defined as follows:
inline D3DVALUE
Magnitude (const _D3DVECTOR& v)
{
 return (D3DVALUE) sqrt(SquareMagnitude(v));
}

See Also
SquareMagnitude
Max
This helper function returns the maximum component of the specified vector. Max is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
D3DVALUE Max (const _D3DVECTOR& v);

This function is defined as follows:
inline D3DVALUE
Max (const _D3DVECTOR& v)
{
 D3DVALUE ret = v.x;
 if (ret < v.y) ret = v.y;
 if (ret < v.z) ret = v.z;
 return ret;
}

See Also
Min
Maximize
This helper function returns a vector that is made up of the largest components of the two specified vectors. Maximize is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
_D3DVECTOR Maximize (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:
inline _D3DVECTOR
Maximize (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1[0] > v2[0] ? v1[0] : v2[0],
 v1[1] > v2[1] ? v1[1] : v2[1],
 v1[2] > v2[2] ? v1[2] : v2[2]);
}

Remarks
You could use the Maximize and Minimize functions to compute the bounding box for a set of points, in a function that looks like this:
 void
 ComputeBoundingBox(const D3DVECTOR *pts, int N, D3DVECTOR *min, D3DVECTOR *max)
 {
 int i;
 *min = *max = pts[0];
 for (i = 1; i < N; i += 1)
 {
 *min = Minimize(*min, pts[i]);
 *max = Maximize(*max, pts[i]);
 }
 }

See Also
Minimize
Min
This helper function returns the minimum component of the specified vector. Min is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
D3DVALUE Min (const _D3DVECTOR& v);

This function is defined as follows:
inline D3DVALUE
Min (const _D3DVECTOR& v)
{
 D3DVALUE ret = v.x;
 if (v.y < ret) ret = v.y;
 if (v.z < ret) ret = v.z;
 return ret;
}

See Also
Max
Minimize
This helper function returns a vector that is made up of the smallest components of the two specified vectors. Minimize is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
_D3DVECTOR Minimize (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:
inline _D3DVECTOR
Minimize (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1[0] < v2[0] ? v1[0] : v2[0],
 v1[1] < v2[1] ? v1[1] : v2[1],
 v1[2] < v2[2] ? v1[2] : v2[2]);
}

Remarks
You could use the Maximize and Minimize functions to compute the bounding box for a set of points, in a function that looks like this:
 void
 ComputeBoundingBox(const D3DVECTOR *pts, int N, D3DVECTOR *min, D3DVECTOR *max)
 {
 int i;
 *min = *max = pts[0];
 for (i = 1; i < N; i += 1)
 {
 *min = Minimize(*min, pts[i]);
 *max = Maximize(*max, pts[i]);
 }
 }

See Also
Maximize
Normalize
This helper function returns the normalized version of the specified vector (that is, a unit-length vector with the same direction as the source). Normalize is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
_D3DVECTOR Normalize (const _D3DVECTOR& v);

This function is defined as follows:
inline _D3DVECTOR
Normalize (const _D3DVECTOR& v)
{
 return v / Magnitude(v);
}

SquareMagnitude
This helper function returns the square of the absolute value of the specified vector. SquareMagnitude is part of the suite of extra functionality that is available to C++ programmers who define D3D_OVERLOADS.
D3DVALUE SquareMagnitude (const _D3DVECTOR& v);

This function is defined as follows:
inline D3DVALUE
SquareMagnitude (const _D3DVECTOR& v)
{
 return v.x*v.x + v.y*v.y + v.z*v.z;
}

See Also
Magnitude
Macros
This section contains reference information for the macros provided by Direct3D's Immediate Mode.
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DDivide
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DMultiply
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DRGB
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DRGBA
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DSTATE_OVERRIDE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVAL
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVALP
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGB_GETBLUE
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGB_GETGREEN
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGB_GETRED
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGB_MAKE
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGB_TORGBA
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_GETALPHA
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_GETBLUE
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_GETGREEN
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_GETRED
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_MAKE
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_SETALPHA
�SYMBOL 183 \f "Symbol" \s 11 \h �	RGBA_TORGB

D3DDivide
The D3DDivide macro divides two values.
D3DDivide(a, b) (float)((double) (a) / (double) (b))

Parameters
a and b
Dividend and divisor in the expression, respectively.

Return Values
The macros returns the quotient of the division.
See Also
D3DMultiply
D3DMultiply
The D3DMultiply macro multiplies two values.
D3DMultiply(a, b) ((a) * (b))

Parameters
a and b
Values to be multiplied.

Return Values
The macros returns the product of the multiplication.
See Also
D3DDivide
D3DRGB
The D3DRGB macro initializes a color with the supplied RGB values.
D3DRGB(r, g, b) \
 (0xff000000L | (((long)((r) * 255)) << 16) | \
 (((long)((g) * 255)) << 8) | (long)((b) * 255))

Parameters
r, g, and b
Red, green, and blue components of the color. These should be floating-point values in the range 0 through 1.

Return Values
The macros returns the D3DCOLOR value corresponding to the supplied RGB values.
See Also
D3DRGBA
D3DRGBA
The D3DRGBA macro initializes a color with the supplied RGBA values.
D3DRGBA(r, g, b, a) \
 ((((long)((a) * 255)) << 24) | (((long)((r) * 255)) << 16) |
 (((long)((g) * 255)) << 8) | (long)((b) * 255))

Parameters
r, g, b, and a
Red, green, blue, and alpha components of the color.

Return Values
The macros returns the D3DCOLOR value corresponding to the supplied RGBA values.
See Also
D3DRGB
D3DSTATE_OVERRIDE
The D3DSTATE_OVERRIDE macro overrides the state of the rasterization, lighting, or transformation module. Applications can use this macro to lock and unlock a state.
D3DSTATE_OVERRIDE(type) ((DWORD) (type) + D3DSTATE_OVERRIDE_BIAS)

Parameters
type
State to override. This parameter should be one of the members of the D3DTRANSFORMSTATETYPE, D3DLIGHTSTATETYPE, or D3DRENDERSTATETYPE enumerated types.

Return Values
No return value.
Remarks
An application might, for example, use the STATE_DATA macro (defined in the D3dmacs.h header file in the Misc directory of the DirectX SDK sample code) and D3DSTATE_OVERRIDE to lock and unlock the D3DRENDERSTATE_SHADEMODE render state:
// Lock the shade mode.

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), TRUE, lpBuffer);

// Work with the shade mode and unlock it when read-only status is not required.

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), FALSE, lpBuffer);

For more information about overriding rendering states, see States and State Overrides.
D3DVAL
The D3DVAL macro creates a value whose type is D3DVALUE.
D3DVAL(val) ((float)val)

Parameters
val
Value to be converted.

Return Values
The macros returns the converted value.
See Also
D3DVALP
D3DVALP
The D3DVALP macro creates a value of the specified precision.
D3DVALP(val, prec) ((float)val)

Parameters
val
Value to be converted.
prec
Ignored.

Return Values
The macros returns the converted value.
Remarks
The precision, as implemented by the D3DVAL macro, is 16 bits for the fractional part of the value.
See Also
D3DVAL
RGB_GETBLUE
The RGB_GETBLUE macro retrieves the blue component of a D3DCOLOR value.
RGB_GETBLUE(rgb) ((rgb) & 0xff)

Parameters
rgb
Color index from which the blue component is retrieved.

Return Values
Returns the blue component.
RGB_GETGREEN
The RGB_GETGREEN macro retrieves the green component of a D3DCOLOR value.
RGB_GETGREEN(rgb) (((rgb) >> 8) & 0xff)

Parameters
rgb
Color index from which the green component is retrieved.

Return Values
The macros returns the green component.
RGB_GETRED
The RGB_GETRED macro retrieves the red component of a D3DCOLOR value.
RGB_GETRED(rgb) (((rgb) >> 16) & 0xff)

Parameters
rgb
Color index from which the red component is retrieved.

Return Values
The macros returns the red component.
RGB_MAKE
The RGB_MAKE macro creates an RGB color from supplied values.
RGB_MAKE(r, g, b) ((D3DCOLOR) (((r) << 16) | ((g) << 8) | (b)))

Parameters
r, g, and b
Red, green, and blue components of the color to be created. These should be integer values in the range zero through 255.

Return Values
The macros returns the color.
RGB_TORGBA
The RGB_TORGBA macro creates an RGBA color from a supplied RGB color.
RGB_TORGBA(rgb) ((D3DCOLOR) ((rgb) | 0xff000000))

Parameters
rgb
RGB color to be converted to an RGBA color.

Return Values
Returns the RGBA color.
See Also
RGBA_TORGB
RGBA_GETALPHA
The RGB_GETALPHA macro retrieves the alpha component of an RGBA D3DCOLOR value.
RGBA_GETALPHA(rgb) ((rgb) >> 24)

Parameters
rgb
Color index from which the alpha component is retrieved.

Return Values
The macros returns the alpha component.
RGBA_GETBLUE
The RGBA_GETBLUE macro retrieves the blue component of an RGBA D3DCOLOR value.
RGB_GETBLUE(rgb) ((rgb) & 0xff)

Parameters
rgb
Color index from which the blue component is retrieved.

Return Values
The macros returns the blue component.
RGBA_GETGREEN
The RGBA_GETGREEN macro retrieves the green component of an RGBA D3DCOLOR value.
RGB_GETGREEN(rgb) (((rgb) >> 8) & 0xff)

Parameters
rgb
Color index from which the green component is retrieved.

Return Values
The macros returns the green component.
RGBA_GETRED
The RGBA_GETRED macro retrieves the red component of an RGBA D3DCOLOR value.
RGB_GETRED(rgb) (((rgb) >> 16) & 0xff)

Parameters
rgb
Color index from which the red component is retrieved.

Return Values
The macros returns the red component.
RGBA_MAKE
The RGBA_MAKE macro creates an RGBA D3DCOLOR value from supplied red, green, blue, and alpha components.
RGBA_MAKE(r, g, b, a) \
 ((D3DCOLOR) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b)))

Parameters
r, g, b, and a
Red, green, blue, and alpha components of the RGBA color to be created.

Return Values
The macros returns the color.
RGBA_SETALPHA
The RGBA_SETALPHA macro sets the alpha component of an RGBA D3DCOLOR value.
RGBA_SETALPHA(rgba, x) (((x) << 24) | ((rgba) & 0x00ffffff))

Parameters
rgba
RGBA color for which the alpha component will be set.
x
Value of alpha component to be set.

Return Values
The macros returns the RGBA color whose alpha component has been set.
RGBA_TORGB
The RGBA_TORGB macro creates an RGB D3DCOLOR value from a supplied RGBA D3DCOLOR value by stripping off the alpha component of the color.
RGBA_TORGB(rgba) ((D3DCOLOR) ((rgba) & 0xffffff))

Parameters
rgba
RGBA color to be converted to an RGB color.

Return Values
The macros returns the RGB color.
See Also
RGB_TORGBA
Callback Functions
This section contains reference information for the callback functions you may need to implement when you work with Direct3D Immediate Mode.
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DENUMDEVICESCALLBACK
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DENUMTEXTUREFORMATSCALLBACK
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVALIDATECALLBACK

D3DENUMDEVICESCALLBACK
D3DENUMDEVICESCALLBACK is the prototype definition for the callback function to enumerate installed Direct3D devices.
typedef HRESULT (FAR PASCAL * LPD3DENUMDEVICESCALLBACK)
 (LPGUID lpGuid,
 LPSTR lpDeviceDescription,
 LPSTR lpDeviceName,
 LPD3DDEVICEDESC lpD3DHWDeviceDesc,
 LPD3DDEVICEDESC lpD3DHELDeviceDesc,
 LPVOID lpUserArg
);

Parameters
lpGuid
Address of a globally unique identifier (GUID).
lpDeviceDescription
Address of a textual description of the device.
lpDeviceName
Address of the device name.
lpD3DHWDeviceDesc
Address of a D3DDEVICEDESC structure that contains the hardware capabilities of the Direct3D device.
lpD3DHELDeviceDesc
Address of a D3DDEVICEDESC structure that contains the emulated capabilities of the Direct3D device.
lpUserArg
Address of application-defined data passed to this callback function.

Return Values
Applications should return one of the following values:
D3DENUMRET_CANCEL ���Cancel the enumeration. ��D3DENUMRET_OK ���Continue the enumeration. ��
Remarks
When determining the order in which to call callback functions, the system searches the objects highest in the hierarchy first, and then calls their callback functions in the order in which they were created.
D3DENUMTEXTUREFORMATSCALLBACK
D3DENUMTEXTUREFORMATSCALLBACK is the prototype definition for the callback function to enumerate texture formats.
typedef HRESULT (WINAPI* LPD3DENUMTEXTUREFORMATSCALLBACK)
 (LPDDSURFACEDESC lpDdsd,
 LPVOID lpUserArg
);

Parameters
lpDdsd
Address of a DDSURFACEDESC structure containing the texture information.
lpUserArg
Address of application-defined data passed to this callback function.

Return Values
Applications should return one of the following values:
D3DENUMRET_CANCEL ���Cancel the enumeration. ��D3DENUMRET_OK ���Continue the enumeration. ��
Remarks
When determining the order in which to call callback functions, the system searches the objects highest in the hierarchy first, and then calls their callback functions in the order in which they were created.
D3DVALIDATECALLBACK
D3DVALIDATECALLBACK is the application-defined callback function supplied when an application calls the IDirect3DExecuteBuffer::Validate method. The IDirect3DExecuteBuffer::Validate method is not currently implemented.
IDirect3DExecuteBuffer::Validate is a debugging routine that checks the execute buffer and returns an offset into the buffer when any errors are encountered.
typedef HRESULT (WINAPI* LPD3DVALIDATECALLBACK)
 (LPVOID lpUserArg,
 DWORD dwOffset
);

Parameters
lpUserArg
Address of application-defined data passed to this callback function.
dwOffset
Offset into the execute buffer at which the system found an error.

Remarks
When determining the order in which to call callback functions, the system searches the objects highest in the hierarchy first, and then calls their callback functions in the order in which they were created.
Structures
This section contains information about the following structures used with Direct3D Immediate Mode.
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DBRANCH
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DCLIPSTATUS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DCOLORVALUE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DDEVICEDESC
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DEXECUTEBUFFERDESC
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DEXECUTEDATA
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DFINDDEVICERESULT
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DFINDDEVICESEARCH
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DHVERTEX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DINSTRUCTION
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLIGHT2
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLIGHTDATA
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLIGHTINGCAPS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLIGHTINGELEMENT
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLINE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLINEPATTERN
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLVERTEX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DMATERIAL
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DMATRIX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DMATRIXLOAD
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DMATRIXMULTIPLY
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DPICKRECORD
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DPOINT
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DPRIMCAPS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DPROCESSVERTICES
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DRECT
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DSPAN
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DSTATE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DSTATS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DSTATUS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTEXTURELOAD
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTLVERTEX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTRANSFORMCAPS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTRANSFORMDATA
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTRIANGLE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVECTOR
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVERTEX
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVIEWPORT
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVIEWPORT2

D3DBRANCH
The D3DBRANCH structure performs conditional operations inside an execute buffer. This structure is a forward-branch structure.
typedef struct _D3DBRANCH {
 DWORD dwMask;
 DWORD dwValue;
 BOOL bNegate;
 DWORD dwOffset;
} D3DBRANCH, *LPD3DBRANCH;

Members
dwMask
Bitmask for the branch. This mask is combined with the driver-status mask by using the bitwise AND operator. If the result equals the value specified in the dwValue member and the bNegate member is FALSE, the branch is taken.
For a list of the available driver-status masks, see the dwStatus member of the D3DSTATUS structure.
dwValue
Application-defined value to compare against the operation described in the dwMask member.
bNegate
TRUE to negate comparison.
dwOffset
How far to branch forward. Specify zero to exit.

D3DCLIPSTATUS
The D3DCLIPSTATUS structure describes the current clip status and extents of the clipping region. This structure was introduced in DirectX 5.
typedef struct _D3DCLIPSTATUS {
 DWORD dwFlags;
 DWORD dwStatus;
 float minx, maxx;
 float miny, maxy;
 float minz, maxz;
} D3DCLIPSTATUS, *LPD3DCLIPSTATUS;

Members
dwFlags
Flags describing whether this structure describes 2-D extents, 3-D extents, or the clip status. This member can be a combination of the following flags:
D3DCLIPSTATUS_STATUS���The structure describes the current clip status. ��D3DCLIPSTATUS_EXTENTS2���The structure describes the current 2-D extents. This flag cannot be combined with D3DCLIPSTATUS_EXTENTS3.��D3DCLIPSTATUS_EXTENTS3���The structure describes the current 3-D extents. This flag cannot be combined with D3DCLIPSTATUS_EXTENTS2.��
dwStatus
Describes the current clip status. For a list of the available driver-status masks, see the dwStatus member of the D3DSTATUS structure.
minx, maxx, miny, maxy, minz, maxz
x, y, and z extents of the current clipping region.
See Also
IDirect3DDevice2::GetClipStatus, IDirect3DDevice2::SetClipStatus
D3DCOLORVALUE
The D3DCOLORVALUE structure describes color values for the D3DLIGHT2 and D3DMATERIAL structures.
typedef struct _D3DCOLORVALUE {
 union {
 D3DVALUE r;
 D3DVALUE dvR;
 };
 union {
 D3DVALUE g;
 D3DVALUE dvG;
 };
 union {
 D3DVALUE b;
 D3DVALUE dvB;
 };
 union {
 D3DVALUE a;
 D3DVALUE dvA;
 };
} D3DCOLORVALUE;

Members
dvR, dvG, dvB, and dvA
Values of the D3DVALUE type specifying the red, green, blue, and alpha components of a color. These values generally range from 0 to 1, with 0 being black.

