GUNNS

Fluid
Electrical
Thermal potential:
ΔP
ΔV
ΔT flow: $\quad \stackrel{\circ}{m} \quad I$

GUNNS

thermal network?

- Construct thermal network in GUNNS

Water
Tank
-

- Construct thermal network in GUNNS

Water
Tank
$\stackrel{\bullet}{ \pm}$

- Construct thermal network in GUNNS

- Construct thermal network in GUNNS

- Construct thermal network in GUNNS

- Construct thermal network in GUNNS

Transport Equations

$$
\underbrace{\frac{\partial \rho \phi}{\partial t}}_{\text {Accumulation }}+\underbrace{\nabla \cdot(\rho \mathbf{u} \phi)}_{\text {Convection }}=\underbrace{\nabla \cdot(\Gamma \nabla \phi)}_{\text {Diffusion }}+\underbrace{S_{\phi}}_{\text {Source }}
$$

mass: $\quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0$
momentum: $\quad \frac{\partial \rho u}{\partial t}+\nabla \cdot(\rho \mathbf{u} u)=\nabla \cdot(\mu \nabla u)-\frac{\partial p}{\partial x}+\rho g_{x}$

$$
\text { energy: } \quad \frac{\partial \rho T}{\partial t}+\nabla \cdot(\rho \mathbf{u} T)=\nabla \cdot\left(\frac{k}{c_{p}} \nabla T\right)
$$

conduction: $Q=\frac{k A}{\Delta x} \Delta T$

radiation: $Q=\sigma \in A F\left(T_{0}^{4}-T^{4}\right)$

where, $\Delta \mathrm{T}=\mathrm{T}_{@}$ 5n $-\mathrm{T}_{@ 0 \mathrm{hr}}$

Eclipse @ 5 hr

Exchanging Temperatures -- Tank

Temperature [F], Time $=5 \mathrm{hr}$
Panel B Heating\casePanelBheating. sav

Exchanging Temperatures -- Tank

