GUNNS

<u>Fluid</u>

Electrical

Thermal

potential:

 ΔP

 ΔV

 ΔT

flow:

 ${m}$

I

Ů

GUNNS

thermal network?

Water Tank

Transport Equations

$$\frac{\partial \rho \phi}{\partial t} + \underbrace{\nabla \cdot (\rho \mathbf{u} \phi)}_{\text{Convection}} = \underbrace{\nabla \cdot (\Gamma \nabla \phi)}_{\text{Diffusion}} + \underbrace{S_{\phi}}_{\text{Source}}$$

mass:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

momentum:
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho \mathbf{u} u) = \nabla \cdot (\mu \nabla u) - \frac{\partial p}{\partial x} + \rho g_x$$

energy:
$$\frac{\partial \rho T}{\partial t} + \nabla \cdot (\rho \mathbf{u} T) = \nabla \cdot \left(\frac{k}{c_p} \nabla T \right)$$

conduction:
$$\mathring{Q} = \frac{kA}{\Delta x} \Delta T$$

radiation:
$$\mathring{Q} = \sigma \in AF(T_0^4 - T^4)$$

% error =
$$\frac{\Delta T_{\text{MUFN}} - \Delta T_{\text{thermal desktop}}}{\Delta T_{\text{thermal desktop}}} \times 100$$

where, $\Delta T = T_{@5 hr} - T_{@0 hr}$

Eclipse @ 5 hr

Exchanging Temperatures -- Tank

Temperature [F], Time = 5 hr

Panel B Heating\casePanelBheating.sav

Exchanging Temperatures -- Tank