Remarks
You can set the members of this structure to values outside the range of 0 to 1 to implement some unusual effects. Values greater than 1 produce strong lights that tend to wash out a scene. Negative values produce dark lights, which actually remove light from a scene. For more information, see Colored Lights.
D3DDEVICEDESC
The D3DDEVICEDESC structure contains a description of the current device. This structure is used to query the current device by such methods as IDirect3DDevice2::GetCaps.
typedef struct _D3DDeviceDesc {
 DWORD dwSize;
 DWORD dwFlags;
 D3DCOLORMODEL dcmColorModel;
 DWORD dwDevCaps;
 D3DTRANSFORMCAPS dtcTransformCaps;
 BOOL bClipping;
 D3DLIGHTINGCAPS dlcLightingCaps;
 D3DPRIMCAPS dpcLineCaps;
 D3DPRIMCAPS dpcTriCaps;
 DWORD dwDeviceRenderBitDepth;
 DWORD dwDeviceZBufferBitDepth;
 DWORD dwMaxBufferSize;
 DWORD dwMaxVertexCount;
 DWORD dwMinTextureWidth, dwMinTextureHeight;
 DWORD dwMaxTextureWidth, dwMaxTextureHeight;
 DWORD dwMinStippleWidth, dwMaxStippleWidth;
 DWORD dwMinStippleHeight, dwMaxStippleHeight;
} D3DDEVICEDESC, *LPD3DDEVICEDESC;

Members
dwSize
Size, in bytes, of this structure. You can use the D3DDEVICEDESCSIZE constant for this value. This member must be initialized before the structure is used.
dwFlags
Flags identifying the members of this structure that contain valid data.
D3DDD_BCLIPPING ���The bClipping member is valid. ��D3DDD_COLORMODEL ���The dcmColorModel member is valid. ��D3DDD_DEVCAPS ���The dwDevCaps member is valid. ��D3DDD_DEVICERENDERBITDEPTH ���The dwDeviceRenderBitDepth member is valid. ��D3DDD_DEVICEZBUFFERBITDEPTH ���The dwDeviceZBufferBitDepth member is valid. ��D3DDD_LIGHTINGCAPS ���The dlcLightingCaps member is valid. ��D3DDD_LINECAPS ���The dpcLineCaps member is valid. ��D3DDD_MAXBUFFERSIZE ���The dwMaxBufferSize member is valid. ��D3DDD_MAXVERTEXCOUNT ���The dwMaxVertexCount member is valid. ��D3DDD_TRANSFORMCAPS ���The dtcTransformCaps member is valid. ��D3DDD_TRICAPS ���The dpcTriCaps member is valid. ��
dcmColorModel
One of the members of the D3DCOLORMODEL enumerated type, specifying the color model for the device.
dwDevCaps
Flags identifying the capabilities of the device.
D3DDEVCAPS_CANRENDERAFTERFLIP���Device can queue rendering commands after a page flip. Applications should not change their behavior if this flag is set; this capability simply means that the device is relatively fast.
This flag was introduced in DirectX 5.��D3DDEVCAPS_DRAWPRIMTLVERTEX ���Device exports a DrawPrimitive-aware HAL.
This flag was introduced in DirectX 5.��D3DDEVCAPS_EXECUTESYSTEMMEMORY ���Device can use execute buffers from system memory. ��D3DDEVCAPS_EXECUTEVIDEOMEMORY ���Device can use execute buffer from video memory. ��D3DDEVCAPS_FLOATTLVERTEX ���Device accepts floating point for post-transform vertex data. ��D3DDEVCAPS_SORTDECREASINGZ ���Device needs data sorted for decreasing depth. ��D3DDEVCAPS_SORTEXACT ���Device needs data sorted exactly. ��D3DDEVCAPS_SORTINCREASINGZ ���Device needs data sorted for increasing depth. ��D3DDEVCAPS_TEXTURENONLOCALVIDMEM���Device can retrieve textures from nonlocal video (AGP) memory.
This flag was introduced in DirectX 5. For more information about AGP memory, see Using Non-local Video Memory Surfaces in the DirectDraw documentation.��D3DDEVCAPS_TEXTURESYSTEMMEMORY ���Device can retrieve textures from system memory. ��D3DDEVCAPS_TEXTUREVIDEOMEMORY ���Device can retrieve textures from device memory. ��D3DDEVCAPS_TLVERTEXSYSTEMMEMORY ���Device can use buffers from system memory for transformed and lit vertices. ��D3DDEVCAPS_TLVERTEXVIDEOMEMORY ���Device can use buffers from video memory for transformed and lit vertices. ��
dtcTransformCaps
One of the members of the D3DTRANSFORMCAPS structure, specifying the transformation capabilities of the device.
bClipping
TRUE if the device can perform 3-D clipping.
dlcLightingCaps
One of the members of the D3DLIGHTINGCAPS structure, specifying the lighting capabilities of the device.
dpcLineCaps and dpcTriCaps
D3DPRIMCAPS structures defining the device's support for line-drawing and triangle primitives.
dwDeviceRenderBitDepth
Device's rendering bit-depth. This can be one or more of the following DirectDraw bit-depth constants: DDBD_8, DDBD_16, DDBD_24, or DDBD_32.
dwDeviceZBufferBitDepth
Device's z-buffer bit-depth. This can be one of the following DirectDraw bit-depth constants: DDBD_8, DDBD_16, DDBD_24, or DDBD_32.
dwMaxBufferSize
Maximum size of the execute buffer for this device. If this member is 0, the application can use any size.
dwMaxVertexCount
Maximum vertex count for this device.
dwMinTextureWidth, dwMinTextureHeight
Minimum texture width and height for this device. These members were introduced in DirectX 5.
dwMaxTextureWidth, dwMaxTextureHeight
Maximum texture width and height for this device. These members were introduced in DirectX 5.
dwMinStippleWidth, dwMaxStippleWidth
Minimum and maximum width of the stipple pattern for this device. These members were introduced in DirectX 5.
dwMinStippleHeight, dwMaxStippleHeight
Minimum and maximum height of the stipple pattern for this device. These members were introduced in DirectX 5.
See Also
D3DCOLORMODEL, D3DFINDDEVICERESULT, D3DLIGHTINGCAPS, D3DPRIMCAPS, D3DTRANSFORMCAPS
D3DEXECUTEBUFFERDESC
The D3DEXECUTEBUFFERDESC structure describes the execute buffer for such methods as IDirect3DDevice::CreateExecuteBuffer and IDirect3DExecuteBuffer::Lock.
typedef struct _D3DExecuteBufferDesc {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwCaps;
 DWORD dwBufferSize;
 LPVOID lpData;
} D3DEXECUTEBUFFERDESC;
typedef D3DEXECUTEBUFFERDESC *LPD3DEXECUTEBUFFERDESC;

Members
dwSize
Size of this structure, in bytes. This member must be initialized before the structure is used.
dwFlags
Flags identifying the members of this structure that contain valid data.
D3DDEB_BUFSIZE �The dwBufferSize member is valid. ��D3DDEB_CAPS �The dwCaps member is valid. ��D3DDEB_LPDATA �The lpData member is valid. ��
dwCaps
Location in memory of the execute buffer.
D3DDEBCAPS_MEM ���A logical OR of D3DDEBCAPS_SYSTEMMEMORY and D3DDEBCAPS_VIDEOMEMORY. ��D3DDEBCAPS_SYSTEMMEMORY ���The execute buffer data resides in system memory. ��D3DDEBCAPS_VIDEOMEMORY ���The execute buffer data resides in device memory. ��
dwBufferSize
Size of the execute buffer, in bytes.
lpData
Address of the buffer data.

D3DEXECUTEDATA
The D3DEXECUTEDATA structure specifies data for the IDirect3DDevice::Execute method. When this method is called and the transformation has been done, the instruction list starting at the value specified in the dwInstructionOffset member is parsed and rendered.
typedef struct _D3DEXECUTEDATA {
 DWORD dwSize;
 DWORD dwVertexOffset;
 DWORD dwVertexCount;
 DWORD dwInstructionOffset;
 DWORD dwInstructionLength;
 DWORD dwHVertexOffset;
 D3DSTATUS dsStatus;
} D3DEXECUTEDATA, *LPD3DEXECUTEDATA;

Members
dwSize
Size of this structure, in bytes. This member must be initialized before the structure is used.
dwVertexOffset
Offset into the list of vertices.
dwVertexCount
Number of vertices to execute.
dwInstructionOffset
Offset into the list of instructions to execute.
dwInstructionLength
Length of the instructions to execute.
dwHVertexOffset
Offset into the list of vertices for the homogeneous vertex used when the application is supplying screen coordinate data that needs clipping.
dsStatus
Value storing the screen extent of the rendered geometry for use after the transformation is complete. This value is a D3DSTATUS structure.
See Also
D3DSTATUS
D3DFINDDEVICERESULT
The D3DFINDDEVICERESULT structure identifies a device an application has found by calling the IDirect3D2::FindDevice method.
typedef struct _D3DFINDDEVICERESULT {
 DWORD dwSize;
 GUID guid;
 D3DDEVICEDESC ddHwDesc;
 D3DDEVICEDESC ddSwDesc;
} D3DFINDDEVICERESULT, *LPD3DFINDDEVICERESULT;

Members
dwSize
Size, in bytes, of the structure. This member must be initialized before the structure is used.
guid
Globally unique identifier (GUID) of the device that was found.
ddHwDesc and ddSwDesc
D3DDEVICEDESC structures describing the hardware and software devices that were found.
See Also
D3DFINDDEVICESEARCH
D3DFINDDEVICESEARCH
The D3DFINDDEVICESEARCH structure specifies the characteristics of a device an application wants to find. This structure is used in calls to the IDirect3D2::FindDevice method.
typedef struct _D3DFINDDEVICESEARCH {
 DWORD dwSize;
 DWORD dwFlags;
 BOOL bHardware;
 D3DCOLORMODEL dcmColorModel;
 GUID guid;
 DWORD dwCaps;
 D3DPRIMCAPS dpcPrimCaps;
} D3DFINDDEVICESEARCH, *LPD3DFINDDEVICESEARCH;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
dwFlags
Flags defining the type of device the application wants to find. This member can be one or more of the following values:
D3DFDS_ALPHACMPCAPS ���Match the dwAlphaCmpCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_COLORMODEL ���Match the color model specified in the dcmColorModel member of this structure. ��D3DFDS_DSTBLENDCAPS ���Match the dwDestBlendCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_GUID ���Match the globally unique identifier (GUID) specified in the guid member of this structure. ��D3DFDS_HARDWARE ���Match the hardware or software search specification given in the bHardware member of this structure. ��D3DFDS_LINES ���Match the D3DPRIMCAPS structure specified by the dpcLineCaps member of the D3DDEVICEDESC structure. ��D3DFDS_MISCCAPS ���Match the dwMiscCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_RASTERCAPS ���Match the dwRasterCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_SHADECAPS ���Match the dwShadeCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_SRCBLENDCAPS ���Match the dwSrcBlendCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_TEXTUREBLENDCAPS ���Match the dwTextureBlendCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_TEXTURECAPS ���Match the dwTextureCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_TEXTUREFILTERCAPS ���Match the dwTextureFilterCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��D3DFDS_TRIANGLES ���Match the D3DPRIMCAPS structure specified by the dpcTriCaps member of the D3DDEVICEDESC structure. ��D3DFDS_ZCMPCAPS ���Match the dwZCmpCaps member of the D3DPRIMCAPS structure specified as the dpcPrimCaps member of this structure. ��
bHardware
Flag specifying whether the device to find is implemented as hardware or software. If this member is TRUE, the device to search for has hardware rasterization and may also provide other hardware acceleration. Applications that use this flag should set the D3DFDS_HARDWARE bit in the dwFlags member.
dcmColorModel
One of the members of the D3DCOLORMODEL enumerated type, specifying whether the device to find should use the ramp or RGB color model.
guid
Globally unique identifier (GUID) of the device to find.
dwCaps
Reserved.
dpcPrimCaps
Specifies a D3DPRIMCAPS structure defining the device's capabilities for each primitive type.
See Also
D3DFINDDEVICERESULT
D3DHVERTEX
The D3DHVERTEX structure defines a homogeneous vertex used when the application is supplying screen coordinate data that needs clipping. This structure is part of the D3DTRANSFORMDATA structure.
typedef struct _D3DHVERTEX {
 DWORD dwFlags;
 union {
 D3DVALUE hx;
 D3DVALUE dvHX;
 };
 union {
 D3DVALUE hy;
 D3DVALUE dvHY;
 };
 union {
 D3DVALUE hz;
 D3DVALUE dvHZ;
 };
} D3DHVERTEX, *LPD3DHVERTEX;

Members
dwFlags
Flags defining the clip status of the homogeneous vertex. This member can be one or more of the flags described in the dwClip member of the D3DTRANSFORMDATA structure.
dvHX, dvHY, and dvHZ
Values of the D3DVALUE type describing transformed homogeneous coordinates. These coordinates define the vertex.

D3DINSTRUCTION
The D3DINSTRUCTION structure defines an instruction in an execute buffer. A display list is made up from a list of variable length instructions. Each instruction begins with a common instruction header and is followed by the data required for that instruction.
typedef struct _D3DINSTRUCTION {
 BYTE bOpcode;
 BYTE bSize;
 WORD wCount;
} D3DINSTRUCTION, *LPD3DINSTRUCTION;

Members
bOpcode
Rendering operation, specified as a member of the D3DOPCODE enumerated type.
bSize
Size of each instruction data unit. This member can be used to skip to the next instruction in the sequence.
wCount
Number of data units of instructions that follow. This member allows efficient processing of large batches of similar instructions, such as triangles that make up a triangle mesh.

D3DLIGHT2
The D3DLIGHT2 structure defines the light type in calls to methods such as IDirect3DLight::SetLight and IDirect3DLight::GetLight.
For DirectX 5, this structure supersedes the D3DLIGHT structure. D3DLIGHT2 is identical to D3DLIGHT except for the addition of the dwFlags member. In addition, the dvAttenuation members are interpreted differently in D3DLIGHT2 than they were for D3DLIGHT.
typedef struct _D3DLIGHT2 {
 DWORD dwSize;
 D3DLIGHTTYPE dltType;
 D3DCOLORVALUE dcvColor;
 D3DVECTOR dvPosition;
 D3DVECTOR dvDirection;
 D3DVALUE dvRange;
 D3DVALUE dvFalloff;
 D3DVALUE dvAttenuation0;
 D3DVALUE dvAttenuation1;
 D3DVALUE dvAttenuation2;
 D3DVALUE dvTheta;
 D3DVALUE dvPhi;
 DWORD dwFlags; // new member for DirectX 5
} D3DLIGHT2, *LPD3DLIGHT2;

Members
dwSize
Size, in bytes, of this structure. You must specify a value for this member. Direct3D uses the specified size to determine whether this is a D3DLIGHT or a D3DLIGHT2 structure.
dltType
Type of the light source. This value is one of the members of the D3DLIGHTTYPE enumerated type.
dcvColor
Color of the light. This member is a D3DCOLORVALUE structure. In ramp mode, the color is converted to a gray scale.
dvPosition
Position of the light in world space. This member has no meaning for directional lights and is ignored in that case.
dvDirection
Direction the light is pointing in world space. This member only has meaning for directional and spotlights. This vector need not be normalized but it should have a non-zero length.
dvRange
Distance beyond which the light has no effect. The maximum allowable value for this member is D3DLIGHT_RANGE_MAX, which is defined as the square root of FLT_MAX. This member does not affect directional lights.
dvFalloff
Decrease in illumination between a spotlight's umbra (the angle specified by the dvTheta member) and the outer edge of the penumbra (the angle specified by the dvPhi member). This feature was implemented for DirectX 5.
The intensity of the light at any point in the penumbra is described by the following equation:

�
In this equation, rho is the angle between the axis of the spotlight and the illuminated point.
A value of 1.0 specifies linear falloff from the umbra to the penumbra. If the value is anything other than 1.0, it is used as an exponent to shape the curve. Values greater than 1.0 cause the light to fall off quickly at first and then fade slowly to the penumbra. Values which are less than 1.0 create the opposite effect. The following graph shows the affect of changing these values:
�
The effect of falloff on the lighting is subtle. Furthermore, a small performance penalty is incurred by shaping the falloff curve. For these reasons, most developers set this value to 1.0.
dvAttenuation0 through dvAttenuation2
Values specifying how a light’s intensity changes over distance. (Attenuation does not affect directional lights.) In the D3DLIGHT2 structure these values are interpreted differently than they were for the D3DLIGHT structure.
The distance from the light to the vertex is normalized to the range by the following formula:
distance = (range-distance)/range

This results in the distance value being from 1.0 at the light to 0.0 at the light’s full range. Then the combined intensity factor of the light is calculated using the following formula:
intensity = dvAttenuation0 +
 dvAttenuation1 * distance +
 dvAttenuation2 * distance squared

This intensity factor is then multiplied by the light color to produce the final intensity of the light.
Setting the attenuation values to 1,0,0 produces a light that doesn’t change over distance. Setting the values to 0,1,0 produces a light that is at full intensity at the light, zero intensity at the light’s range, and that declines linearly between the two extremes. The values 0,0,1 produce a light that mimics the standard "1/distance squared" falloff rate that should be familiar from introductory physics classes. (The differences in this last case are that the curve is softer and that the intensity of the light doesn’t go to infinity at the light source.)
You can use various combinations of values to create unique lights. You can even use negative values — this is another way to achieve a dark light effect. Just as when you use negative values for colors, when you are in ramp mode you cannot use dark lights to produce anything darker than the current setting for the ambient light.
dvTheta
Angle, in radians, of the spotlight's umbra—that is, the fully illuminated spotlight cone. This value must be less than pi radians.
dvPhi
Angle, in radians, defining the outer edge of the spotlight's penumbra. Points outside this cone are not lit by the spotlight. This value must be between 0 and the value specified for the dvTheta member.
dwFlags
A combination of the following performance-related flags. This member is new for DirectX 5.
D3DLIGHT_ACTIVE�Enables the light. This flag must be set to enable the light; if it is not set, the light is ignored.��D3DLIGHT_NO_SPECULAR�Turns off specular highlights for the light.��
Remarks
In the D3DLIGHT structure, the affects of the attenuation settings were difficult to predict; developers were encouraged to experiment with the settings until they achieved the desired result. For D3DLIGHT2, it is much easier to work with lighting attenuation.
For more information about lights, see Lights and IDirect3DLight.
See Also
D3DLIGHTTYPE
D3DLIGHTDATA
The D3DLIGHTDATA structure describes the points to be lit and resulting colors in calls to the IDirect3DViewport2::LightElements method.
typedef struct _D3DLIGHTDATA {
 DWORD dwSize;
 LPD3DLIGHTINGELEMENT lpIn;
 DWORD dwInSize;
 LPD3DTLVERTEX lpOut;
 DWORD dwOutSize;
} D3DLIGHTDATA, *LPD3DLIGHTDATA;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
lpIn
Address of a D3DLIGHTINGELEMENT structure specifying the input positions and normal vectors.
dwInSize
Amount to skip from one input element to the next. This allows the application to store extra data inline with the element.
lpOut
Address of a D3DTLVERTEX structure specifying the output colors.
dwOutSize
Amount to skip from one output color to the next. This allows the application to store extra data inline with the color.

