

OPTICAL INSTRUMENT MOUNTING BRACKET – NASA JPL

RELEVANT BACKGROUND

Design challenge posted by NASA JPL in Aug 2020

Optical instrumentation systems are among the most common NASA and

JPL flown instruments in space

To function properly, optical instruments have tight pointing deviation requirements

Angular deviation from the central axis of the cone of the optical instrument is highly undesirable

Pointing requirements are difficult to achieve due to extreme temperature conditions in space

Differing CTEs between materials are amplified by extreme thermal gradients from direct sunlight or shade

Consortium of universities/research groups/industry partners have attempted to provide a valid design

No valid design has been attained

Pointing deviation due to thermal gradients

OBJECTIVE

Design the mounting structure for a

prototypical star tracker

Develop a simple workflow capable of consistently passing requirements under multiphysics loading

SYSTEMS ENGINEERING APPROACH

Stakeholder Needs

- 1. Provide a mounting bracket to mount a star tracker to spacecraft
- 2. Bracket design volume is restricted to fit within the bracket design region
- 3. Material of the mounting bracket must be Ti6Al4V
- 4. Material of the star tracker must be Al6061-T6 (modified)
- 5. Optical assembly (including bracket) must pass requirements

Material Properties

Geometry definition and relevant components

Material designation

2023 SEBASTIAN VARGAS 4 concentrated masses), the material density has been scaled up.*To achieve the appropriate instrument mass of 3 kg (without including

TECHNICAL REQUIREMENTS DEFINITION

LOGICAL DECOMPOSITION OF REQ'S

Requirements logical decomposition

Logical Decomposition

Commercially-available design methodologies:

Design

Topology optimization (TO) implementation: nlopology m

Systems engineering timeline

Systems engineering timeline

 $\ddot{\bullet}$

0.05 threshold 0.3 threshold 0.7 threshold

Topology optimization (TO) implementation: nlopology mass

Resulting TO implicit body Smoothening Smoothening Thickening

Systems engineering timeline Systems engineering timeline Design Solution $\ddot{\bullet}$ Definition

Export as .step file Fine surface mesh Coarse surface mesh

PRODUCT INTEGRATION

Implementation and integration of TO result:

***Note:**

Additional iterations after TO were necessary to get closer to compliance against pointing deviation and natural frequency requirements

ITERATIONS

Examples of the many iterations required:

Systems engineering timeline

 \dot{P}

ITERATIONS BY THICKENING

Systems engineering timeline Systems engineering timeline Product Verification

Verification against requirements was performed with FEA:

Ansys

Preliminary verification is with load case 2.3 (thermal gradient with fixed base)

P.D. is the most difficult requirement to meet:

Import External Model (geometry, materials)

Set up boundary conditions (Load cases 1.1-1.3, 2.3)

Thermoelastic deformation load case

Product

Verification against requirements was performed with FEA:

Ansys

No

Definition

Remote Points

Result Selection X Axis

Suppressed

Options

Results

X Axis

Type

Latest bracket design Mesh (1.4M elements) Temperature gradient

Pointing deviation results Natural R

 -8.624

Von Mises stress results

Thermoelastic deformation load case

Product

Requirements verification comparison with Hypermesh (NASA JPL):

Design passes verification in both models

Final mass: 0.92 kg (94% reduction of mass)

Requirements verification comparison with Hypermesh (NASA JPL):

Mass

Full system mass: 4.17403 kg

 Bracket only (excluding mounting pads): 0.9140300000000003 kg Fundamental Frequency

✅ Min frequency: 200.8 Hz (ref > 200 Hz)

Minimum pointing deviation

✅ Pointing X: 0.00013337884512850434 deg (ref < 0.001 deg)

✅ Pointing Y: 2.2645612542640414e-05 deg (ref < 0.001 deg)

Bolt slip

LaunchX

 ✅ Instrument bolt shear forces EID 1059584: 515.7 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059585: 515.8 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059586: 563.1 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059587: 571.6 N (ref < 1000 N) ✅ Base bolt shear forces EID 1059588: 952.5 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059589: 943.3 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059590: 572.8 N (ref < 1500 N)

✅ Base bolt shear forces EID 1059591: 571.9 N (ref < 1500 N)

LaunchY

 ✅ Instrument bolt shear forces EID 1059584: 110.6 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059585: 111.0 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059586: 929.1 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059587: 929.2 N (ref < 1000 N) ✅ Base bolt shear forces EID 1059588: 591.7 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059589: 598.6 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059590: 860.7 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059591: 867.5 N (ref < 1500 N)

LaunchZ

 ✅ Instrument bolt shear forces EID 1059584: 287.2 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059585: 289.3 N (ref < 1000 N)

✅ Instrument bolt shear forces EID 1059586: 989.0 N (ref < 1000 N) ✅ Instrument bolt shear forces EID 1059587: 987.9 N (ref < 1000 N) ✅ Base bolt shear forces EID 1059588: 116.7 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059589: 102.9 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059590: 934.1 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059591: 933.3 N (ref < 1500 N)

BulkSoak

 $\bm{\mathsf{X}}$ Instrument bolt shear forces EID 1059584: 1812.1 N (ref < 1000 N) ❌ Instrument bolt shear forces EID 1059585: 1783.6 N (ref < 1000 N) ❌ Instrument bolt shear forces EID 1059586: 2225.4 N (ref < 1000 N) ❌ Instrument bolt shear forces EID 1059587: 2256.9 N (ref < 1000 N) ✅ Base bolt shear forces EID 1059588: 652.3 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059589: 688.4 N (ref < 1500 N) $\boldsymbol{\times}$ Base bolt shear forces EID 1059590: 2282.3 N (ref < 1500 N) $\boldsymbol{\times}$ Base bolt shear forces EID 1059591: 2298.5 N (ref < 1500 N)

ThermoElastic

 $\bm{\mathsf{X}}$ Instrument bolt shear forces EID 1059584: 1094.8 N (ref < 1000 N) ❌ Instrument bolt shear forces EID 1059585: 1093.1 N (ref < 1000 N) ❌ Instrument bolt shear forces EID 1059586: 1273.7 N (ref < 1000 N) $\boldsymbol{\times}$ Instrument bolt shear forces EID 1059587: 1272.3 N (ref < 1000 N) ✅ Base bolt shear forces EID 1059588: 290.7 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059589: 290.0 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059590: 179.3 N (ref < 1500 N) ✅ Base bolt shear forces EID 1059591: 181.3 N (ref < 1500 N) ✅ Launch X: 24.69765 (ref > 2) ✅ Launch Y: 15.15197 (ref > 2)

✅ Launch Z: 18.44882 (ref > 2)

Heat loss through base interface

 \blacktriangleright Heat flux: 0.24 W (ref < 4 W)

Product

Buckling

FUTURE WORK

Pending validation based on additive manufacturing

Bracket design would be printed through LPBF in Ti6Al4V

Material validation testing is also necessary

Coupon and tensile specimen would be added to the same print job

Tensile and thermal expansion testing would be performed

Implementation of lattice generation as mass reduction method

Lattices can be tailored to increase stiffness, thermal performance, minimize mass, etc.

nTopology was designed to work with lattices and complex geometries

SV2023 (SV 0.785T w 2.15mm Offset)

Current lattice work

Product