D3DLIGHTINGCAPS
The D3DLIGHTINGCAPS structure describes the lighting capabilities of a device. This structure is a member of the D3DDEVICEDESC structure.
typedef struct _D3DLIGHTINGCAPS {
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwLightingModel;
 DWORD dwNumLights;
} D3DLIGHTINGCAPS, *LPD3DLIGHTINGCAPS;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
dwCaps
Flags describing the capabilities of the lighting module. The following flags are defined:
D3DLIGHTCAPS_DIRECTIONAL ���Supports directional lights. ��D3DLIGHTCAPS_PARALLELPOINT ���Supports parallel point lights. ��D3DLIGHTCAPS_POINT ���Supports point lights. ��D3DLIGHTCAPS_SPOT ���Supports spotlights. ��
dwLightingModel
Flags defining whether the lighting model is RGB or monochrome. The following flags are defined:
D3DLIGHTINGMODEL_MONO �Monochromatic lighting model. ��D3DLIGHTINGMODEL_RGB �RGB lighting model. ��
dwNumLights
Number of lights that can be handled.

D3DLIGHTINGELEMENT
The D3DLIGHTINGELEMENT structure describes the points in model space that will be lit. This structure is part of the D3DLIGHTDATA structure.
typedef struct _D3DLIGHTINGELEMENT {
 D3DVECTOR dvPosition;
 D3DVECTOR dvNormal;
} D3DLIGHTINGELEMENT, *LPD3DLIGHTINGELEMENT;

Members
dvPosition
Value specifying the lightable point in model space. This value is a D3DVECTOR structure.
dvNormal
Value specifying the normalized unit vector. This value is a D3DVECTOR structure.

See Also
D3DLIGHTDATA, IDirect3DViewport2::LightElements
D3DLINE
The D3DLINE structure describes a line for the D3DOP_LINE opcode in the D3DOPCODE enumerated type.
typedef struct _D3DLINE {
 union {
 WORD v1;
 WORD wV1;
 };
 union {
 WORD v2;
 WORD wV2;
 };
} D3DLINE, *LPD3DLINE;

Members
wV1 and wV2
Vertex indices.

Remarks
The instruction count defines the number of line segments.
D3DLINEPATTERN
The D3DLINEPATTERN structure describes a line pattern. These values are used by the D3DRENDERSTATE_LINEPATTERN render state in the D3DRENDERSTATETYPE enumerated type.
typedef struct _D3DLINEPATTERN {
 WORD wRepeatFactor;
 WORD wLinePattern;
} D3DLINEPATTERN;

Members
wRepeatFactor
Number of times to duplicate each series of 1s and 0s specified in the wLinePattern member. This repeat factor allows an application to "stretch" the line pattern.
wLinePattern
Bits specifying the line pattern. For example, the following value would produce a dotted line: 1100110011001100.

Remarks
A line pattern specifies how a line is drawn. The line pattern is always the same, no matter where it is started. (This is as opposed to stippling, which affects how objects are rendered; that is, to imitate transparency.)
The line pattern specifies up to a 16-pixel pattern of on and off pixels along the line. The wRepeatFactor member specifies how many pixels are repeated for each entry in wLinePattern.
D3DLVERTEX
The D3DLVERTEX structure defines an untransformed and lit vertex (model coordinates with color). An application should use this structure when the vertex transformations will be handled by Direct3D. This structure contains only data and a color that would be filled by software lighting.
typedef struct _D3DLVERTEX {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
 DWORD dwReserved;
 union {
 D3DCOLOR color;
 D3DCOLOR dcColor;
 };
 union {
 D3DCOLOR specular;
 D3DCOLOR dcSpecular;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DLVERTEX, *LPD3DLVERTEX;

Members
dvX, dvY, and dvZ
Values of the D3DVALUE type specifying the model coordinates of the vertex.
dwReserved
Reserved; must be zero.
dcColor and dcSpecular
Values of the D3DCOLOR type specifying the color and specular component of the vertex.
dvTU and dvTV
Values of the D3DVALUE type specifying the texture coordinates of the vertex.

See Also
D3DTLVERTEX, D3DVERTEX
D3DMATERIAL
The D3DMATERIAL structure specifies material properties in calls to the IDirect3DMaterial2::GetMaterial and IDirect3DMaterial2::SetMaterial methods.
typedef struct _D3DMATERIAL {
 DWORD dwSize;
 union {
 D3DCOLORVALUE diffuse;
 D3DCOLORVALUE dcvDiffuse;
 };
 union {
 D3DCOLORVALUE ambient;
 D3DCOLORVALUE dcvAmbient;
 };
 union {
 D3DCOLORVALUE specular;
 D3DCOLORVALUE dcvSpecular;
 };
 union {
 D3DCOLORVALUE emissive;
 D3DCOLORVALUE dcvEmissive;
 };
 union {
 D3DVALUE power;
 D3DVALUE dvPower;
 };
 D3DTEXTUREHANDLE hTexture;
 DWORD dwRampSize;
} D3DMATERIAL, *LPD3DMATERIAL;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
dcvDiffuse, dcvAmbient, dcvSpecular, and dcvEmissive
Values specifying the diffuse color, ambient color, specular color, and emissive color of the material, respectively. These values are D3DCOLORVALUE structures.
dvPower
Value of the D3DVALUE type specifying the sharpness of specular highlights.
hTexture
Handle of the texture map.
dwRampSize
Size of the color ramp. For the monochromatic (ramp) driver, this value must be less than or equal to 1 for materials assigned to the background; otherwise, the background is not displayed. This behavior also occurs when a texture that is assigned to the background has an associated material whose dwRampSize member is greater than 1.

Remarks
The texture handle specified by the hTexture member is acquired from Direct3D by loading a texture into the device. The texture handle may be used only when it has been loaded into the device.
To turn off specular highlights for a material, you must set the dvPower member to 0—simply setting the specular color components to 0 is not enough.
See Also
IDirect3DMaterial2::GetMaterial, IDirect3DMaterial2::SetMaterial
D3DMATRIX
The D3DMATRIX structure describes a matrix for such methods as IDirect3DDevice::GetMatrix and IDirect3DDevice::SetMatrix.
C++ programmers can use an extended version of this structure that includes a parentheses ("()") operator. For more information, see D3DMATRIX (D3D_OVERLOADS)
typedef struct _D3DMATRIX {
 D3DVALUE _11, _12, _13, _14;
 D3DVALUE _21, _22, _23, _24;
 D3DVALUE _31, _32, _33, _34;
 D3DVALUE _41, _42, _43, _44;
} D3DMATRIX, *LPD3DMATRIX;

Remarks
In Direct3D, the _34 element of a projection matrix cannot be a negative number. If your application needs to use a negative value in this location, it should scale the entire projection matrix by -1, instead.
See Also
IDirect3DDevice::GetMatrix, IDirect3DDevice::SetMatrix
D3DMATRIXLOAD
The D3DMATRIXLOAD structure describes the operand data for the D3DOP_MATRIXLOAD opcode in the D3DOPCODE enumerated type.
typedef struct _D3DMATRIXLOAD {
 D3DMATRIXHANDLE hDestMatrix;
 D3DMATRIXHANDLE hSrcMatrix;
} D3DMATRIXLOAD, *LPD3DMATRIXLOAD;

Members
hDestMatrix and hSrcMatrix
Handles of the destination and source matrices. These values are D3DMATRIX structures.

See Also
D3DOPCODE
D3DMATRIXMULTIPLY
The D3DMATRIXMULTIPLY structure describes the operand data for the D3DOP_MATRIXMULTIPLY opcode in the D3DOPCODE enumerated type.
typedef struct _D3DMATRIXMULTIPLY {
 D3DMATRIXHANDLE hDestMatrix;
 D3DMATRIXHANDLE hSrcMatrix1;
 D3DMATRIXHANDLE hSrcMatrix2;
} D3DMATRIXMULTIPLY, *LPD3DMATRIXMULTIPLY;

Members
hDestMatrix
Handle to the matrix that stores the product of the source matrices. This value is a D3DMATRIX structure.
hSrcMatrix1 and hSrcMatrix2
Handles of the first and second source matrices. These values are D3DMATRIX structures.

See Also
D3DOPCODE
D3DPICKRECORD
The D3DPICKRECORD structure returns information about picked primitives in an execute buffer for the IDirect3DDevice::GetPickRecords method.
typedef struct _D3DPICKRECORD {
 BYTE bOpcode;
 BYTE bPad;
 DWORD dwOffset;
 D3DVALUE dvZ;
} D3DPICKRECORD, *LPD3DPICKRECORD;

Members
bOpcode
Opcode of the picked primitive.
bPad
Pad byte.
dwOffset
Offset from the start of the instruction segment portion of the execute buffer in which the picked primitive was found. (The instruction segment portion of the execute buffer is the part of the execute buffer that follows the vertex list.)
dvZ
Depth of the picked primitive.

Remarks
The x- and y-coordinates of the picked primitive are specified in the call to the IDirect3DDevice::Pick method that created the pick records.
See Also
IDirect3DDevice::GetPickRecords, IDirect3DDevice::Pick
D3DPOINT
The D3DPOINT structure describes operand data for the D3DOP_POINT opcode in the in D3DOPCODE enumerated type.
typedef struct _D3DPOINT {
 WORD wCount;
 WORD wFirst;
} D3DPOINT, *LPD3DPOINT;

Members
wCount
Number of points.
wFirst
Index of the first vertex.

Remarks
Points are rendered by using a list of vertices.
See Also
D3DOPCODE
D3DPRIMCAPS
The D3DPRIMCAPS structure defines the capabilities for each primitive type. This structure is used when creating a device and when querying the capabilities of a device. This structure defines several members in the D3DDEVICEDESC structure.
typedef struct _D3DPrimCaps {
 DWORD dwSize; // size of structure
 DWORD dwMiscCaps; // miscellaneous caps
 DWORD dwRasterCaps; // raster caps
 DWORD dwZCmpCaps; // z-comparison caps
 DWORD dwSrcBlendCaps; // source blending caps
 DWORD dwDestBlendCaps; // destination blending caps
 DWORD dwAlphaCmpCaps; // alpha-test comparison caps
 DWORD dwShadeCaps; // shading caps
 DWORD dwTextureCaps; // texture caps
 DWORD dwTextureFilterCaps; // texture filtering caps
 DWORD dwTextureBlendCaps; // texture blending caps
 DWORD dwTextureAddressCaps; // texture addressing caps
 DWORD dwStippleWidth; // stipple width
 DWORD dwStippleHeight; // stipple height
} D3DPRIMCAPS, *LPD3DPRIMCAPS;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
dwMiscCaps
General capabilities for this primitive. This member can be one or more of the following:
D3DPMISCCAPS_CONFORMANT ���The device conforms to the OpenGL standard. ��D3DPMISCCAPS_CULLCCW ���The driver supports counterclockwise culling through the D3DRENDERSTATE_CULLMODE state. (This applies only to triangle primitives.) This corresponds to the D3DCULL_CCW member of the D3DCULL enumerated type. ��D3DPMISCCAPS_CULLCW ���The driver supports clockwise triangle culling through the D3DRENDERSTATE_CULLMODE state. (This applies only to triangle primitives.) This corresponds to the D3DCULL_CW member of the D3DCULL enumerated type. ��D3DPMISCCAPS_CULLNONE ���The driver does not perform triangle culling. This corresponds to the D3DCULL_NONE member of the D3DCULL enumerated type. ��D3DPMISCCAPS_LINEPATTERNREP ���The driver can handle values other than 1 in the wRepeatFactor member of the D3DLINEPATTERN structure. (This applies only to line-drawing primitives.) ��D3DPMISCCAPS_MASKPLANES ���The device can perform a bitmask of color planes. ��D3DPMISCCAPS_MASKZ ���The device can enable and disable modification of the z-buffer on pixel operations. ��
dwRasterCaps
Information on raster-drawing capabilities. This member can be one or more of the following:
D3DPRASTERCAPS_ANISOTROPY���The device supports anisotropic filtering. For more information, see D3DRENDERSTATE_ANISOTROPY in the D3DRENDERSTATETYPE structure.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_ANTIALIASEDGES���The device can antialias lines forming the convex outline of objects. For more information, see D3DRENDERSTATE_EDGEANTIALIAS in the D3DRENDERSTATETYPE structure.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT���The device supports antialiasing that is dependent on the sort order of the polygons (back-to-front or front-to-back). The application must draw polygons in the right order for antialiasing to occur. For more information, see the D3DANTIALIASMODE enumerated type.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT���The device supports antialiasing that is not dependent on the sort order of the polygons. For more information, see the D3DANTIALIASMODE enumerated type.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_DITHER ���The device can dither to improve color resolution. ��D3DPRASTERCAPS_FOGRANGE���The device supports range-based fog. In range-based fog, the distance of an object from the viewer is used to compute fog effects, not the depth of the object (that is, the z-coordinate) in the scene. For more information, see D3DRENDERSTATE_RANGEFOGENABLE.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_FOGTABLE ���The device calculates the fog value by referring to a lookup table containing fog values that are indexed to the depth of a given pixel. ��D3DPRASTERCAPS_FOGVERTEX ���The device calculates the fog value during the lighting operation, places the value into the alpha component of the D3DCOLOR value given for the specular member of the D3DTLVERTEX structure, and interpolates the fog value during rasterization. ��D3DPRASTERCAPS_MIPMAPLODBIAS���The device supports level-of-detail (LOD) bias adjustments. These bias adjustments enable an application to make a mipmap appear crisper or less sharp than it normally would. For more information about LOD bias in mipmaps, see D3DRENDERSTATE_MIPMAPLODBIAS.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_PAT ���The driver can perform patterned drawing (lines or fills with D3DRENDERSTATE_LINEPATTERN or one of the D3DRENDERSTATE_STIPPLEPATTERN render states) for the primitive being queried. ��D3DPRASTERCAPS_ROP2 ���The device can support raster operations other than R2_COPYPEN. ��D3DPRASTERCAPS_STIPPLE ���The device can stipple polygons to simulate translucency. ��D3DPRASTERCAPS_SUBPIXEL ���The device performs subpixel placement of z, color, and texture data, rather than working with the nearest integer pixel coordinate. This helps avoid bleed-through due to z imprecision, and jitter of color and texture values for pixels. Note that there is no corresponding state that can be enabled and disabled; the device either performs subpixel placement or it does not, and this bit is present only so that the Direct3D client will be better able to determine what the rendering quality will be. ��D3DPRASTERCAPS_SUBPIXELX ���The device is subpixel accurate along the x-axis only and is clamped to an integer y-axis scan line. For information about subpixel accuracy, see D3DPRASTERCAPS_SUBPIXEL. ��D3DPRASTERCAPS_XOR ���The device can support XOR operations. If this flag is not set but D3DPRIM_RASTER_ROP2 is set, then XOR operations must still be supported. ��D3DPRASTERCAPS_ZBIAS���The device supports z-bias values. These are integer values assigned to polygons that allow physically coplanar polygons to appear separate. For more information, see D3DRENDERSTATE_ZBIAS in the D3DRENDERSTATETYPE structure.
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_ZBUFFERLESSHSR���The device can perform hidden-surface removal without requiring the application to sort polygons, and without requiring the allocation of a z-buffer. This leaves more video memory for textures. The method used to perform hidden-surface removal is hardware-dependent and is transparent to the application.
Z-bufferless HSR is performed if no z-buffer surface is attached to the rendering-target surface and the z-buffer comparison test is enabled (that is, when the state value associated with the D3DRENDERSTATE_ZENABLE enumeration constant is set to TRUE).
This flag was introduced in DirectX 5.��D3DPRASTERCAPS_ZTEST ���The device can perform z-test operations. This effectively renders a primitive and indicates whether any z pixels would have been rendered. ��
dwZCmpCaps
Z-buffer comparison functions that the driver can perform. This member can be one or more of the following:
D3DPCMPCAPS_ALWAYS ���Always pass the z test. ��D3DPCMPCAPS_EQUAL ���Pass the z test if the new z equals the current z. ��D3DPCMPCAPS_GREATER ���Pass the z test if the new z is greater than the current z. ��D3DPCMPCAPS_GREATEREQUAL ���Pass the z test if the new z is greater than or equal to the current z. ��D3DPCMPCAPS_LESS ���Pass the z test if the new z is less than the current z. ��D3DPCMPCAPS_LESSEQUAL ���Pass the z test if the new z is less than or equal to the current z. ��D3DPCMPCAPS_NEVER ���Always fail the z test. ��D3DPCMPCAPS_NOTEQUAL ���Pass the z test if the new z does not equal the current z. ��
dwSrcBlendCaps
Source blending capabilities. This member can be one or more of the following. (The RGBA values of the source and destination are indicated with the subscripts s and d.)
D3DPBLENDCAPS_BOTHINVSRCALPHA ���Source blend factor is (1-As, 1-As, 1-As, 1-As) and destination blend factor is (As, As, As, As); the destination blend selection is overridden. ��D3DPBLENDCAPS_BOTHSRCALPHA ���Source blend factor is (As, As, As, As) and destination blend factor is (1-As, 1-As, 1-As, 1-As); the destination blend selection is overridden. ��D3DPBLENDCAPS_DESTALPHA ���Blend factor is (Ad, Ad, Ad, Ad). ��D3DPBLENDCAPS_DESTCOLOR ���Blend factor is (Rd, Gd, Bd, Ad). ��D3DPBLENDCAPS_INVDESTALPHA ���Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad). ��D3DPBLENDCAPS_INVDESTCOLOR ���Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad). ��D3DPBLENDCAPS_INVSRCALPHA ���Blend factor is (1-As, 1-As, 1-As, 1-As). ��D3DPBLENDCAPS_INVSRCCOLOR ���Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad). ��D3DPBLENDCAPS_ONE ���Blend factor is (1, 1, 1, 1). ��D3DPBLENDCAPS_SRCALPHA ���Blend factor is (As, As, As, As). ��D3DPBLENDCAPS_SRCALPHASAT ���Blend factor is (f, f, f, 1); f = min(As, 1-Ad). ��D3DPBLENDCAPS_SRCCOLOR ���Blend factor is (Rs, Gs, Bs, As). ��D3DPBLENDCAPS_ZERO ���Blend factor is (0, 0, 0, 0). ��
dwDestBlendCaps
Destination blending capabilities. This member can be the same capabilities that are defined for the dwSrcBlendCaps member.
dwAlphaCmpCaps
Alpha-test comparison functions that the driver can perform. This member can be the same capabilities that are defined for the dwZCmpCaps member. If this member is zero, the driver does not support alpha tests.
dwShadeCaps
Shading operations that the device can perform. It is assumed, in general, that if a device supports a given command (such as D3DOP_TRIANGLE) at all, it supports the D3DSHADE_FLAT mode (as specified in the D3DSHADEMODE enumerated type). This flag specifies whether the driver can also support Gouraud and Phong shading and whether alpha color components are supported for each of the three color-generation modes. When alpha components are not supported in a given mode, the alpha value of colors generated in that mode is implicitly 255. This is the maximum possible alpha (that is, the alpha component is at full intensity).
With the monochromatic shade modes, the blue channel of the specular component is interpreted as a white intensity. (This is controlled by the D3DRENDERSTATE_MONOENABLE render state.)
The color, specular highlights, fog, and alpha interpolants of a triangle each have capability flags that an application can use to find out how they are implemented by the device driver. These are modified by the shade mode, color model, and by whether the alpha component of a color is blended or stippled. For more information, see Polygons.
This member can be one or more of the following:
D3DPSHADECAPS_ALPHAFLATBLEND ��D3DPSHADECAPS_ALPHAFLATSTIPPLED ���Device can support an alpha component for flat blended and stippled transparency, respectively (the D3DSHADE_FLAT state for the D3DSHADEMODE enumerated type). In these modes, the alpha color component for a primitive is provided as part of the color for the first vertex of the primitive. ��D3DPSHADECAPS_ALPHAGOURAUDBLEND ��D3DPSHADECAPS_ALPHAGOURAUDSTIPPLED ���Device can support an alpha component for Gouraud blended and stippled transparency, respectively (the D3DSHADE_GOURAUD state for the D3DSHADEMODE enumerated type). In these modes, the alpha color component for a primitive is provided at vertices and interpolated across a face along with the other color components. ��D3DPSHADECAPS_ALPHAPHONGBLEND ��D3DPSHADECAPS_ALPHAPHONGSTIPPLED ���Device can support an alpha component for Phong blended and stippled transparency, respectively (the D3DSHADE_PHONG state for the D3DSHADEMODE enumerated type). In these modes, vertex parameters are reevaluated on a per-pixel basis, applying lighting effects for the red, green, and blue color components. Phong shading is not currently supported. ��D3DPSHADECAPS_COLORFLATMONO ��D3DPSHADECAPS_COLORFLATRGB ���Device can support colored flat shading in the D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively. In these modes, the color component for a primitive is provided as part of the color for the first vertex of the primitive. In monochromatic lighting modes, only the blue component of the color is interpolated; in RGB lighting modes, of course, the red, green, and blue components are interpolated. ��D3DPSHADECAPS_COLORGOURAUDMONO ��D3DPSHADECAPS_COLORGOURAUDRGB ���Device can support colored Gouraud shading in the D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively. In these modes, the color component for a primitive is provided at vertices and interpolated across a face along with the other color components. In monochromatic lighting modes, only the blue component of the color is interpolated; in RGB lighting modes, of course, the red, green, and blue components are interpolated. ��D3DPSHADECAPS_COLORPHONGMONO ��D3DPSHADECAPS_COLORPHONGRGB ���Device can support colored Phong shading in the D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively. In these modes, vertex parameters are reevaluated on a per-pixel basis. Lighting effects are applied for the red, green, and blue color components in RGB mode, and for the blue component only for monochromatic mode. Phong shading is not currently supported. ��D3DPSHADECAPS_FOGFLAT ��D3DPSHADECAPS_FOGGOURAUD ��D3DPSHADECAPS_FOGPHONG ���Device can support fog in the flat, Gouraud, and Phong shading models, respectively. Phong shading is not currently supported. ��D3DPSHADECAPS_SPECULARFLATMONO ��D3DPSHADECAPS_SPECULARFLATRGB ���Device can support specular highlights in flat shading in the D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively. ��D3DPSHADECAPS_SPECULARGOURAUDMONO ��D3DPSHADECAPS_SPECULARGOURAUDRGB ���Device can support specular highlights in Gouraud shading in the D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively. ��D3DPSHADECAPS_SPECULARPHONGMONO ��D3DPSHADECAPS_SPECULARPHONGRGB ���Device can support specular highlights in Phong shading in the D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively. Phong shading is not currently supported. ��
dwTextureCaps
Miscellaneous texture-mapping capabilities. This member can be one or more of the following:
D3DPTEXTURECAPS_ALPHA ���Supports RGBA textures in the D3DTEX_DECAL and D3DTEX_MODULATE texture filtering modes. If this capability is not set, then only RGB textures are supported in those modes. Regardless of the setting of this flag, alpha must always be supported in D3DTEX_DECAL_MASK, D3DTEX_DECAL_ALPHA, and D3DTEX_MODULATE_ALPHA filtering modes whenever those filtering modes are available. ��D3DPTEXTURECAPS_BORDER ���Supports texture mapping along borders. ��D3DPTEXTURECAPS_PERSPECTIVE ���Perspective correction is supported. ��D3DPTEXTURECAPS_POW2 ���All nonmipmapped textures must have widths and heights specified as powers of two if this flag is set. (Note that all mipmapped textures must always have dimensions that are powers of two.) ��D3DPTEXTURECAPS_SQUAREONLY ���All textures must be square. ��D3DPTEXTURECAPS_TRANSPARENCY ���Texture transparency is supported. (Only those texels that are not the current transparent color are drawn.) ��
dwTextureFilterCaps
Texture-mapping capabilities. This member can be one or more of the following:
D3DPTFILTERCAPS_LINEAR ���A weighted average of a 2´2 area of texels surrounding the desired pixel is used. This applies to both zooming in and zooming out. If either zooming in or zooming out is supported, then both must be supported. ��D3DPTFILTERCAPS_LINEARMIPLINEAR ���Similar to D3DPTFILTERCAPS_MIPLINEAR, but interpolates between the two nearest mipmaps. ��D3DPTFILTERCAPS_LINEARMIPNEAREST ���The mipmap chosen is the mipmap whose texels most closely match the size of the pixel to be textured. The D3DFILTER_LINEAR method is then used with the texture. ��D3DPTFILTERCAPS_MIPLINEAR ���Two mipmaps are chosen whose texels most closely match the size of the pixel to be textured. The D3DFILTER_NEAREST method is then used with each texture to produce two values which are then weighted to produce a final texel value. ��D3DPTFILTERCAPS_MIPNEAREST ���Similar to D3DPTFILTERCAPS_NEAREST, but uses the appropriate mipmap for texel selection. ��D3DPTFILTERCAPS_NEAREST ���The texel with coordinates nearest to the desired pixel value is used. This applies to both zooming in and zooming out. If either zooming in or zooming out is supported, then both must be supported. ��
dwTextureBlendCaps
Texture-blending capabilities. See the D3DTEXTUREBLEND enumerated type for discussions of the various texture-blending modes. This member can be one or more of the following:
D3DPTBLENDCAPS_ADD ���Supports the additive texture-blending mode, in which the Gouraud interpolants are added to the texture lookup with saturation semantics. This capability corresponds to the D3DTBLEND_ADD member of the D3DTEXTUREBLEND enumerated type.
This flag was introduced in DirectX 5.��D3DPTBLENDCAPS_COPY ���Copy mode texture-blending (D3DTBLEND_COPY from the D3DTEXTUREBLEND enumerated type) is supported. ��D3DPTBLENDCAPS_DECAL ���Decal texture-blending mode (D3DTBLEND_DECAL from the D3DTEXTUREBLEND enumerated type) is supported. ��D3DPTBLENDCAPS_DECALALPHA ���Decal-alpha texture-blending mode (D3DTBLEND_DECALALPHA from the D3DTEXTUREBLEND enumerated type) is supported. ��D3DPTBLENDCAPS_DECALMASK ���Decal-mask texture-blending mode (D3DTBLEND_DECALMASK from the D3DTEXTUREBLEND enumerated type) is supported. ��D3DPTBLENDCAPS_MODULATE ���Modulate texture-blending mode (D3DTBLEND_MODULATE from the D3DTEXTUREBLEND enumerated type) is supported. ��D3DPTBLENDCAPS_MODULATEALPHA ���Modulate-alpha texture-blending mode (D3DTBLEND_MODULATEALPHA from the D3DTEXTUREBLEND enumerated type) is supported. ��D3DPTBLENDCAPS_MODULATEMASK ���Modulate-mask texture-blending mode (D3DTBLEND_MODULATEMASK from the D3DTEXTUREBLEND enumerated type) is supported. ��
dwTextureAddressCaps
Texture-addressing capabilities. This member can be one or more of the following:
D3DPTADDRESSCAPS_BORDER ���Device supports setting coordinates outside the range [0.0, 1.0] to the border color, as specified by the D3DRENDERSTATE_BORDERCOLOR render state. This ability corresponds to the D3DTADDRESS_BORDER texture-addressing mode.
This flag was introduced in DirectX 5.��D3DPTADDRESSCAPS_CLAMP ���Device can clamp textures to addresses. ��D3DPTADDRESSCAPS_INDEPENDENTUV ���Device can separate the texture-addressing modes of the U and V coordinates of the texture. This ability corresponds to the D3DRENDERSTATE_TEXTUREADDRESSU and D3DRENDERSTATE_TEXTUREADDRESSV render-state values.
This flag was introduced in DirectX 5.��D3DPTADDRESSCAPS_CLAMP ���Device can clamp textures to addresses. ��D3DPTADDRESSCAPS_MIRROR ���Device can mirror textures to addresses. ��D3DPTADDRESSCAPS_WRAP ���Device can wrap textures to addresses. ��
dwStippleWidth and dwStippleHeight
Maximum width and height of the supported stipple (up to 32´32).

D3DPROCESSVERTICES
The D3DPROCESSVERTICES structure describes how vertices in the execute buffer should be handled by the driver. This is used by the D3DOP_PROCESSVERTICES opcode in the D3DOPCODE enumerated type.
typedef struct _D3DPROCESSVERTICES {
 DWORD dwFlags;
 WORD wStart;
 WORD wDest;
 DWORD dwCount;
 DWORD dwReserved;
} D3DPROCESSVERTICES, *LPD3DPROCESSVERTICES;

Members
dwFlags
One or more of the following flags indicating how the driver should process the vertices:
D3DPROCESSVERTICES_COPY ���Vertices should simply be copied to the driver, because they have always been transformed and lit. If all the vertices in the execute buffer can be copied, the driver does not need to do the work of processing the vertices, and a performance improvement results. ��D3DPROCESSVERTICES_NOCOLOR ���Vertices should not be colored. ��D3DPROCESSVERTICES_OPMASK ���Specifies a bitmask of the other flags in the dwFlags member, exclusive of D3DPROCESSVERTICES_NOCOLOR and D3DPROCESSVERTICES_UPDATEEXTENTS. ��D3DPROCESSVERTICES_TRANSFORM ���Vertices should be transformed. ��D3DPROCESSVERTICES_TRANSFORMLIGHT ���Vertices should be transformed and lit. ��D3DPROCESSVERTICES_UPDATEEXTENTS ���Extents of all transformed vertices should be updated. This information is returned in the drExtent member of the D3DSTATUS structure. ��
wStart
Index of the first vertex in the source.
wDest
Index of the first vertex in the local buffer.
dwCount
Number of vertices to be processed.
dwReserved
Reserved; must be zero.

See Also
D3DOPCODE
D3DRECT
The D3DRECT structure is a rectangle definition.
typedef struct _D3DRECT {
 union {
 LONG x1;
 LONG lX1;
 };
 union {
 LONG y1;
 LONG lY1;
 };
 union {
 LONG x2;
 LONG lX2;
 };
 union {
 LONG y2;
 LONG lY2;
 };
} D3DRECT, *LPD3DRECT;

Members
lX1 and lY1
Coordinates of the upper-left corner of the rectangle.
lX2 and lY2
Coordinates of the lower-right corner of the rectangle.

See Also
IDirect3DDevice::Pick, IDirect3DViewport2::Clear
D3DSPAN
The D3DSPAN structure defines a span for the D3DOP_SPAN opcode in the D3DOPCODE enumerated type. Spans join a list of points with the same y value. If the y value changes, a new span is started.
typedef struct _D3DSPAN {
 WORD wCount;
 WORD wFirst;
} D3DSPAN, *LPD3DSPAN;

Members
wCount
Number of spans.
wFirst
Index to first vertex.

See Also
D3DOPCODE
D3DSTATE
The D3DSTATE structure describes the render state for the D3DOP_STATETRANSFORM, D3DOP_STATELIGHT, and D3DOP_STATERENDER opcodes in the D3DOPCODE enumerated type. The first member of this structure is the relevant enumerated type and the second is the value for that type.
typedef struct _D3DSTATE {
 union {
 D3DTRANSFORMSTATETYPE dtstTransformStateType;
 D3DLIGHTSTATETYPE dlstLightStateType;
 D3DRENDERSTATETYPE drstRenderStateType;
 };
 union {
 DWORD dwArg[1];
 D3DVALUE dvArg[1];
 };
} D3DSTATE, *LPD3DSTATE;

Members
dtstTransformStateType, dlstLightStateType, and drstRenderStateType
One of the members of the D3DTRANSFORMSTATETYPE, D3DLIGHTSTATETYPE, or D3DRENDERSTATETYPE enumerated type specifying the render state.
dvArg
Value of the type specified in the first member of this structure.

See Also
D3DLIGHTSTATETYPE, D3DOPCODE, D3DRENDERSTATETYPE, and D3DTRANSFORMSTATETYPE, D3DVALUE
D3DSTATS
The D3DSTATS structure contains statistics used by the IDirect3DDevice2::GetStats method.
typedef struct _D3DSTATS {
 DWORD dwSize;
 DWORD dwTrianglesDrawn;
 DWORD dwLinesDrawn;
 DWORD dwPointsDrawn;
 DWORD dwSpansDrawn;
 DWORD dwVerticesProcessed;
} D3DSTATS, *LPD3DSTATS;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
dwTrianglesDrawn, dwLinesDrawn, dwPointsDrawn, and dwSpansDrawn
Number of triangles, lines, points, and spans drawn since the device was created.
dwVerticesProcessed
Number of vertices processed since the device was created.

See Also
IDirect3DDevice2::GetStats
D3DSTATUS
The D3DSTATUS structure describes the current status of the execute buffer. This structure is part of the D3DEXECUTEDATA structure and is used with the D3DOP_SETSTATUS opcode in the D3DOPCODE enumerated type.
typedef struct _D3DSTATUS {
 DWORD dwFlags;
 DWORD dwStatus;
 D3DRECT drExtent;
} D3DSTATUS, *LPD3DSTATUS;

Members
dwFlags
One of the following flags, specifying whether the status, the extents, or both are being set:
D3DSETSTATUS_STATUS ���Set the status. ��D3DSETSTATUS_EXTENTS ���Set the extents specified in the drExtent member. ��D3DSETSTATUS_ALL ���Set both the status and the extents. ��
dwStatus
Clipping flags. This member can be one or more of the following flags:
Combination and General Flags
D3DSTATUS_CLIPINTERSECTION ���Combination of all CLIPINTERSECTION flags. ��D3DSTATUS_CLIPUNIONALL ���Combination of all CLIPUNION flags. ��D3DSTATUS_DEFAULT ���Combination of D3DSTATUS_CLIPINTERSECTION and D3DSTATUS_ZNOTVISIBLE flags. This value is the default. ��D3DSTATUS_ZNOTVISIBLE ��
Clip Intersection Flags
D3DSTATUS_CLIPINTERSECTIONBACK ���Logical AND of the clip flags for the vertices compared to the back clipping plane of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONBOTTOM ���Logical AND of the clip flags for the vertices compared to the bottom of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONFRONT ���Logical AND of the clip flags for the vertices compared to the front clipping plane of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONGEN0 through D3DSTATUS_CLIPINTERSECTIONGEN5 ���Logical AND of the clip flags for application-defined clipping planes. ��D3DSTATUS_CLIPINTERSECTIONLEFT ���Logical AND of the clip flags for the vertices compared to the left side of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONRIGHT ���Logical AND of the clip flags for the vertices compared to the right side of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONTOP ���Logical AND of the clip flags for the vertices compared to the top of the viewing frustum. ��
Clip Union Flags
D3DSTATUS_CLIPUNIONBACK ���Equal to D3DCLIP_BACK. ��D3DSTATUS_CLIPUNIONBOTTOM ���Equal to D3DCLIP_BOTTOM. ��D3DSTATUS_CLIPUNIONFRONT ���Equal to D3DCLIP_FRONT. ��D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5 ���Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5. ��D3DSTATUS_CLIPUNIONLEFT ���Equal to D3DCLIP_LEFT. ��D3DSTATUS_CLIPUNIONRIGHT ���Equal to D3DCLIP_RIGHT. ��D3DSTATUS_CLIPUNIONTOP ���Equal to D3DCLIP_TOP. ��
Basic Clipping Flags
D3DCLIP_BACK ���All vertices are clipped by the back plane of the viewing frustum. ��D3DCLIP_BOTTOM ���All vertices are clipped by the bottom plane of the viewing frustum. ��D3DCLIP_FRONT ���All vertices are clipped by the front plane of the viewing frustum. ��D3DCLIP_LEFT ���All vertices are clipped by the left plane of the viewing frustum. ��D3DCLIP_RIGHT ���All vertices are clipped by the right plane of the viewing frustum. ��D3DCLIP_TOP ���All vertices are clipped by the top plane of the viewing frustum. ��D3DCLIP_GEN0 through D3DCLIP_GEN5 ���Application-defined clipping planes. ��
drExtent
A D3DRECT structure that defines a bounding box for all the relevant vertices. For example, the structure might define the area containing the output of the D3DOP_PROCESSVERTICES opcode, assuming the D3DPROCESSVERTICES_UPDATEEXTENTS flag is set in the D3DPROCESSVERTICES structure.

Remarks
The status is a rolling status and is updated during each execution. The bounding box in the drExtent member can grow with each execution, but it does not shrink; it can be reset only by using the D3DOP_SETSTATUS opcode.
See Also
D3DEXECUTEDATA, D3DOPCODE, D3DRECT
D3DTEXTURELOAD
The D3DTEXTURELOAD structure describes operand data for the D3DOP_TEXTURELOAD opcode in the D3DOPCODE enumerated type.
typedef struct _D3DTEXTURELOAD {
 D3DTEXTUREHANDLE hDestTexture;
 D3DTEXTUREHANDLE hSrcTexture;
} D3DTEXTURELOAD, *LPD3DTEXTURELOAD;

Members
hDestTexture
Handle to the destination texture.
hSrcTexture
Handle to the source texture.

Remarks
The textures referred to by the hDestTexture and hSrcTexture members must be the same size.
D3DTLVERTEX
The D3DTLVERTEX structure defines a transformed and lit vertex (screen coordinates with color) for the D3DLIGHTDATA structure.
typedef struct _D3DTLVERTEX {
 union {
 D3DVALUE sx;
 D3DVALUE dvSX;
 };
 union {
 D3DVALUE sy;
 D3DVALUE dvSY;
 };
 union {
 D3DVALUE sz;
 D3DVALUE dvSZ;
 };
 union {
 D3DVALUE rhw;
 D3DVALUE dvRHW;
 };
 union {
 D3DCOLOR color;
 D3DCOLOR dcColor;
 };
 union {
 D3DCOLOR specular;
 D3DCOLOR dcSpecular;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DTLVERTEX, *LPD3DTLVERTEX;

Members
dvSX, dvSY, and dvSZ
Values of the D3DVALUE type describing a vertex in screen coordinates. The largest allowable value for dvSZ is 0.99999, if you want the vertex to be within the range of z-values that are displayed.
dvRHW
Value of the D3DVALUE type that is the reciprocal of homogeneous w. This value is 1 divided by the distance from the origin to the object along the z-axis.
dcColor and dcSpecular
Values of the D3DCOLOR type describing the color and specular component of the vertex.
dvTU and dvTV
Values of the D3DVALUE type describing the texture coordinates of the vertex.

Remarks
Direct3D uses the current viewport parameters (the dwX, dwY, dwWidth, and dwHeight members of the D3DVIEWPORT2 structure) to clip D3DTLVERTEX vertices. The system always clips z coordinates to [0, 1]. To prevent the system from clipping these vertices, use the D3DDP_DONOTCLIP flag in your call to IDirect3DDevice2::Begin.
Prior to DirectX 5, Direct3D did not clip D3DTLVERTEX vertices.
See Also
D3DLIGHTDATA, D3DLVERTEX, D3DVERTEX
D3DTRANSFORMCAPS
The D3DTRANSFORMCAPS structure describes the transformation capabilities of a device. This structure is part of the D3DDEVICEDESC structure.
typedef struct _D3DTransformCaps {
 DWORD dwSize;
 DWORD dwCaps;
} D3DTRANSFORMCAPS, *LPD3DTRANSFORMCAPS;

Members
dwSize
Size, in bytes, of this structure. This member must be initialized before the structure is used.
dwCaps
Flag specifying whether the system clips while transforming. This member can be zero or the following flag:
D3DTRANSFORMCAPS_CLIP �The system clips while transforming. ��
D3DTRANSFORMDATA
The D3DTRANSFORMDATA structure contains information about transformations for the IDirect3DViewport2::TransformVertices method.
typedef struct _D3DTRANSFORMDATA {
 DWORD dwSize;
 LPVOID lpIn;
 DWORD dwInSize;
 LPVOID lpOut;
 DWORD dwOutSize;
 LPD3DHVERTEX lpHOut;
 DWORD dwClip;
 DWORD dwClipIntersection;
 DWORD dwClipUnion;
 D3DRECT drExtent;
} D3DTRANSFORMDATA, *LPD3DTRANSFORMDATA;

Members
dwSize
Size of the structure, in bytes. This member must be initialized before the structure is used.
lpIn
Address of the vertices to be transformed. This should be a D3DLVERTEX structure.
dwInSize
Stride of the vertices to be transformed.
lpOut
Address used to store the transformed vertices.
dwOutSize
Stride of output vertices.
lpHOut
Address of a value that contains homogeneous transformed vertices. This value is a D3DHVERTEX structure
dwClip
Flags specifying how the vertices are clipped. This member can be one or more of the following values:
D3DCLIP_BACK ���Clipped by the back plane of the viewing frustum. ��D3DCLIP_BOTTOM ���Clipped by the bottom plane of the viewing frustum. ��D3DCLIP_FRONT ���Clipped by the front plane of the viewing frustum. ��D3DCLIP_GEN0 through D3DCLIP_GEN5 ���Application-defined clipping planes. ��D3DCLIP_LEFT ���Clipped by the left plane of the viewing frustum. ��D3DCLIP_RIGHT ���Clipped by the right plane of the viewing frustum. ��D3DCLIP_TOP ���Clipped by the top plane of the viewing frustum. ��
dwClipIntersection
Flags denoting the intersection of the clip flags. This member can be one or more of the following values:
D3DSTATUS_CLIPINTERSECTIONBACK ���Logical AND of the clip flags for the vertices compared to the back clipping plane of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONBOTTOM ���Logical AND of the clip flags for the vertices compared to the bottom of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONFRONT ���Logical AND of the clip flags for the vertices compared to the front clipping plane of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONGEN0 through D3DSTATUS_CLIPINTERSECTIONGEN5 ���Logical AND of the clip flags for application-defined clipping planes. ��D3DSTATUS_CLIPINTERSECTIONLEFT ���Logical AND of the clip flags for the vertices compared to the left side of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONRIGHT ���Logical AND of the clip flags for the vertices compared to the right side of the viewing frustum. ��D3DSTATUS_CLIPINTERSECTIONTOP ���Logical AND of the clip flags for the vertices compared to the top of the viewing frustum. ��
dwClipUnion
Flags denoting the union of the clip flags. This member can be one or more of the following values:
D3DSTATUS_CLIPUNIONBACK ���Equal to D3DCLIP_BACK. ��D3DSTATUS_CLIPUNIONBOTTOM ���Equal to D3DCLIP_BOTTOM. ��D3DSTATUS_CLIPUNIONFRONT ���Equal to D3DCLIP_FRONT. ��D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5 ���Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5. ��D3DSTATUS_CLIPUNIONLEFT ���Equal to D3DCLIP_LEFT. ��D3DSTATUS_CLIPUNIONRIGHT ���Equal to D3DCLIP_RIGHT. ��D3DSTATUS_CLIPUNIONTOP ���Equal to D3DCLIP_TOP. ��
drExtent
Value that defines the extent of the transformed vertices. This structure is filled by the transformation module with the screen extent of the transformed geometry. For geometries that are clipped, this extent will only include vertices that are inside the viewing volume. This value is a D3DRECT structure

Remarks
Each input vertex should be a three-vector vertex giving the [x y z] coordinates in model space for the geometry. The dwInSize member gives the amount to skip between vertices, allowing the application to store extra data inline with each vertex.
All values generated by the transformation module are stored as 16-bit precision values. The clip is treated as an integer bitfield that is set to the inclusive OR of the viewing volume planes that clip a given transformed vertex.
See Also
IDirect3DViewport2::TransformVertices
D3DTRIANGLE
The D3DTRIANGLE structure describes the base type for all triangles. The triangle is the main rendering primitive.
For related information, see the D3DOP_TRIANGLE member in the D3DOPCODE enumerated type.
typedef struct _D3DTRIANGLE {
 union {
 WORD v1;
 WORD wV1;
 };
 union {
 WORD v2;
 WORD wV2;
 };
 union {
 WORD v3;
 WORD wV3;
 };
 WORD wFlags;
} D3DTRIANGLE, *LPD3DTRIANGLE;

Members
wV1, wV2, and wV3
Vertices describing the triangle.
wFlags
This value can be a combination of the following flags:
Edge flags
These flags describe which edges of the triangle to enable. (This information is useful only in wireframe mode.)
D3DTRIFLAG_EDGEENABLE1 ���Edge defined by v1–v2. ��D3DTRIFLAG_EDGEENABLE2 ���Edge defined by v2–v3. ��D3DTRIFLAG_EDGEENABLE3 ���Edge defined by v3–v1. ��D3DTRIFLAG_EDGEENABLETRIANGLE ���All edges. ��
Strip and fan flags
D3DTRIFLAG_EVEN ���The v1–v2 edge of the current triangle is adjacent to the v3–v1 edge of the previous triangle; that is, v1 is the previous v1, and v2 is the previous v3. ��D3DTRIFLAG_ODD ���The v1–v2 edge of the current triangle is adjacent to the v2–v3 edge of the previous triangle; that is, v1 is the previous v3, and v2 is the previous v2. ��D3DTRIFLAG_START ���Begin the strip or fan, loading all three vertices. ��D3DTRIFLAG_STARTFLAT(len) ���Cull or render the triangles in the strip or fan based on the treatment of this triangle. That is, if this triangle is culled, also cull the specified number of subsequent triangles. If this triangle is rendered, also render the specified number of subsequent triangles.
This length must be greater than zero and less than 30. ��
Remarks
This structure can be used directly for all triangle fills. For flat shading, the color and specular components are taken from the first vertex. The three vertex indices v1, v2, and v3 are vertex indexes into the vertex list at the start of the execute buffer.
Enabled edges are visible in wireframe mode. When an application displays wireframe triangles that share an edge, it typically enables only one (or neither) edge to avoid drawing the edge twice.
The D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN flags refer to the locations of a triangle in a conventional triangle strip or fan. If a triangle strip had five triangles, the following flags would be used to define the strip:
D3DTRIFLAG_START �D3DTRIFLAG_ODD �D3DTRIFLAG_EVEN �D3DTRIFLAG_ODD �D3DTRIFLAG_EVEN
Similarly, the following flags would define a triangle fan with five triangles:
D3DTRIFLAG_START �D3DTRIFLAG_EVEN �D3DTRIFLAG_EVEN �D3DTRIFLAG_EVEN �D3DTRIFLAG_EVEN
The following flags could define a flat triangle fan with five triangles:
D3DTRIFLAG_STARTFLAT(4) �D3DTRIFLAG_EVEN �D3DTRIFLAG_EVEN �D3DTRIFLAG_EVEN �D3DTRIFLAG_EVEN
For more information, see Triangle Strips and Fans.
D3DVECTOR
The D3DVECTOR structure defines a vector for many Direct3D and Direct3DRM methods and structures.
typedef struct _D3DVECTOR {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
} D3DVECTOR, *LPD3DVECTOR;

Members
dvX, dvY, and dvZ
Values of the D3DVALUE type describing the vector.

See Also
D3DLIGHT2, D3DLIGHTINGELEMENT,
D3DVERTEX
The D3DVERTEX structure defines an untransformed and unlit vertex (model coordinates with normal direction vector).
For related information, see the D3DOP_TRIANGLE member in the D3DOPCODE enumerated type.
typedef struct _D3DVERTEX {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
 union {
 D3DVALUE nx;
 D3DVALUE dvNX;
 };
 union {
 D3DVALUE ny;
 D3DVALUE dvNY;
 };
 union {
 D3DVALUE nz;
 D3DVALUE dvNZ;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DVERTEX, *LPD3DVERTEX;

Members
dvX, dvY, and dvZ
Values of the D3DVALUE type describing the homogeneous coordinates of the vertex.
dvNX, dvNY, and dvNZ
Values of the D3DVALUE type describing the normal coordinates of the vertex.
dvTU and dvTV
Values of the D3DVALUE type describing the texture coordinates of the vertex.

See Also
D3DLVERTEX, D3DTLVERTEX, D3DVALUE,
D3DVIEWPORT
The D3DVIEWPORT structure defines the visible 3-D volume and the 2-D screen area that a 3-D volume projects onto for the IDirect3DViewport2::GetViewport and IDirect3DViewport2::SetViewport methods.
For the IDirect3D2 and IDirect3DDevice2 interfaces, this structure has been superseded by the D3DVIEWPORT2 structure.
typedef struct _D3DVIEWPORT {
 DWORD dwSize;
 DWORD dwX;
 DWORD dwY;
 DWORD dwWidth;
 DWORD dwHeight;
 D3DVALUE dvScaleX;
 D3DVALUE dvScaleY;
 D3DVALUE dvMaxX;
 D3DVALUE dvMaxY;
 D3DVALUE dvMinZ;
 D3DVALUE dvMaxZ;
} D3DVIEWPORT, *LPD3DVIEWPORT;

Members
dwSize
Size of this structure, in bytes. This member must be initialized before the structure is used.
dwX and dwY
Coordinates of the top-left corner of the viewport.
dwWidth and dwHeight
Dimensions of the viewport.
dvScaleX and dvScaleY
Values of the D3DVALUE type describing how coordinates are scaled. The relevant coordinates here are the nonhomogeneous coordinates that result from the perspective division that projects the vertices onto the w=1 plane.
dvMaxX, dvMaxY, dvMinZ, and dvMaxZ
Values of the D3DVALUE type describing the maximum and minimum nonhomogeneous coordinates of x, y, and z. Again, the relevant coordinates are the nonhomogeneous coordinates that result from the perspective division.

Remarks
When the viewport is changed, the driver builds a new transformation matrix.
The coordinates and dimensions of the viewport are given relative to the top left of the device.
See Also
D3DVALUE, IDirect3DViewport2::GetViewport, IDirect3DViewport2::SetViewport
D3DVIEWPORT2
The D3DVIEWPORT2 structure defines the visible 3-D volume and the window dimensions that a 3-D volume projects onto. This structure is used by the methods of the IDirect3D2 and IDirect3DDevice2 interfaces, and in particular by the IDirect3DViewport2::GetViewport2 and IDirect3DViewport2::SetViewport2 methods. This structure was introduced in DirectX 5.
typedef struct _D3DVIEWPORT2 {
 DWORD dwSize;
 DWORD dwX;
 DWORD dwY;
 DWORD dwWidth;
 DWORD dwHeight;
 D3DVALUE dvClipX;
 D3DVALUE dvClipY;
 D3DVALUE dvClipWidth;
 D3DVALUE dvClipHeight;
 D3DVALUE dvMinZ;
 D3DVALUE dvMaxZ;
} D3DVIEWPORT2, *LPD3DVIEWPORT2;

Members
dwSize
Size of this structure, in bytes. This member must be initialized before the structure is used.
dwX and dwY
Coordinates of the top-left corner of the viewport. Unless you want to render to a subset of the surface, these members can be set to 0.
dwWidth and dwHeight
Dimensions of the viewport.
dvClipX and dvClipY
Coordinates of the top-left corner of the clipping volume.
The relevant coordinates here are the nonhomogeneous coordinates that result from the perspective division that projects the vertices onto the w=1 plane.
dvClipWidth and dvClipHeight
Dimensions of the clipping volume projected onto the w=1 plane. Unless you want to render to a subset of the surface, these members can be set to the width and height of the destination surface.
dvMinZ and dvMaxZ
Values of the D3DVALUE type describing the maximum and minimum nonhomogeneous z-coordinates resulting from the perspective divide and projected onto the w=1 plane.

Remarks
The coordinates and dimensions of the viewport are given relative to the top left of the device; values increase in the y-direction as you descend the screen.
If you are using D3DVERTEX or D3DLVERTEX vertices — that is, if Direct3D is performing the transformations — you might want to set the last six members of this structure as follows:
float inv_aspect = (float)dwHeight/dwWidth;

dvClipX = -1.0f;
dvClipY = inv_aspect;
dvClipWidth = 2.0f;
dvClipHeight = 2.0f * inv_aspect;
dvMinZ = 0.0f;
dvMaxZ = 1.0f;

By taking the aspect ratio into account you are assured that as the surface is resized the angle of the horizontal field of view remains constant. This prevents unexpected distortions when the user pulls the window into an unusual shape. If distortion is not an issue in your application, set aspect to 1. Notice that dividing the height by the width produces an inverse aspect ratio; in Direct3D, the aspect ratio is defined by dividing the width by the height.
If you are using D3DTLVERTEX vertices — that is, if your application is taking care of the transformations and lighting — you can set up the clip space however is best for your application. If the x- and y-coordinates in your data already match pixels, you could set the last six members of D3DVIEWPORT2 as follows:
dvClipX = 0;
dvClipY = 0;
dvClipWidth = dwWidth;
dvClipHeight = dwHeight;
dvMinZ = 0.0f;
dvMaxZ = 1.0f;

Unlike the D3DVIEWPORT structure, D3DVIEWPORT2 specifies the relationship between the size of the viewport and the window.
When the viewport is changed, the driver builds a new transformation matrix.
For more information about working with viewports, see Viewports and Transformations.
See Also
D3DVALUE, IDirect3DViewport2::GetViewport2, IDirect3DViewport2::SetViewport2
Enumerated Types
This section contains information about the following enumerated types used with Direct3D Immediate Mode.
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DANTIALIASMODE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DBLEND
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DCMPFUNC
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DCOLORMODEL
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DCULL
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DFILLMODE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DFOGMODE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLIGHTSTATETYPE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DLIGHTTYPE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DOPCODE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DPRIMITIVETYPE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DRENDERSTATETYPE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DSHADEMODE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTEXTUREADDRESS
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTEXTUREBLEND
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTEXTUREFILTER
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DTRANSFORMSTATETYPE
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVERTEXTYPE

D3DANTIALIASMODE
The D3DANTIALIASMODE enumerated type defines the supported antialiasing mode for the D3DRENDERSTATE_ANTIALIAS value in the D3DRENDERSTATETYPE enumerated type. These values define the settings for antialiasing the edges of primitives.
This type was introduced with DirectX 5.
typedef enum _D3DANTIALIASMODE {
 D3DANTIALIAS_NONE = 0,
 D3DANTIALIAS_SORTDEPENDENT = 1,
 D3DANTIALIAS_SORTINDEPENDENT = 2
 D3DANTIALIAS_FORCE_DWORD = 0x7fffffff,
} D3DANTIALIASMODE;

Members
D3DANTIALIAS_NONE
No antialiasing is performed. This is the default setting.
D3DANTIALIAS_SORTDEPENDENT
Antialiasing is dependent on the sort order of the polygons (back-to-front or front-to-back). The application must draw polygons in the right order for antialiasing to occur.
D3DANTIALIAS_SORTINDEPENDENT
Antialiasing is not dependent on the sort order of the polygons.
D3DANTIALIAS_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

D3DBLEND
The D3DBLEND enumerated type defines the supported blend mode for the D3DRENDERSTATE_DESTBLEND values in the D3DRENDERSTATETYPE enumerated type. In the member descriptions that follow, the RGBA values of the source and destination are indicated with the subscripts s and d.
typedef enum _D3DBLEND {
 D3DBLEND_ZERO = 1,
 D3DBLEND_ONE = 2,
 D3DBLEND_SRCCOLOR = 3,
 D3DBLEND_INVSRCCOLOR = 4,
 D3DBLEND_SRCALPHA = 5,
 D3DBLEND_INVSRCALPHA = 6,
 D3DBLEND_DESTALPHA = 7,
 D3DBLEND_INVDESTALPHA = 8,
 D3DBLEND_DESTCOLOR = 9,
 D3DBLEND_INVDESTCOLOR = 10,
 D3DBLEND_SRCALPHASAT = 11,
 D3DBLEND_BOTHSRCALPHA = 12,
 D3DBLEND_BOTHINVSRCALPHA = 13,
 D3DBLEND_FORCE_DWORD = 0x7fffffff,
} D3DBLEND;

Members
D3DBLEND_ZERO
Blend factor is (0, 0, 0, 0).
D3DBLEND_ONE
Blend factor is (1, 1, 1, 1).
D3DBLEND_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).
D3DBLEND_INVSRCCOLOR
Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As).
D3DBLEND_SRCALPHA
Blend factor is (As, As, As, As).
D3DBLEND_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As, 1-As).
D3DBLEND_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).
D3DBLEND_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).
D3DBLEND_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).
D3DBLEND_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).
D3DBLEND_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).
D3DBLEND_BOTHSRCALPHA
Source blend factor is (As, As, As, As), and destination blend factor is (1-As, 1-As, 1-As, 1-As); the destination blend selection is overridden.
D3DBLEND_BOTHINVSRCALPHA
Source blend factor is (1-As, 1-As, 1-As, 1-As), and destination blend factor is (As, As, As, As); the destination blend selection is overridden.
D3DBLEND_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

D3DCMPFUNC
The D3DCMPFUNC enumerated type defines the supported compare functions for the D3DRENDERSTATE_ZFUNC and D3DRENDERSTATE_ALPHAFUNC values of the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DCMPFUNC {
 D3DCMP_NEVER = 1,
 D3DCMP_LESS = 2,
 D3DCMP_EQUAL = 3,
 D3DCMP_LESSEQUAL = 4,
 D3DCMP_GREATER = 5,
 D3DCMP_NOTEQUAL = 6,
 D3DCMP_GREATEREQUAL = 7,
 D3DCMP_ALWAYS = 8,
 D3DCMP_FORCE_DWORD = 0x7fffffff,
} D3DCMPFUNC;

Members
D3DCMP_NEVER
Always fail the test.
D3DCMP_LESS
Accept the new pixel if its value is less than the value of the current pixel.
D3DCMP_EQUAL
Accept the new pixel if its value equals the value of the current pixel.
D3DCMP_LESSEQUAL
Accept the new pixel if its value is less than or equal to the value of the current pixel.
D3DCMP_GREATER
Accept the new pixel if its value is greater than the value of the current pixel.
D3DCMP_NOTEQUAL
Accept the new pixel if its value does not equal the value of the current pixel.
D3DCMP_GREATEREQUAL
Accept the new pixel if its value is greater than or equal to the value of the current pixel.
D3DCMP_ALWAYS
Always pass the test.
D3DCMP_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

D3DCOLORMODEL
The D3DCOLORMODEL constant defines the color model in which the system will run. A driver can expose either or both flags in the dcmColorModel member of the D3DDEVICEDESC structure.
typedef DWORD D3DCOLORMODEL

Values
D3DCOLOR_MONO
Use a monochromatic model (or ramp model). In this model, the blue component of a vertex color is used to define the brightness of a lit vertex.
D3DCOLOR_RGB
Use a full RGB model.

Remarks
Prior to DirectX 5, these values were part of an enumerated type. This was not correct, because they are bit flags. The enumerated type in earlier versions of DirectX had this syntax:
typedef enum _D3DCOLORMODEL {
 D3DCOLOR_MONO = 1,
 D3DCOLOR_RGB = 2,
} D3DCOLORMODEL;

See Also
D3DDEVICEDESC, D3DFINDDEVICESEARCH, D3DLIGHTSTATETYPE
D3DCULL
The D3DCULL enumerated type defines the supported cull modes. These define how back faces are culled when rendering a geometry.
typedef enum _D3DCULL {
 D3DCULL_NONE = 1,
 D3DCULL_CW = 2,
 D3DCULL_CCW = 3,
 D3DCULL_FORCE_DWORD = 0x7fffffff,
} D3DCULL;

Members
D3DCULL_NONE
Do not cull back faces.
D3DCULL_CW
Cull back faces with clockwise vertices.
D3DCULL_CCW
Cull back faces with counterclockwise vertices.
D3DCULL_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
D3DPRIMCAPS, D3DRENDERSTATETYPE
D3DFILLMODE
The D3DFILLMODE enumerated type contains constants describing the fill mode. These values are used by the D3DRENDERSTATE_FILLMODE render state in the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DFILLMODE {
 D3DFILL_POINT = 1,
 D3DFILL_WIREFRAME = 2,
 D3DFILL_SOLID = 3
 D3DFILL_FORCE_DWORD = 0x7fffffff,
} D3DFILLMODE;

Members
D3DFILL_POINT
Fill points.
D3DFILL_WIREFRAME
Fill wireframes. This fill mode currently does not work for clipped primitives when you are using the DrawPrimitive methods.
D3DFILL_SOLID
Fill solids.
D3DFILL_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

D3DFOGMODE
The D3DFOGMODE enumerated type contains constants describing the fog mode. These values are used by the D3DRENDERSTATE_FOGTABLEMODE render state in the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DFOGMODE {
 D3DFOG_NONE = 0,
 D3DFOG_EXP = 1,
 D3DFOG_EXP2 = 2,
 D3DFOG_LINEAR = 3
 D3DFOG_FORCE_DWORD = 0x7fffffff,
} D3DFOGMODE;

Members
D3DFOG_NONE
No fog effect.
D3DFOG_EXP
The fog effect intensifies exponentially, according to the following formula:
�
D3DFOG_EXP2
The fog effect intensifies exponentially with the square of the distance, according to the following formula:
�
D3DFOG_LINEAR
The fog effect intensifies linearly between the start and end points, according to the following formula:
�
This is the only fog mode currently supported.
D3DFOG_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
In monochromatic (ramp) lighting mode, fog works properly only when the fog color is black. (If there is no lighting, any fog color will work, since in this case any fog color is effectively black.)
For more information about fog, see Colors and Fog.

Note
Fog can be considered a measure of visibility—the lower the fog value produced by one of the fog equations, the less visible an object is.

D3DLIGHTSTATETYPE
The D3DLIGHTSTATETYPE enumerated type defines the light state for the D3DOP_STATELIGHT opcode. This enumerated type is part of the D3DSTATE structure.
typedef enum _D3DLIGHTSTATETYPE {
 D3DLIGHTSTATE_MATERIAL = 1,
 D3DLIGHTSTATE_AMBIENT = 2,
 D3DLIGHTSTATE_COLORMODEL = 3,
 D3DLIGHTSTATE_FOGMODE = 4,
 D3DLIGHTSTATE_FOGSTART = 5,
 D3DLIGHTSTATE_FOGEND = 6,
 D3DLIGHTSTATE_FOGDENSITY = 7,
 D3DLIGHTSTATE_FORCE_DWORD = 0x7fffffff,
} D3DLIGHTSTATETYPE;

Members
D3DLIGHTSTATE_MATERIAL
Defines the material that is lit and used to compute the final color and intensity values during rasterization. The default value is NULL.
This value must be set when you use textures in ramp mode.
D3DLIGHTSTATE_AMBIENT
Sets the color and intensity of the current ambient light. If an application specifies this value, it should not specify a light as a parameter. The default value is 0.
D3DLIGHTSTATE_COLORMODEL
One of the members of the D3DCOLORMODEL enumerated type. The default value is D3DCOLOR_RGB.
D3DLIGHTSTATE_FOGMODE
One of the members of the D3DFOGMODE enumerated type. The default value is D3DFOG_NONE.
D3DLIGHTSTATE_FOGSTART
Defines the starting value for fog. The default value is 1.0.
D3DLIGHTSTATE_FOGEND
Defines the ending value for fog. The default value is 100.0.
D3DLIGHTSTATE_FOGDENSITY
Defines the density setting for fog. The default value is 1.0.
D3DLIGHTSTATE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
D3DOPCODE and D3DSTATE
D3DLIGHTTYPE
The D3DLIGHTTYPE enumerated type defines the light type. This enumerated type is part of the D3DLIGHT2 structure.
typedef enum _D3DLIGHTTYPE {
 D3DLIGHT_POINT = 1,
 D3DLIGHT_SPOT = 2,
 D3DLIGHT_DIRECTIONAL = 3,
 D3DLIGHT_PARALLELPOINT = 4,
 D3DLIGHT_FORCE_DWORD = 0x7fffffff,
} D3DLIGHTTYPE;

Members
D3DLIGHT_POINT
Light is a point source. The light has a position in space and radiates light in all directions.
D3DLIGHT_SPOT
Light is a spotlight source. This light is something like a point light except that the illumination is limited to a cone. This light type has a direction and several other parameters which determine the shape of the cone it produces. For information about these parameters, see the D3DLIGHT2 structure.
D3DLIGHT_DIRECTIONAL
Light is a directional source. This is equivalent to using a point light source at an infinite distance.
D3DLIGHT_PARALLELPOINT
Light is a parallel point source. This light type acts like a directional light except its direction is the vector going from the light position to the origin of the geometry it is illuminating.
D3DLIGHT_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
Directional and parallel-point lights are slightly faster than point light sources, but point lights look a little better. Spotlights offer interesting visual effects but are computationally expensive.
D3DOPCODE
The D3DOPCODE enumerated type contains the opcodes for execute buffer.
typedef enum _D3DOPCODE {
 D3DOP_POINT = 1,
 D3DOP_LINE = 2,
 D3DOP_TRIANGLE = 3,
 D3DOP_MATRIXLOAD = 4,
 D3DOP_MATRIXMULTIPLY = 5,
 D3DOP_STATETRANSFORM = 6,
 D3DOP_STATELIGHT = 7,
 D3DOP_STATERENDER = 8,
 D3DOP_PROCESSVERTICES = 9,
 D3DOP_TEXTURELOAD = 10,
 D3DOP_EXIT = 11,
 D3DOP_BRANCHFORWARD = 12,
 D3DOP_SPAN = 13,
 D3DOP_SETSTATUS = 14,
 D3DOP_FORCE_DWORD = 0x7fffffff,
} D3DOPCODE;

Members
D3DOP_POINT
Sends a point to the renderer. Operand data is described by the D3DPOINT structure.
D3DOP_LINE
Sends a line to the renderer. Operand data is described by the D3DLINE structure.
D3DOP_TRIANGLE
Sends a triangle to the renderer. Operand data is described by the D3DTRIANGLE structure.
D3DOP_MATRIXLOAD
Triggers a data transfer in the rendering engine. Operand data is described by the D3DMATRIXLOAD structure.
D3DOP_MATRIXMULTIPLY
Triggers a data transfer in the rendering engine. Operand data is described by the D3DMATRIXMULTIPLY structure.
D3DOP_STATETRANSFORM
Sets the value of internal state variables in the rendering engine for the transformation module. Operand data is a variable token and the new value. The token identifies the internal state variable, and the new value is the value to which that variable should be set. For more information about these variables, see the D3DSTATE structure and the D3DTRANSFORMSTATETYPE enumerated type.
D3DOP_STATELIGHT
Sets the value of internal state variables in the rendering engine for the lighting module. Operand data is a variable token and the new value. The token identifies the internal state variable, and the new value is the value to which that variable should be set. For more information about these variables, see the D3DSTATE structure and the D3DLIGHTSTATETYPE enumerated type.
D3DOP_STATERENDER
Sets the value of internal state variables in the rendering engine for the rendering module. Operand data is a variable token and the new value. The token identifies the internal state variable, and the new value is the value to which that variable should be set. For more information about these variables, see the D3DSTATE structure and the D3DRENDERSTATETYPE enumerated type.
D3DOP_PROCESSVERTICES
Sets both lighting and transformations for vertices. Operand data is described by the D3DPROCESSVERTICES structure.
D3DOP_TEXTURELOAD
Triggers a data transfer in the rendering engine. Operand data is described by the D3DTEXTURELOAD structure.
D3DOP_EXIT
Signals that the end of the list has been reached.
D3DOP_BRANCHFORWARD
Enables a branching mechanism within the execute buffer. For more information, see the D3DBRANCH structure.
D3DOP_SPAN
Spans a list of points with the same y value. For more information, see the D3DSPAN structure.
D3DOP_SETSTATUS
Resets the status of the execute buffer. For more information, see the D3DSTATUS structure.
D3DOP_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
An execute buffer has two parts: an array of vertices (each typically with position, normal vector, and texture coordinates) and an array of opcode/operand groups. One opcode can have several operands following it; the system simply performs the relevant operation on each operand.
See Also
D3DINSTRUCTION
D3DPRIMITIVETYPE
The D3DPRIMITIVETYPE enumerated type lists the primitives supported by DrawPrimitive methods. This type was introduced in DirectX 5.
typedef enum _D3DPRIMITIVETYPE {
 D3DPT_POINTLIST = 1,
 D3DPT_LINELIST = 2,
 D3DPT_LINESTRIP = 3,
 D3DPT_TRIANGLELIST = 4,
 D3DPT_TRIANGLESTRIP = 5,
 D3DPT_TRIANGLEFAN = 6
 D3DPT_FORCE_DWORD = 0x7fffffff,
} D3DPRIMITIVETYPE;

Members
D3DPT_POINTLIST
Renders the vertices as a collection of isolated points.
D3DPT_LINELIST
Renders the vertices as a list of isolated straight line segments. Calls using this primitive type will fail if the count is less than 2, or is odd.
D3DPT_LINESTRIP
Renders the vertices as a single polyline. Calls using this primitive type will fail if the count is less than 2.
D3DPT_TRIANGLELIST
Renders the specified vertices as a sequence of isolated triangles. Each group of 3 vertices defines a separate triangle. Calls using this primitive type will fail if the count is less than 3, or if not evenly divisible by 3.
Backface culling is affected by the current winding order render state.
D3DPT_TRIANGLESTRIP
Renders the vertices as a triangle strip. Calls using this primitive type will fail if the count is less than 3.
The backface removal flag is automatically flipped on even numbered triangles.
D3DPT_TRIANGLEFAN
Renders the vertices as a triangle fan. Calls using this primitive type will fail if the count is less than 3.
D3DPT_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
IDirect3DDevice2::Begin, IDirect3DDevice2::BeginIndexed, IDirect3DDevice2::DrawIndexedPrimitive, IDirect3DDevice2::DrawPrimitive
D3DRENDERSTATETYPE
The D3DRENDERSTATETYPE enumerated type describes the render state for the D3DOP_STATERENDER opcode. This enumerated type is part of the D3DSTATE structure. The values mentioned in the following descriptions are set in the second member of this structure.
Values 40 through 49 were introduced with DirectX 5.
typedef enum _D3DRENDERSTATETYPE {
 D3DRENDERSTATE_TEXTUREHANDLE = 1, // texture handle
 D3DRENDERSTATE_ANTIALIAS = 2, // antialiasing mode
 D3DRENDERSTATE_TEXTUREADDRESS = 3, // texture address
 D3DRENDERSTATE_TEXTUREPERSPECTIVE = 4, // perspective correction
 D3DRENDERSTATE_WRAPU = 5, // wrap in u direction
 D3DRENDERSTATE_WRAPV = 6, // wrap in v direction
 D3DRENDERSTATE_ZENABLE = 7, // enable z test
 D3DRENDERSTATE_FILLMODE = 8, // fill mode
 D3DRENDERSTATE_SHADEMODE = 9, // shade mode
 D3DRENDERSTATE_LINEPATTERN = 10, // line pattern
 D3DRENDERSTATE_MONOENABLE = 11, // enable mono rendering
 D3DRENDERSTATE_ROP2 = 12, // raster operation
 D3DRENDERSTATE_PLANEMASK = 13, // physical plane mask
 D3DRENDERSTATE_ZWRITEENABLE = 14, // enable z writes
 D3DRENDERSTATE_ALPHATESTENABLE = 15, // enable alpha tests
 D3DRENDERSTATE_LASTPIXEL = 16, // draw last pixel in a line
 D3DRENDERSTATE_TEXTUREMAG = 17, // how textures are magnified
 D3DRENDERSTATE_TEXTUREMIN = 18, // how textures are reduced
 D3DRENDERSTATE_SRCBLEND = 19, // blend factor for source
 D3DRENDERSTATE_DESTBLEND = 20, // blend factor for destination
 D3DRENDERSTATE_TEXTUREMAPBLEND = 21, // blend mode for map
 D3DRENDERSTATE_CULLMODE = 22, // back-face culling mode
 D3DRENDERSTATE_ZFUNC = 23, // z-comparison function
 D3DRENDERSTATE_ALPHAREF = 24, // reference alpha value
 D3DRENDERSTATE_ALPHAFUNC = 25, // alpha-comparison function
 D3DRENDERSTATE_DITHERENABLE = 26, // enable dithering
 D3DRENDERSTATE_BLENDENABLE = 27, // replaced by D3DRENDERSTATE_ALPHABLENDENABLE
 D3DRENDERSTATE_FOGENABLE = 28, // enable fog
 D3DRENDERSTATE_SPECULARENABLE = 29, // enable specular highlights
 D3DRENDERSTATE_ZVISIBLE = 30, // enable z-checking
 D3DRENDERSTATE_SUBPIXEL = 31, // enable subpixel correction
 D3DRENDERSTATE_SUBPIXELX = 32, // enable x subpixel correction
 D3DRENDERSTATE_STIPPLEDALPHA = 33, // enable stippled alpha
 D3DRENDERSTATE_FOGCOLOR = 34, // fog color
 D3DRENDERSTATE_FOGTABLEMODE = 35, // fog mode
 D3DRENDERSTATE_FOGTABLESTART = 36, // fog table start
 D3DRENDERSTATE_FOGTABLEEND = 37, // fog table end
 D3DRENDERSTATE_FOGTABLEDENSITY = 38, // fog density
 D3DRENDERSTATE_STIPPLEENABLE = 39, // enables stippling
 D3DRENDERSTATE_EDGEANTIALIAS = 40, // antialias edges
 D3DRENDERSTATE_COLORKEYENABLE = 41, // enable color-key transparency
 D3DRENDERSTATE_ALPHABLENDENABLE = 42, // enable alpha-blend transparency
 D3DRENDERSTATE_BORDERCOLOR = 43, // border color
 D3DRENDERSTATE_TEXTUREADDRESSU = 44, // u texture address mode
 D3DRENDERSTATE_TEXTUREADDRESSV = 45, // v texture address mode
 D3DRENDERSTATE_MIPMAPLODBIAS = 46, // mipmap LOD bias
 D3DRENDERSTATE_ZBIAS = 47, // z bias
 D3DRENDERSTATE_RANGEFOGENABLE = 48, // enables range-based fog
 D3DRENDERSTATE_ANISOTROPY = 49, // max. anisotropy
 D3DRENDERSTATE_STIPPLEPATTERN00 = 64, // first line of stipple pattern
 // Stipple patterns 01 through 30 omitted here.
 D3DRENDERSTATE_STIPPLEPATTERN31 = 95, // last line of stipple pattern
 D3DRENDERSTATE_FORCE_DWORD = 0x7fffffff,
} D3DRENDERSTATETYPE;

Members
D3DRENDERSTATE_TEXTUREHANDLE
Texture handle. The default value is NULL, which disables texture mapping and reverts to flat or Gouraud shading.
If the specified texture is in a system memory surface and the driver can only support texturing from display memory surfaces, the call will fail.
In retail builds the texture handle is not validated.
D3DRENDERSTATE_ANTIALIAS
One of the members of the D3DANTIALIASMODE enumerated type specifying the antialiasing of primitive edges. The default value is D3DANTIALIAS_NONE.
D3DRENDERSTATE_TEXTUREADDRESS
One of the members of the D3DTEXTUREADDRESS enumerated type. The default value is D3DTADDRESS_WRAP.
Applications that need to specify separate texture-addressing modes for the U and V coordinates of a texture can use the D3DRENDERSTATE_TEXTUREADDRESSU and D3DRENDERSTATE_TEXTUREADDRESSV render states.
D3DRENDERSTATE_TEXTUREPERSPECTIVE
TRUE for perspective correction. The default value is FALSE.
If a square were exactly perpendicular to the viewer, all the points in the square would appear the same. But if the square were tilted with respect to the viewer so that one edge was closer than the other, one side would appear to be longer than the other. Perspective correction ensures that the interpolation of texture coordinates happens correctly in such cases.
D3DRENDERSTATE_WRAPU
TRUE for wrapping in u direction. The default value is FALSE.
D3DRENDERSTATE_WRAPV
TRUE for wrapping in v direction. The default value is FALSE.
D3DRENDERSTATE_ZENABLE
TRUE to enable the z-buffer comparison test when writing to the frame buffer. The default value is FALSE.
D3DRENDERSTATE_FILLMODE
One or more members of the D3DFILLMODE enumerated type. The default value is D3DFILL_SOLID.
D3DRENDERSTATE_SHADEMODE
One or more members of the D3DSHADEMODE enumerated type. The default value is D3DSHADE_GOURAUD.
D3DRENDERSTATE_LINEPATTERN
The D3DLINEPATTERN structure. The default values are 0 for wRepeatPattern and 0 for wLinePattern.
D3DRENDERSTATE_MONOENABLE
TRUE to enable monochromatic rendering, using a grayscale based on the blue channel of the color rather than full RGB. The default value is FALSE. If the device does not support RGB rendering, the value will be TRUE. Applications can check whether the device supports RGB rendering by using the dcmColorModel member of the D3DDEVICEDESC structure.
In monochromatic rendering, only the intensity (grayscale) component of the color and specular components are interpolated across the triangle. This means that only one channel (gray) is interpolated across the triangle instead of 3 channels (R,G,B), which is a performance gain for some hardware. This grayscale component is derived from the blue channel of the color and specular components of the triangle.
D3DRENDERSTATE_ROP2
One of the 16 standard Windows ROP2 binary raster operations specifying how the supplied pixels are combined with the pixels of the display surface. The default value is R2_COPYPEN. Applications can use the D3DPRASTERCAPS_ROP2 flag in the dwRasterCaps member of the D3DPRIMCAPS structure to determine whether additional raster operations are supported.
D3DRENDERSTATE_PLANEMASK
Physical plane mask whose type is ULONG. The default value is the bitwise negation of zero (~0). This physical plane mask can be used to turn off the red bit, the blue bit, and so on.
D3DRENDERSTATE_ZWRITEENABLE
TRUE to enable z writes. The default value is TRUE. This member enables an application to prevent the system from updating the z-buffer with new z values. If this state is FALSE, z comparisons are still made according to the render state D3DRENDERSTATE_ZFUNC (assuming z-buffering is taking place), but z values are not written to the z-buffer.
D3DRENDERSTATE_ALPHATESTENABLE
TRUE to enable alpha tests. The default value is FALSE. This member enables applications to turn off the tests that otherwise would accept or reject a pixel based on its alpha value.
The incoming alpha value is compared with the reference alpha value using the comparison function provided by the D3DRENDERSTATE_ALPHAFUNC render state. When this mode is enabled, alpha blending occurs only if the test succeeds.
D3DRENDERSTATE_LASTPIXEL
TRUE to prevent drawing the last pixel in a line or triangle. The default value is FALSE.
D3DRENDERSTATE_TEXTUREMAG
One of the members of the D3DTEXTUREFILTER enumerated type. This render state describes how a texture should be filtered when it is being magnified (that is, when a texel must cover more than one pixel). The valid values are D3DFILTER_NEAREST (the default) and D3DFILTER_LINEAR.
D3DRENDERSTATE_TEXTUREMIN
One of the members of the D3DTEXTUREFILTER enumerated type. This render state describes how a texture should be filtered when it is being made smaller (that is, when a pixel contains more than one texel). Any of the members of the D3DTEXTUREFILTER enumerated type can be specified for this render state. The default value is D3DFILTER_NEAREST.
D3DRENDERSTATE_SRCBLEND
One of the members of the D3DBLEND enumerated type. The default value is D3DBLEND_ONE.
D3DRENDERSTATE_DESTBLEND
One of the members of the D3DBLEND enumerated type. The default value is D3DBLEND_ZERO.
D3DRENDERSTATE_TEXTUREMAPBLEND
One of the members of the D3DTEXTUREBLEND enumerated type. The default value is D3DTBLEND_MODULATE.
D3DRENDERSTATE_CULLMODE
One of the members of the D3DCULL enumerated type. The default value is D3DCULL_CCW. Software renderers have a fixed culling order and do not support changing the culling mode.
D3DRENDERSTATE_ZFUNC
One of the members of the D3DCMPFUNC enumerated type. The default value is D3DCMP_LESSEQUAL. This member enables an application to accept or reject a pixel based on its distance from the camera.
The z value of the pixel is compared with the z-buffer value. If the z value of the pixel passes the comparison function, the pixel is written.
The z value is written to the z-buffer only if the render state D3DRENDERSTATE_ZWRITEENABLE is TRUE.
Software rasterizers and many hardware accelerators work faster if the z test fails, since there is no need to filter and modulate the texture if the pixel is not going to be rendered.
D3DRENDERSTATE_ALPHAREF
Value specifying a reference alpha value against which pixels are tested when alpha-testing is enabled. This value's type is D3DFIXED. It is a 16.16 fixed-point value in the range [0 – 1]. The default value is 0.
D3DRENDERSTATE_ALPHAFUNC
One of the members of the D3DCMPFUNC enumerated type. The default value is D3DCMP_ALWAYS. This member enables an application to accept or reject a pixel based on its alpha value.
D3DRENDERSTATE_DITHERENABLE
TRUE to enable dithering. The default value is FALSE.
D3DRENDERSTATE_BLENDENABLE
Replaced by the D3DRENDERSTATE_ALPHABLENDENABLE render state for DirectX 5.
D3DRENDERSTATE_FOGENABLE
TRUE to enable fog. The default value is FALSE.
D3DRENDERSTATE_SPECULARENABLE
TRUE to enable specular highlights. The default value is TRUE.
Specular highlights are calculated as though every vertex in the object being lit were at the object's origin. This gives the expected results as long as the object is modeled around the origin and the distance from the light to the object is relatively large.
D3DRENDERSTATE_ZVISIBLE
TRUE to enable z-checking. The default value is FALSE. Z-checking is a culling technique in which a polygon representing the screen space of an entire group of polygons is tested against the z-buffer to discover whether any of the polygons should be drawn.
In this mode of operation, the primitives are rendered without writing pixels or updating the z-buffer, and the driver returns TRUE if any of them would be visible. Since no pixels are rendered, this operation is often much faster than it would be if the primitives were naively rendered.
Direct3D's retained mode uses this operation as a quick-reject test: it does the z-visible test on the bounding box of a set of primitives and only renders them if it returns TRUE.
D3DRENDERSTATE_SUBPIXEL
TRUE to enable subpixel correction. The default value is FALSE.
Subpixel correction is the ability to draw pixels in precisely their correct locations. In a system that implemented subpixel correction, if a pixel were at position 0.1356, its position would be interpolated from the actual coordinate rather than simply drawn at 0 (using the integer values). Hardware can be non subpixel correct or subpixel correct in x or in both x and y. When interpolating across the x-direction the actual coordinate is used. All hardware should be subpixel correct. Some software rasterizers are not subpixel correct because of the performance loss.
Subpixel correction means that the hardware always pre-steps the interpolant values in the x-direction to the nearest pixel centers and then steps one pixel at a time in the y-direction. For each x span it also pre-steps in the x-direction to the nearest pixel center and then steps in the x-direction one pixel each time. This results in very accurate rendering and eliminates almost all jittering of pixels on triangle edges. Most hardware either doesn't support it (always off) or always supports it (always on).
D3DRENDERSTATE_SUBPIXELX
TRUE to enable subpixel correction in the x direction only. The default value is FALSE.
D3DRENDERSTATE_STIPPLEDALPHA
TRUE to enable stippled alpha. The default value is FALSE.
Current software rasterizers ignore this render state. You can use the D3DPSHADECAPS_ALPHAFLATSTIPPLED flag in the D3DPRIMCAPS structure to discover whether the current hardware supports this render state.
D3DRENDERSTATE_FOGCOLOR
Value whose type is D3DCOLOR. The default value is 0.
D3DRENDERSTATE_FOGTABLEMODE
One of the members of the D3DFOGMODE enumerated type. The default value is D3DFOG_NONE.
D3DRENDERSTATE_FOGTABLESTART
Position in fog table at which fog effects begin for linear fog mode. You specify a position in the fog table with a value between 0.0 and 1.0. This render state enables you to exclude fog effects for positions close to the camera; for example, you could set this value to 0.3 to prevent fog effects for positions between 0.0 and 0.299.
D3DRENDERSTATE_FOGTABLEEND
Position in fog table at which fog effects end for linear fog mode. You specify a position in the fog table with a value between 0.0 and 1.0. This render state enables you to set a position in the fog table at which fog effects will not increase. For example, you could set this value to 0.7 to prevent additional fog effects for positions between 0.701 and 1.0.
D3DRENDERSTATE_FOGTABLEDENSITY
Sets the maximum fog density for linear fog mode. This value can range from 0 to 1.
D3DRENDERSTATE_STIPPLEENABLE
Enables stippling in the device driver. When stippled alpha is enabled, it overrides the current stipple pattern, as specified by the D3DRENDERSTATE_STIPPLEPATTERN00 through D3DRENDERSTATE_STIPPLEPATTERN31 render states. When stippled alpha is disabled, the stipple pattern must be returned.
D3DRENDERSTATE_EDGEANTIALIAS
TRUE to antialias lines forming the convex outline of objects. The default value is FALSE. When set to TRUE, only lines should be drawn. The behavior is undefined if triangles or points are drawn when this render state is set. Antialiasing is performed simply by averaging the values of neighboring pixels. Although this is not the best way to perform antialiasing, it can be very efficient; hardware that supports this kind of operation is becoming more common.
Applications should not antialias interior edges of objects. The lines forming the outside edges should be drawn last.
D3DRENDERSTATE_COLORKEYENABLE
TRUE to enable color-keyed transparency. The default value is FALSE. You can use this render state with D3DRENDERSTATE_ALPHABLENDENABLE to implement fine blending control.
This render state was introduced in DirectX 5. Applications should check the D3DDEVCAPS_DRAWPRIMTLVERTEX flag in the D3DDEVICEDESC structure to find out whether this render state is supported.
D3DRENDERSTATE_ALPHABLENDENABLE
TRUE to enable alpha-blended transparency. The default value is FALSE.
Prior to DirectX 5, this render state was called D3DRENDERSTATE_BLENDENABLE. Its name was changed to make its meaning more explicit.
Prior to DirectX 5, the software rasterizers used this render state to toggle both color keying and alpha blending. With DirectX 5, you should use the D3DRENDERSTATE_COLORKEYENABLE render state to toggle color keying. (Hardware rasterizers have always used the D3DRENDERSTATE_BLENDENABLE render state only for toggling alpha blending.)
The type of alpha blending is determined by the D3DRENDERSTATE_SRCBLEND and D3DRENDERSTATE_DESTBLEND render states. D3DRENDERSTATE_ALPHABLENDENABLE, with D3DRENDERSTATE_COLORKEYENABLE, allows fine blending control.
D3DRENDERSTATE_ALPHABLENDENABLE does not affect the texture-blending modes specified by the D3DTEXTUREBLEND enumerated type. Texture blending is logically well before the D3DRENDERSTATE_ALPHABLENDENABLE part of the pixel pipeline. The only interaction between the two is that the alpha portions remaining in the polygon after the D3DTEXTUREBLEND phase may be used in the D3DRENDERSTATE_ALPHABLENDENABLE phase to govern interaction with the content in the frame buffer.
Applications should check the D3DDEVCAPS_DRAWPRIMTLVERTEX flag in the D3DDEVICEDESC structure to find out whether this render state is supported.
D3DRENDERSTATE_BORDERCOLOR
A DWORD value specifying a border color. If the texture addressing mode is specified as D3DTADDRESS_BORDER (as set in the D3DTEXTUREADDRESS enumerated type), this render state specifies the border color the system uses when it encounters texture coordinates outside the range [0.0, 1.0].
The format of the physical-color information specified by the DWORD value depends on the format of the DirectDraw surface.
D3DRENDERSTATE_TEXTUREADDRESSU
One of the members of the D3DTEXTUREADDRESS enumerated type. The default value is D3DTADDRESS_WRAP. This render state applies only to the U texture coordinate.
This render state, along with D3DRENDERSTATE_TEXTUREADDRESSV, allows you to specify separate texture-addressing modes for the U and V coordinates of a texture. Because the D3DRENDERSTATE_TEXTUREADDRESS render state applies to both the U and V texture coordinates, it overrides any values set for the D3DRENDERSTATE_TEXTUREADDRESSU render state.
D3DRENDERSTATE_TEXTUREADDRESSV
One of the members of the D3DTEXTUREADDRESS enumerated type. The default value is D3DTADDRESS_WRAP. This render state applies only to the V texture coordinate.
This render state, along with D3DRENDERSTATE_TEXTUREADDRESSU, allows you to specify separate texture-addressing modes for the U and V coordinates of a texture. Because the D3DRENDERSTATE_TEXTUREADDRESS render state applies to both the U and V texture coordinates, it overrides any values set for the D3DRENDERSTATE_TEXTUREADDRESSV render state.
D3DRENDERSTATE_MIPMAPLODBIAS
Floating-point D3DVALUE value used to change the level of detail (LOD) bias. This value offsets the value of the mipmap level that is computed by trilinear texturing. It is usually in the range –1.0 to 1.0; the default value is 0.0.
Each unit bias (+/-1.0) biases the selection by exactly one mipmap level. A positive bias will cause the use of larger mipmap levels, resulting in a sharper but more aliased image. A negative bias will cause the use of smaller mipmap levels, resulting in a blurrier image. Applying a negative bias also results in the referencing of a smaller amount of texture data, which can boost performance on some systems.
D3DRENDERSTATE_ZBIAS
An integer value in the range 0 to 16 that causes polygons that are physically coplanar to appear separate. Polygons with a high z-bias value will appear in front of polygons with a low value, without requiring sorting for drawing order. Polygons with a value of 1 appear in front of polygons with a value of 0, and so on. The default value is zero.
D3DRENDERSTATE_RANGEFOGENABLE
TRUE to enable range-based fog. (The default value is FALSE, in which case the system uses depth-based fog.) In range-based fog, the distance of an object from the viewer is used to compute fog effects, not the depth of the object (that is, the z-coordinate) in the scene. In range-based fog, all fog methods work as usual, except that they use range instead of depth in the computations.
Range is the correct factor to use for fog computations, but depth is commonly used instead because range is expensive to compute and depth is generally already available. Using depth to calculate fog has the undesirable effect of having the 'fogginess' of peripheral objects change as the eye is rotated — in this case, the depth changes while the range remains constant.
This render state works only with D3DVERTEX vertices. When you specify D3DLVERTEX or D3DTLVERTEX vertices, the F (fog) component of the RGBF fog value should already be corrected for range.
Since no hardware currently supports per-pixel range-based fog, range correction is calculated at vertices.
D3DRENDERSTATE_ANISOTROPY
Integer value that enables a degree of anisotropic filtering. (This is used for bilinear or trilinear filtering.) The value determines the maximum aspect ratio of the sampling filter kernel. To determine the range of appropriate values, use the D3DPRASTERCAPS_ANISOTROPY flag in the D3DPRIMCAPS structure.
Anisotropy is the distortion visible in the texels of a 3-D object whose surface is oriented at an angle with respect to the plane of the screen. The anisotropy is measured as the elongation (length divided by width) of a screen pixel that is inverse-mapped into texture space.
D3DRENDERSTATE_STIPPLEPATTERN00 through D3DRENDERSTATE_STIPPLEPATTERN31
Stipple pattern. Each render state applies to a separate line of the stipple pattern. Together, these render states specify a 32x32 stipple pattern.
D3DRENDERSTATE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
D3DOPCODE, D3DSTATE
D3DSHADEMODE
The D3DSHADEMODE enumerated type describes the supported shade mode for the D3DRENDERSTATE_SHADEMODE render state in the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DSHADEMODE {
 D3DSHADE_FLAT = 1,
 D3DSHADE_GOURAUD = 2,
 D3DSHADE_PHONG = 3,
 D3DSHADE_FORCE_DWORD = 0x7fffffff,
} D3DSHADEMODE;

Members
D3DSHADE_FLAT
Flat shade mode. The color and specular component of the first vertex in the triangle are used to determine the color and specular component of the face. These colors remain constant across the triangle; that is, they aren’t interpolated.
D3DSHADE_GOURAUD
Gouraud shade mode. The color and specular components of the face are determined by a linear interpolation between all three of the triangle's vertices.
D3DSHADE_PHONG
Phong shade mode is not currently supported.
D3DSHADE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
D3DRENDERSTATETYPE
D3DTEXTUREADDRESS
The D3DTEXTUREADDRESS enumerated type describes the supported texture addressing modes for the D3DRENDERSTATE_TEXTUREADDRESS render state in the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DTEXTUREADDRESS {
 D3DTADDRESS_WRAP = 1,
 D3DTADDRESS_MIRROR = 2,
 D3DTADDRESS_CLAMP = 3,
 D3DTADDRESS_BORDER = 4,
 D3DTADDRESS_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREADDRESS;

Members
D3DTADDRESS_WRAP
The D3DRENDERSTATE_WRAPU and D3DRENDERSTATE_WRAPV render states of the D3DRENDERSTATETYPE enumerated type are used. This is the default setting.
D3DTADDRESS_MIRROR
Equivalent to a tiling texture-addressing mode (that is, when neither D3DRENDERSTATE_WRAPU nor D3DRENDERSTATE_WRAPV is used) except that the texture is flipped at every integer junction. For u values between 0 and 1, for example, the texture is addressed normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal again, and so on.
D3DTADDRESS_CLAMP
Texture coordinates greater than 1.0 are set to 1.0, and values less than 0.0 are set to 0.0.
D3DTADDRESS_BORDER
Texture coordinates outside the range [0.0, 1.0] are set to the border color, which is a new render state corresponding to D3DRENDERSTATE_BORDERCOLOR in the D3DRENDERSTATETYPE enumerated type.
This member was introduced in DirectX 5.
D3DTADDRESS_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
For more information about using the D3DRENDERSTATE_WRAPU and D3DRENDERSTATE_WRAPV render states, see Textures.
See Also
D3DRENDERSTATETYPE
D3DTEXTUREBLEND
The D3DTEXTUREBLEND enumerated type defines the supported texture-blending modes. This enumerated type is used by the D3DRENDERSTATE_TEXTUREMAPBLEND render state in the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DTEXTUREBLEND {
 D3DTBLEND_DECAL = 1,
 D3DTBLEND_MODULATE = 2,
 D3DTBLEND_DECALALPHA = 3,
 D3DTBLEND_MODULATEALPHA = 4,
 D3DTBLEND_DECALMASK = 5,
 D3DTBLEND_MODULATEMASK = 6,
 D3DTBLEND_COPY = 7,
 D3DTBLEND_ADD = 8,
 D3DTBLEND_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREBLEND;

Members
D3DTBLEND_DECAL
Decal texture-blending mode is supported. In this mode, the RGB and alpha values of the texture replace the colors that would have been used with no texturing.
cPix = cTex
aPix = aTex

D3DTBLEND_MODULATE
Modulate texture-blending mode is supported. In this mode, the RGB values of the texture are multiplied with the RGB values that would have been used with no texturing. Any alpha values in the texture replace the alpha values in the colors that would have been used with no texturing; if the texture does not contain an alpha component, alpha values at the vertices in the source are interpolated between vertices.
cPix = cSrc * cTex
aPix = aTex

D3DTBLEND_DECALALPHA
Decal-alpha texture-blending mode is supported. In this mode, the RGB and alpha values of the texture are blended with the colors that would have been used with no texturing, according to the following formula:
�
In this formula, C stands for color, A for alpha, t for texture, and o for original object (before blending).
In the D3DTBLEND_DECALALPHA mode, any alpha values in the texture replace the alpha values in the colors that would have been used with no texturing.
cPix = (cSrc * (10 - aTex)) + (aTex * cTex)
aPix = aSrc

D3DTBLEND_MODULATEALPHA
Modulate-alpha texture-blending mode is supported. In this mode, the RGB values of the texture are multiplied with the RGB values that would have been used with no texturing, and the alpha values of the texture are multiplied with the alpha values that would have been used with no texturing.
cPix = cSrc * cTex
aPix = aSrc * aTex

D3DTBLEND_DECALMASK
Decal-mask texture-blending mode is supported.
cPix = lsb(aTex) ? cTex : cSrc
aPix = aSrc

When the least-significant bit of the texture’s alpha component is zero, the effect is as if texturing were disabled.
D3DTBLEND_MODULATEMASK
Modulate-mask texture-blending mode is supported.
cPix = lsb(aTex) ? cTex * cSrc : cSrc
aPix = aSrc

When the least-significant bit of the texture’s alpha component is zero, the effect is as if texturing were disabled.
D3DTBLEND_COPY
Copy texture-blending mode is supported. This mode is an optimization for software rasterization; for applications using a HAL, it is equivalent to the D3DTBLEND_DECAL texture-blending mode.
To use copy mode, textures must use the same pixel format and palette format as the destination surface; otherwise nothing is rendered. Copy mode does no lighting and simply copies texture pixels to the screen. This is often a good technique for prelit textured scenes.
cPix = cTex
aPix = aTex

For more information, see Copy Texture-blending Mode.
D3DTBLEND_ADD
Add the Gouraud interpolants to the texture lookup with saturation semantics (that is, if the color value overflows it is set to the maximum possible value). This member was introduced in DirectX 5.
cPix = cTex + cSrc
aPix = aSrc

D3DTBLEND_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
In the formulas given for the members of this enumerated type, the placeholders have the following meanings:
�SYMBOL 183 \f "Symbol" \s 11 \h �	cTex is the color of the source texel
�SYMBOL 183 \f "Symbol" \s 11 \h �	aTex is the alpha component of the source texel
�SYMBOL 183 \f "Symbol" \s 11 \h �	cSrc is the interpolated color of the source primitive
�SYMBOL 183 \f "Symbol" \s 11 \h �	aSrc is the alpha component of the source primitive
�SYMBOL 183 \f "Symbol" \s 11 \h �	cPix is the new blended color value
�SYMBOL 183 \f "Symbol" \s 11 \h �	aPix is the new blended alpha value

Modulation combines the effects of lighting and texturing. Because colors are specified as values between and including 0 and 1, modulating (multiplying) the texture and preexisting colors together typically produces colors that are less bright than either source. The brightness of a color component is undiminished when one of the sources for that component is white (1). The simplest way to ensure that the colors of a texture do not change when the texture is applied to an object is to ensure that the object is white (1,1,1).
D3DTEXTUREFILTER
The D3DTEXTUREFILTER enumerated type defines the supported texture filter modes used by the D3DRENDERSTATE_TEXTUREMAG render state in the D3DRENDERSTATETYPE enumerated type.
typedef enum _D3DTEXTUREFILTER {
 D3DFILTER_NEAREST = 1,
 D3DFILTER_LINEAR = 2,
 D3DFILTER_MIPNEAREST = 3,
 D3DFILTER_MIPLINEAR = 4,
 D3DFILTER_LINEARMIPNEAREST = 5,
 D3DFILTER_LINEARMIPLINEAR = 6,
 D3DFILTER_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREFILTER;

Members
D3DFILTER_NEAREST
The texel with coordinates nearest to the desired pixel value is used. This is a point filter with no mipmapping.
This applies to both zooming in and zooming out. If either zooming in or zooming out is supported, then both must be supported.
D3DFILTER_LINEAR
A weighted average of a 2´2 area of texels surrounding the desired pixel is used. This is a bilinear filter with no mipmapping.
This applies to both zooming in and zooming out. If either zooming in or zooming out is supported, then both must be supported.
D3DFILTER_MIPNEAREST
The closest mipmap level is chosen and a point filter is applied.
D3DFILTER_MIPLINEAR
The closest mipmap level is chosen and a bilinear filter is applied within it.
D3DFILTER_LINEARMIPNEAREST
The two closest mipmap levels are chosen and then a linear blend is used between point filtered samples of each level.
D3DFILTER_LINEARMIPLINEAR
The two closest mipmap levels are chosen and then combined using a bilinear filter.
D3DFILTER_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
All of these filter modes are valid with the D3DRENDERSTATE_TEXTUREMIN render state, but only the first two (D3DFILTER_NEAREST and D3DFILTER_LINEAR) are valid with D3DRENDERSTATE_TEXTUREMAG.
D3DTRANSFORMSTATETYPE
The D3DTRANSFORMSTATETYPE enumerated type describes the transformation state for the D3DOP_STATETRANSFORM opcode in the D3DOPCODE enumerated type. This enumerated type is part of the D3DSTATE structure.
typedef enum _D3DTRANSFORMSTATETYPE {
 D3DTRANSFORMSTATE_WORLD = 1,
 D3DTRANSFORMSTATE_VIEW = 2,
 D3DTRANSFORMSTATE_PROJECTION = 3,
 D3DTRANSFORMSTATE_FORCE_DWORD = 0x7fffffff,
} D3DTRANSFORMSTATETYPE;

Members
D3DTRANSFORMSTATE_WORLD,
D3DTRANSFORMSTATE_VIEW, and
D3DTRANSFORMSTATE_PROJECTION
Define the matrices for the world, view, and projection transformations. The default values are NULL (the identity matrices).
D3DTRANSFORMSTATE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
D3DOPCODE, D3DRENDERSTATETYPE
D3DVERTEXTYPE
The D3DVERTEXTYPE enumerated type lists the vertex types that are supported by Direct3D.
typedef enum _D3DVERTEXTYPE {
 D3DVT_VERTEX = 1,
 D3DVT_LVERTEX = 2,
 D3DVT_TLVERTEX = 3
 D3DVT_FORCE_DWORD = 0x7fffffff,
};

Members
D3DVT_VERTEX
All the vertices in the array are of the D3DVERTEX type. This setting will cause transformation, lighting and clipping to be applied to the primitive as it is rendered.
D3DVT_LVERTEX
All the vertices in the array are of the D3DLVERTEX type. When used with this option, the primitive will have transformations applied during rendering.
D3DVT_TLVERTEX
All the vertices in the array are of the D3DTLVERTEX type. Rasterization only will be applied to this data.
D3DVT_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

See Also
IDirect3DDevice2::Begin, IDirect3DDevice2::BeginIndexed, IDirect3DDevice2::DrawIndexedPrimitive, IDirect3DDevice2::DrawPrimitive
Other Types
This section contains information about the following Direct3D Immediate Mode types that are neither structures nor enumerated types:
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DCOLOR
�SYMBOL 183 \f "Symbol" \s 11 \h �	D3DVALUE

D3DCOLOR
The D3DCOLOR type is the fundamental Direct3D color type.
typedef DWORD D3DCOLOR, D3DCOLOR, *LPD3DCOLOR;

See Also
D3DRGB, D3DRGBA
D3DVALUE
The D3DVALUE type is the fundamental Direct3D fractional data type.
typedef float D3DVALUE, *LPD3DVALUE;

Return Values
Errors are represented by negative values and cannot be combined. This table lists the values that can be returned by all Direct3D Immediate Mode methods. See the individual method descriptions for lists of the values each can return.
D3D_OK��D3DERR_BADMAJORVERSION��D3DERR_BADMINORVERSION��D3DERR_DEVICEAGGREGATED (new for DirectX 5)��D3DERR_EXECUTE_CLIPPED_FAILED��D3DERR_EXECUTE_CREATE_FAILED��D3DERR_EXECUTE_DESTROY_FAILED��D3DERR_EXECUTE_FAILED��D3DERR_EXECUTE_LOCK_FAILED��D3DERR_EXECUTE_LOCKED��D3DERR_EXECUTE_NOT_LOCKED��D3DERR_EXECUTE_UNLOCK_FAILED��D3DERR_INITFAILED (new for DirectX 5)��D3DERR_INBEGIN (new for DirectX 5)��D3DERR_INVALID_DEVICE (new for DirectX 5)��D3DERR_INVALIDCURRENTVIEWPORT (new for DirectX 5)��D3DERR_INVALIDPALETTE(new for DirectX 5)��D3DERR_INVALIDPRIMITIVETYPE (new for DirectX 5) ��D3DERR_INVALIDRAMPTEXTURE (new for DirectX 5)��D3DERR_INVALIDVERTEXTYPE (new for DirectX 5)��D3DERR_LIGHT_SET_FAILED��D3DERR_LIGHTHASVIEWPORT (new for DirectX 5)��D3DERR_LIGHTNOTINTHISVIEWPORT (new for DirectX 5)��D3DERR_MATERIAL_CREATE_FAILED��D3DERR_MATERIAL_DESTROY_FAILED��D3DERR_MATERIAL_GETDATA_FAILED��D3DERR_MATERIAL_SETDATA_FAILED��D3DERR_MATRIX_CREATE_FAILED��D3DERR_MATRIX_DESTROY_FAILED��D3DERR_MATRIX_GETDATA_FAILED��D3DERR_MATRIX_SETDATA_FAILED��D3DERR_NOCURRENTVIEWPORT (new for DirectX 5)��D3DERR_NOTINBEGIN (new for DirectX 5)��D3DERR_NOVIEWPORTS (new for DirectX 5)��D3DERR_SCENE_BEGIN_FAILED��D3DERR_SCENE_END_FAILED��D3DERR_SCENE_IN_SCENE��D3DERR_SCENE_NOT_IN_SCENE��D3DERR_SETVIEWPORTDATA_FAILED��D3DERR_SURFACENOTINVIDMEM (new for DirectX 5)��D3DERR_TEXTURE_BADSIZE (new for DirectX 5)��D3DERR_TEXTURE_CREATE_FAILED��D3DERR_TEXTURE_DESTROY_FAILED��D3DERR_TEXTURE_GETSURF_FAILED��D3DERR_TEXTURE_LOAD_FAILED��D3DERR_TEXTURE_LOCK_FAILED��D3DERR_TEXTURE_LOCKED��D3DERR_TEXTURE_NO_SUPPORT��D3DERR_TEXTURE_NOT_LOCKED��D3DERR_TEXTURE_SWAP_FAILED��D3DERR_TEXTURE_UNLOCK_FAILED��D3DERR_VIEWPORTDATANOTSET (new for DirectX 5)��D3DERR_VIEWPORTHASNODEVICE (new for DirectX 5)��D3DERR_ZBUFF_NEEDS_SYSTEMMEMORY (new for DirectX 5)��D3DERR_ZBUFF_NEEDS_VIDEOMEMORY (new for DirectX 5)��

� FILENAME * MERGEFORMAT �D3DIMREF.doc� – page � PAGE * MERGEFORMAT �4�

� FILENAME * MERGEFORMAT �D3DIMREF.doc� – page � PAGE * MERGEFORMAT �3�

