NASA Operational
Simulator for Small Satellites

HDOS3

User Manual
&
Developer’s Guide

Independent Verification and Validation (IV&V)

NASA V&V Point of Contact
100 University Dr, NOS? Support

Fairmont, WV 26554 support@nos3.or
304.367.8200

mailto:support@nos3.org

nos’

1 I O U C 0N L.t ettt iesir i s sirieinsen s sassn s casnssssasn s sasnsassasanssssasassassas s saseasensaesasnsaeeasnsResasnsReeRensReeasnsResas e sRn R s annanans 5
1.1 [=F el (o [{ 1 0L TR TR TP TP TR TP T O TP T SO T U TP T TP P U TP P U TP T U TP T U PP U TP T U TP T U TP TR PO TU TP TT TP UU TP TRTTPRURTTTN 5
1.2 M1 ettt itttk ettt ettt ettt ettt et et et st ettt ettt et et ettt st e bt et e e oAt et et eh et et et s et st e bt sb s eh e bt sb e e ehbeb e e sants 6

2 N OS2 AT CIEEC U .. eiuirieisiisiseisiisisissssssiasssssssasesssssassssssasnssssassnsassasansassas e saesas e s aeeasnsaeeas e sReeRsnaResasnsansasnsansRannansns 7

3 INO S BN O 11tuiurisisesisssesssssesssssssesssesssssasssesssssssssassessassseesasssesshess e sas s osshess oo sasoeeesRe e eeeRs e eesRe e beeae e eeshe s sasae e nesRn s sananan s 8

4 GrOUNG Sy SEOIMS .uuiitiisiiisiisisissisissississssiasssssssasasssssasasssssasesssssasesssssasessastas s sassaseaeRssae s saesasersReeRe R e ResasereassRneaaansansnnansanas 9
4.1 AMMOS INSHrUMENE TOOIKIt (AlT) ..ttt ittt ittt se ittt s et st s s st st e st sssesshss s s shesees st et s s st et eas st st st sb et ets st et s e stereaesrareis 9
4.2 O SO S ittt ettt ettt et et ettt et et e et se e e et et et e et et e ee et et e e et et e et et ee e e et sh e et et eh et s et ehe et et sheht et sre it se et ebsersbesrsrerearsea 10
4.3 ComMMANG T EMEEY LMK U D ittt bt es ettt est et s e e st sesse e st sesee et sbssb et ebser et ebssb et ebssr e b ebesbeeneenns 10

5 Quick Start to Installing, Building, and Running NOS?o issssssssssssassssnssssssssassssssssssssasassnss 12
5.1 IS N O S .ttt ittt ittt ittt ettt et st et et e st et et e eh e e et eh et et st et et e eh et eb e eh e ee et e eheee et s sh e eh et e st e e et e sbese et e st seebesbeseereas 12
5.2 BUIING N O S . ittt ettt ettt et bt et et et et et et et et et et et e st ettt eh et e h et eh ettt et et e b et st et et et sb et te et et e b b ebs et e 12
5.3 RUNNING N O S ittt ettt ettt ettt et ettt ettt et e et et et s et et eet et et ee s et et et e ee e e eet et s ee e et e e ee et eh e eeeetsbsseeatebstesebsessesaeseis 13
5.4 RUNNING GO S MO S . ittt ittt ettt ettt ettt ett et et et st et et et et e eh st et e st ettt eh et ettt e bt et et st eh ettt et et et sb et st er et s b b ebs et e 14

6 Detailed Installation and Virtual Maching Creation StePS.......iuiiiiririisisisisissisisssisssssssssssssissssssssssssssssssssssssssssases 16
6.1 The Vagrantfile NG PrOCESS ... ittt ittt ittt sttt st st st b ee et sseseesseesseesesesse e sessee s seese et sssseesessseeseeassesebene st sresrans 17

B.1.1 W A0IANE PlUGINS ...ttt ittt t et se st e st e et e esee e s ereee e e eereeaeset e e erseresbeeenese e st e ebeeerearesabeseesresreaneesresenas 17
6.1.2 Base Virtual Maching ConfIQUIAIONiiiiiiritiiieiirieeet st tsrssressessrsseseseessessresreesaessresressessaresresressessaresreseeses 17
6.1.3 Provisioning the Virtual MaChingieiiiiiiiiii ittt sttt st seesessrssresseessesreseesseesreareseseseesresresseesresenas 18
6.1.4 CONCIUSION QNG REIEIBNCESiitiitiitietieiitt st tetet et tseeseeeeeeesetsressesseeeareassesesssreseesresseesresressessarearesreseesesresreseeses 18

7 Building NOS? Components: Flight Software and Simulators. ... s sessssssases 20
7.1 D RIE T BUIlT SIS ...ttt ittt ittt ettt ee kst et eetee et ettes et eetse s et eet et s et eet et e eeestee e eeeet et s ee e bt eheee et seeereetsbsseebsebstesetsessesaeses 20
7.2 T MIAK Il ittt ettt ettt ettt ettt et eh ettt eh e et ettt e e eh et e e et et ettt e b et et st et e et eb s et st ebn e ebebssna 22

8 Running NOS?: Standalone Server, Simulators, 42, Flight Software, and COSMOS.........cccococesiienencscscssseeee, 24

9 INO S WV O I OWS u.tiurisesissisesssssissssssssssesssssssssssssssasssssssssssssasssssssssssssssssssesssassss s sansae s s s be e n e s beaa s e beaasnsbeaa e nsansannnansns 30

10 Hardware Simulator Framework / EXample Simulator... ..o ieiiiiiiiisisisisisssissessiasssaes 32
10.1 Background and SUPDOMING CONCEDES . ..ueiuiieiieietitiieietieteeeetieseeeseseseeessseseeeessssssessssssssessrssasessesseesssrssresessssessesesseesesss 32

10.1.1 Abstract Factory DeSigN Patternottt sttt st eeeseesreseesesssreseeseeesessrsareseesrearesreeessreanes 32
10.1.2 XML G0N IGUIATION ...ttt ettt etttk se sttt s e sre e eetereeeeseeseeeeeeeeee s eetereareeeeseseeareseeseesearesreseesesresreseess 32
10.2 _ Implementing Your Own Hardware Model (and Data Provider, and Connections)cooviiiiiiieiiiiiiiceniesiinenas 33
10.2.1 Configuration Data Propery TrEE ...ttt sttt st e sr s et et eessresreseestsrssrssreeasesresresneas 33
10.2.2 HarAWare IMOGEL ...ttt ettt et et et e et e eh e et et et e et s et et etsereeresaesestese s st e sessesrssneareseas 34
10.2.3 DA Pl OVI T ... ittt ettt ettt ettt ettt ettt e et et e eteetete et s et e et eit et e et s et et etteteereshe e eteer s et eeenesrssneareaea 34
10.2.4 0NN IONS ...ttt ettt ettt ettt e et et e st es e et e et st e st et e ee e et et e et et e er e et et erseheeh et ettetesreshe e et s aresresaees 35
10.3 WVritiNg YOUr OWN SiMUIBEOT &ttt ettt et est st et est st e eeeetsh e et eetseeseeeeseseaees st e seesesbesrebesesseebesessreseseis 37
10,4 EXAMIDIE SIMUIBEOT . .. ittt ettt ettt et e st et et et st e bt et eh et et et et et e eh et ettt eheb st sb et et et ebssb et e s srarsan st 39

11 42, A Visualization and Simulation Tool for Spacecraft Orbit and Attitude Dynamics.........ccouiiiiniiseininssisinnnes 40
111 4 O B W . ittt ittt ettt etttk ettt ettt ettt ettt e sttt e ettt eh e eh e et et s eh et ee e eh s e e bt eh et eh e h e eh et et e ee e bt et e eh e bt sr s e ebrsessrerrsrs 40
11.2 Providing Data to 8 SIMUIAtOr fIOm 42ttt ettt sttt s et e st sree s et e s seabeessbsbe s srareanaeas 41
11,3 GO0 TINAtING 42 TIMIE . iiititi ittt itttk sttt et et ee et teeeseestee e et eetereesesseee et eeteeeeeeeteteeeeeteeeeeeeeeeeeaeesareseesesresreseassseesesessreseses 41
11.4 Data AVailable oM 4 .. ittt ettt ettt ettt et st ettt et et et st et st ehehs st st et et ebebs st st e et e st et s se st e e e arear e 42

12 Flight Software Development, Especially USING CFSccoiiiiiiiiiniiiiiisiseissisisisssssssssssssssssesssssssesssssssessssnssesassnssssns 43
120 CF S N0 N S .. ittt ittt ittt ettt ettt st et et ee et st ereeeseseeeteeeee et eeereet et ere et st et eee et ee et st eeetseere st st ereeeseareetseereaearare e neaneaesras 43

12.1.1 Operating SyStemM ADStraCtON LAY T ... cui.itiiiiitiet et iteetereeeetsetsresresesessetertareesesssreareseesearesressessasearesresreses 43
12.1.2 PlatfOrm SUDDOM PaACKAGEiitiitiitit it ittt et st tseeeeeetsetsetaseeseetarearessesssseartaseesessaresresaesasesreartsresearesnesrereas 43
12.1.3 HaAIAWAIE LD A ...ttt ettt ettt et et ee e e et e ereseeeseeseeereeee et et ereesee et ereereeseeseesrearesseeseearesreesessreans 43
12.2 CoNNECHNG CF S 10 N O S .. ittt ittt ettt ettt ettt sttt sttt sh et et st e et et et eh et sh et et et ees et st e s et eh et s st st e s sesbebs st st ebnsrarsansna 44
12.3 NOS3 DrVErS @nd Other F OV L.ttt ittt ittt ettt st et et se e et estsreeeeetsseseeesssesseeesrseasesseeseesssresresesssseesesessreseses 45

nos’

NOS3 Developer's ManualNOS3-UserManual and Developer's Gliide

.45

VVETHING @ INO S DIIVET ...ttt ieee ettt eete et seeseteeeeseeseesseeseeseeseeassesnsseeseeanseseeseesesaneeastseesaeanseseesresneeneeseesees

12.3.1

Hardware IN The LOOP ..uieiiceiseisissiseisessisessesssnsisesssssisessssessssssssssessssssssssssssnsssssssassssnssasssssessessanssassssnssassssnssassssnssnsssanes 40

13
1
1

.49

FAQ Lttt s OO

Orbit, Inview, and Power Planning TOO0|.......ccceciseuseiseiserssessessersessessesssssssssessessessessssssssssssessessesssssesssssssssessessessessnsses

4
5

Rackaraund
LA A AN LA A L oo,
R AL Ao

Eormat

14

!
123
L4

CUMTTTTATTO T OISO Uy N O s s s s s sssssssrsres

Command Talamatry | ink Lin
Runnina COSMOS

COSMOS s

fila and Pracace

TV O T O TS O IO T T O O O OO i i i s s s s s s s s s s s s s s s s s s r s s s r s e st st s s s s s s s s asasasasasasasasasasasasasssnsnsnsns

Tha \/aarant

16
18
LAY
18
LAY
-
18

\/3arant Pluains
LA LA L LA L A

=

=

1
1
1
614

B
O-

Racea \irtual Machina Confiauration

DOOC VI OO VIO G T TS U T T T U T O O T i i s s s s s s s s s snrnnssnnsansssnssnsssnssnssonssnssonisnsssnssnsssnsonssssssnssonssnssosssnrsonssnrins

B
U
B

Provisionina-the \/irtual Machina

2
O

o7

LA A A A A LN A AR L LA A L A Ty
Conclusion-and Referancac

LA™

U TGO OO T O T T O T O T O T IO O O i i i s s s s s s s s n s s s ann s s s n s s anssnssanssnsnanssnsssnssnsssnssosssnssossonssnsssnrsasssnssnssonrsnns

LB4

190
21

The Msakefila

Deataled Build Stane

]
<

NIV T T O T T G U T O T T i i s s s s s s e s s s s s nrsnsrsnssanronssnsssnssassonssassonsssssonssssssasssnssnsssnssnssonssnsssnssnsssnssnssonssnssonssnssonsonss

10142

-

Confiauration

XM

LAY

34
2/

Blatfarm Sunnort Packana

AL A I T IIIInnnnnnnnnnnynnononooooooOnononyonoonoonOnononononoOoooononoononoononooononononononononooonygygasx,
Writina Vour Own Simulator

(AL~ A A% A L A A~A” A T T T
(=A% 11 B N A~ A A" A" BT T

A AARLL AR A=A A~ ~AA R i A T IoooononononnnnnnnyénnnnooyoononOGyoonoygoonononogyoononOyoononononoooonoooooOOoonogOgoogoTTm
Nata Providar

Confiauration Nata Pranarty Trea
Hardwara Madal

Connactions

Data Availahle from- 42
LAl A AT A A L T ooooooonnnonononnonononnonononnonnononononononononononononononononononoononononononononononononOogOomdm

Coordinatina 42 Tima

AL A LA A A N~ LN 1% T T
AT T T O T T T U O N T i i s s s s s s s r s s s s s s s r s s s s s s s s s s s s s s s v s v s s s s s s s s s s s s s s s v s s s s s s s s s s s s s s v s v s s a s n s s s a s s s n s nsarssnsssssssssnsnsnssrnrnrnsy

Evamnle Simulator

42 Ovarviaw

Page | ii

T OO T T O U U U OGO O T i i i s s s s s s s s s s s s s s rsassnnrsassanssnssanssnsssnssnsssnssasssnssnsssnssnsssnssnsssnrsnsssnrsasssnrsnes

Hardwara | ihrary

1921
1022
1023
1024
193
10:4
144
1242

12.1.3

=

=
W

'

nos’

NOS3 Developer's ManualNOS3-UserManual and Developer's Gliide

43
o

1;2 3 N()83 Privare and Othar ESW.

44

3 Drivar

e

L4 AY] B T T T T T

Page | iii

nos*

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

Table of Figures
Figure 1 - NOS3 ArChite@CLUIEcccccirererircce s e e e e e e e p e 76
Lo To U= [N 0 =T o] - | 98
a0 U= L T Vo (o o 109
Figure 4 — COSMOS SeNEr TOOL........cccurmrmmrereresessmssrnrsesesessssssssssssesesessssssssssssssessssssssssssssssssesessssssssssssssssssssssssssssssesessasasnas 1140
Figure 5 - COSMOS CFS COMMUNICAtIONcurvciirinissrisssssissssssss s ens 1110
Figure 6 - NOS3 Virtual Maching COMPIELe ... sssssse e sess s sssssessssssssssssssssesessssassas 124
Figure 7 - Building Simulators and Flight Software............ccoovvinninnn Error! Bookmark not defined.42
Figure 8 - NOS3 Running - Server, Sumulators, 42, Flight Software, COSMOS.................... Error! Bookmark not defined.44
Figure 9- COSMOS Command Sending - Enabling Telemetrycccouvrenerrncnnnnnnnesesesssnnns Error! Bookmark not defined.44
Figure 10 - COSMOS Command and Telemetry Server - Showing "Bytes Tx", "Bytes RX"ccovvrnsinnnsnncssnsennnns 15
Figure 11 - COSMOS Command and Telemetry Server - Selecting "View in Packet Viewer" for "NOS3_NAV_MSG" 1645
Figure 12 - COSMOS Packet Viewer - NOS3_NAV_MSGccocoevenmmmmmmmsesessssssssssesesesssnnns Error! Bookmark not defined.46
Figure 13 - Initial DeSKIOP.......cccccrerrrrrrrrrrrrrn s s sesasas s Error! Bookmark not defined.48
Figure 14 - Ubuntu Linux DeSKIOP GreEter ..o s s ssssssssssesessssssssssssssssssssssssssssssesssssssenas 2024
Figure 15 - Double click "first-nos3-build.Sh" ... Error! Bookmark not defined.22
Figure 16 - NOS3 Building: CMake EXECULIONccccieeerecicnnnnsicscss s ssssssssesess s ssssssssssssssssssssssssessssassas 2123
Figure 17 - NOS3 Building: Make and Install the Flight Software............ccouvmnn 2123
Figure 18 - NOS3 Building: Make and Install SIimulators...........cccvecvvnnnnnnsessss s ssssssssesesesssenes 2224
Figure 19 - Ubuntu Linux DeSKIOP Greeter.........ccciriinerencninisnnnsesesess s ssssssssssssssesessssssssssssssssssssssssssssssessssassenas 2426
Figure 20 - Double Click "N0S=3-FUN.Sh" ..o 2527
Figure 21 - NOS Engine Standalone SEIrVEr ... s sssssssesesssssssssssssssssssssssssssssssssssssassas 2528
Figure 22 - 42 DynamiC SIMUIALON. ... s 2629
FIgure 23 - COSIMOS ... ss e sr e s asa e e e e E e e A E e e A e e e e e e R R e e e e e R nas 2730
FIgure 24 - SIMUIALOTSccccoviiiriircccc s s sss e s e A e e e e e e e e AR e e e R nas 2831
Figure 25 - NOS3 Flight SOftWAre ... s ssssssens 2932
Figure 26 - Shared Folder SEttNGS ... ssens 3033
Figure 27 - Share in NOS3 FOIE ... s s sens 3134
Figure 28 - Flight and Simulation Targets..........c.coss s 4447
Figure 29 - EXample OIPP REPOItccvrererercrmsnssnrsssesesesssssssssssssesesssssssssssssssssssssssssssssssesessssssssssssssesessassssssssssnesessasasasass 4953

Page | iv

nos’

NOS3 Developer's ManualNOS3-UserManual and Developer's Gflide

1 Introduction

This document, titled “NOS® User Manual and Developer’s Guide”, provides information for users and
developers that intend to enhance and extend the NASA Operational Simulator for Small Satellites (NOS3).

1.1 Background

The NASA Independent Verification and Validation (IV&V) Independent Test Capability (ITC) team developed
a 3U Small Satellite named Simulation-to-Flight 1 (STF-1). The primary goal of this Small Satellite was to
develop and demonstrate the lifecycle value of a software-only small satellite simulator. This simulator is
called the NASA Operational Simulator for Small Satellites or NOS3.

NOS? is an open-source, software only testbed for small satellites licensed under the NASA Open Source
Agreement. Itis a collection of Linux executables and libraries. Current simulations are based on commercial-
off-the-shelf (COTS) hardware that is being used on the STF-1 CubeSat. It is intended to easily interface with
flight software developed using the NASA Core Flight System (cFS).

NOS? executes on an Ubuntu Linux virtual machine and is comprised of a number of components. These
components are listed in the following table.

Vagrant Vagrant is an open source solution that can be used to script the creation of Oracle
VirtualBox virtual machines and the provisioning of such machines, including package
installation, user creation, file and directory manipulation, etc.

VirtualBox Oracle VirtualBox is an open source solution for creating and running virtual machines.

NOS Engine NASA Operational Simulator (NOS) Engine is a NASA developed solution for simulating
hardware busses as software only busses. This component provides the connectivity
between the flight software and the simulated hardware components.

Simulated A collection of simulated hardware components which connect to NOS Engine and

Hardware provide hardware input and output to the flight software.
Components
42 Some of the hardware components require dynamic environmental data. 42 is an open

source visualization and simulation tool for spacecraft attitude and orbital dynamics
developed by NASA Goddard Space Flight Center (GSFC) which is used to provide dynamic
environmental data.

cFS NASA Core Flight Software (cFS) is an open source Fight Software used as the base system
which STF-1 flight software is developed on.
AIT Is a light weight open source ground system developed by JPL that provides command

and control to the flight software.
COSMOS COSMOS is open source ground system software developed by Ball Aerospace which is
used to provide command and control of the flight software.
OlIPP Orbit , Inview, and Power Planning (OIPP) is an ITC developed planning tool which can
use current two line element (TLE) sets from the internet or a TLE file to project satellite
to ground station inview times and satellite eclipse and sunlight times.

Page | 5

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

1.2 Format

The format of this document is as follows. Section 2 describes the overall architecture of NOS3, including the
component architecture and how the components communicate with each other.

Section 3 describes NOS Engine and how it is used by developers to provide the software bus interface
between flight software and simulated hardware.

Section 4 describes the AIT and COSMOS ground systems and how they can be used to interact with the
sample telemetry output (TO_Lab) application and sample command ingest (Cl_Lab) application that are
provided with cFS.

Section 5 is a quick start guide with a minimum set of procedures for creating the NOS? virtual machine,
building the flight software and simulator components on the NOS? virtual machine, and running the NOS
engine standalone server, simulators, 42, flight software, and COSMOS in order to have end to end command
and control, flight software execution, and simulation.

Section 6 provides detailed instructions for creating the NOS? virtual machine and describes the steps that
occur in the Vagrantfile to configure and provision the virtual machine.

Section 7 provides detailed instructions for building the flight software and simulations on the NOS? virtual
machine.

Section 8 provides detailed instructions for running the NOS engine standalone server, simulators, 42, flight
software, and COSMOS and describes the various components that are automatically started using the quick
start script.

Section 9 elaborates on the various types of NOS® workflows that exist. This includes setting NOS? for editing
and using version control on your host or inside of the VM.

Section 10 describes the framework for developers to use to develop hardware simulators and provides
information on example simulator code included with NOS3.

Section 11 describes the 42 visualization and simulation tool for spacecraft attitude and orbital dynamics
which is used to provide environmental data to those simulators that need it to provide realistic data.

Section 12 describes developing flight software using cFS and interfacing it with NOS engine and the
simulators.

Section 13 explains the hardware in the loop capabilities while expanding on the installation and use for each
platform.

Section 14 describes the Orbit, Inview, and Power Planning (OIPP) tool. This tool is not part of the end to end
command and control simulation suite of NOS? that can be used during flight software development, but
provides a planning tool for use in preparing for, testing, and executing mission operations.

Page | 6

nos’

2 NOS3 Architecture

Figure 1 shows the architecture of NOS3. To get started with NOS3, a NOS® user needs to install Oracle
VirtualBox and Vagrant on their host computer. Both of these software packages are open source and can
be run on various operating systems, including Microsoft Windows, Apple OS X, and Linux. In addition to
those software packages, NOS? is comprised of a collection of files that are stored in a git repository. To get
started with NOS?3, the user receives a copy of those files and places them on their computer. These files
include a Vagrantfile, which is a file that is used by the Vagrant software package to create an Ubuntu Linux
Virtual Machine where all of NOS? is run. During creation of the Ubuntu Linux Virtual Machine, various
software packages will be installed via Ansible, including AIT, COSMOS, 42, and the NOS Engine libraries and
NOS Standalone Server. An alternative to starting with Vagrant is to receive an already generated VirtualBox
Virtual Machine with the various packages installed. To build and run the core flight software, simulators,
and so on, the source code will need to be present as described below.

E Computers
I Processes

NOS

nos’

W3]l Files/Communication Standalone
. TCP/I
” ; F5es
i Flight GPS Sim__| Files
Software | | MagSim
GROUND (cFS) A.ntenna |
STATION \ Sim gl)

|
|

/vagrant_parent/
Synced Folders

Host Computer (Windows/Mac/Linux/...) _M/—

Oracle VirtualBox / Vagrant

Start Y 8 (B)

Figure 1 - NOS3 Architecture

Virtual Machine Computer
Ubuntu Linux 18 (Bionic)

|

Source code for various simulators is acessible on the virtual machine through shared folders which allow
access to the same files on the host computer and the virtual machine computer. Build tools can be used on
the virtual machine to build and install simulators such as a GPS simulator, a magnetometer simulator, an
antenna simulator, and more. In addition, two special software tools are built and installed as part of the
simulators. The first is a NOS time driver that provides time ticks to drive time for the various simulators, 42,

Page | 7

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

and the flight software. The second is a simple terminal program which can be used by the operator to
command and control other simulators using the NOS engine command bus on which all of the simulators
can be nodes.

The cFS source code is also present on the virtual machine through the shared folders. Build tools can also
be used to build and install the generic flight software. This flight software includes hardware libraries that
can interface as nodes on NOS Engine busses in place of the real hardware node and bus connections.

As shown in Figure 1, TCP/IP or files can be used to provide environmental data from 42 to the various
simulators. In addition, TCP/IP can be used to interface COSMOS with laboratory versions of command and
telemetry applications in cFS. Finally, the NOS Engine libraries are used to provide the software busses and
nodes for communication between the flight software and the simulated hardware and for distribution of
simulation time.

3 NOS Engine

NOS Engine is a message passing middleware designed specifically for use in simulation. With a modular design,
the library provides a powerful core layer that can be extended to simulate specific communication protocols,
including 12C, SPI, and CAN Bus. With advanced features like time synchronization, data manipulation, and fault
injection, NOS Engine provides a fast, flexible, and reusable system for connecting and testing the pieces of a
simulation.

NOS Engine is built on a conceptual model based on two fundamental types of objects: nodes and buses. A
node is any type of endpoint in the system capable of sending and/or receiving messages. Any node in the
system has to belong to a group, referred to as a bus. A bus can have an arbitrary number of nodes, and each
node on the bus must have a name that is unique from other member nodes. The nodes of a bus operate in a
sandbox; a node can communicate with another node on the same bus, but cannot talk to nodes that are
members of a different bus.

Within NOS3, NOS Engine is used to provide software simulations of hardware buses. NOS Engine provides the
infrastructure for each hardware simulator to be a node on the appropriate bus and for the flight software to
interact with hardware simulator nodes on their bus. NOS Engine also provides plug-ins for various protocols
such as MIL-STD-1553, SpaceWire, 12C, SPI, CAN, and UART. These plug-ins allow each bus and the nodes on
that bus to communicate using calls and concepts specific to that protocol.

For more information on the concepts, architecture, specific bus protocols supported, or other information on
using NOS Engine, please refer to the NOS Engine User’s Manual.

Page | 8

nos’

4 Ground Systems

NOS3 supports two ground systems out of the box - AIT and COSMOS.
4.1 AMMOS Instrument Toolkit (AIT)

AIT is a Python-based software suite developed by JPL to handle Ground Data System (GDS), Electronic
Ground Support Equipment (EGSE), commanding, telemetry uplink/downlink, and sequencing for JPL
International Space Station and CubeSat Missions.

If AIT is the ground station utilized, the project repository is installed under the AIT directory and a python
virtual environment is created during installation. The default AIT installation is under the “ait” virtual
environment and a cFS specialized project is installed under the “ait-cfs” virtual environment. If the user
wants to create their own Ground Station using AIT they may use the ait virtual environment. This document
uses the AIT-cFS installed in the “ait-cfs” virtual environment. AIT web interface is pictured below.

Send Command: Cmd Counter: 2 Error Counter: 0
Core Checksum: Oxde18 Major Version: 6
Minor Version: 5 Revision: 0
Mission Revision: 0 OSAL Major Version: 4
OSAL Minor Version: 2 OSAL Revision: 1
OSAL Mission Rev: 0 Syslog Bytes Used 1867
Syslog Size: 4096 Syslog Entries: 27

Syslog Mode: Discard ER Log Index: 1

ER Log Entries:

Registered Core Apps Count:

ES Registered CFS Apps Count: 6 Registered Tasks Count: 14
Registered Libs: 2 Reset Type: PowerOn
To Reset Subtype: PowerCycle Processor Resets: 0
Max Proc Resets: 2 Boot Source: BootSource1
Perf Mon State: Idle Perf Mon Mode: TriggerStart
Perf Trigger Count: 0 Heap Bytes Free: 0
Heap Blocks Free: 0 Head Max Block Size: 0
2 RN | A———
18
16
14
12
1
08
06
04
02
Ly 2035 20:40 2045 2050 2055 21:00 2105
3 b
Time
— CommandCounter

Page | 9

nos’

INOS3-User Manual and Developer's Gliide

For

42 COSMOS

COSMOS is an open source ground system provided via Ball Aerospace! and is included with NOS3 to provide
an alternate ground station for the simulated spacecraft. COSMOS is installed in its default directory and run
from nos3/gsw/cosmos.

Packet Viewer : Formatted Telemetry with Units

Edi Terminal Help
EVS Portl 55/1/TO_LAB_APP 1: TO Lab Initialized. Version 2.1.6.6 Awaiting enable
command. Interfaces ' Targets Cmd Packets | Tim Packets | Routers | Logging Status
EVS Port1l 55/1/HK 1: HK Initialized. Version 2.4.0.0 STFT CFE_EVS_ILMPKI 35 View Raw || View in Packet Viewer
63:20.37045 ES Startup: SC loaded and created
ES Startup: Loading file: /cf/fm.so, APP: FM ST
ES Startup: FM loaded and created STF1
2015-012-14:03: ES Startup: Loading shared library: /cf/libstfhw.so
EVS Portl 55/1/FM 104: Free Space Table verify results: good entries = 3, bad = STF1
e, unused = 5 TR
EVS Port1 55/1/FMid: Inltialization conple(y Packet Viewer : Formatted Telemetry with Units
EVS Portl 55/1/FM 160: Child Task initializ)
EVS Portl 55/1/SC 21: RTS table file load ¢ File View Help
EVS Portl 55/1/SC 9: SC Initialized. Versic
EVS Portl 55/1/CFE_EVS 1: STF-1 HWLIB Init STF1
EVS Portl 55/1/CFE_EVS 1: GPS Lib HW Init JENSNRSEES - | Packet: | STF1_NAV_MSG
EVS Port1 55/1/CFE_EVS 1: SEN Lib HW Init Ji = ===

File Edit Help

CFE_HK_COMBINED_PKT1 0

35

View Raw || View in Packet Viewer

CFE_SB_HKMSG View Raw | View in Packet Viewer

CFE_TBL_HKPACKET 35 View Raw | View in Packet Viewer

CFE_TIME_HKPACKET
CFE_TO_LAB_HKTLMPKT

35 View Raw || View in Packet Viewer

STF1 35 View Raw | View in Packet Viewer

STF1 STF1_EPS_MSG 0 View Raw | View in Packet Viewer

STF1_NAV_MSG 14 View Raw || View in Packet Viewer

2016/05/25 15:21:16.636 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C02A012DC2470F005F4500002
00 AD 1

BRI M R R AU UL D cription: Navigation Application Housekeeping Telemetry Message 19F3) .
2015-012-14:03:20.45462 ES Startup: 2016/05/25 15:21:26.164 ERROR: CFS_INT - Unknown 42 byte packet starting: 0878C02B0023CB470F005DF6000000
2015-012- : ES Startup P i 0000000000000000000000A005004270081843A80C H]
ES Startup: 2016/05/25 15:21:26.658 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C02B012DCC470FO0FC5700002 H
ES Startup: 1464189696.235327 00 D 19F3A14 Mot
ES startup: i 2016/05/25 15:21:36.235 2016/05/25 15:21:36.227 ERROR: CFS_INT - Unknown 42 byte packet starting: 0878C02C0023D5470F00FAFA000000 :
ES Startup: 4 0000000000000000000000A005004270081843A80C
ES Startup: 1 2016/05/25 15:21:36.669 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C02C012DD6470F00B55800002
4:03:20.49495 ES Startup: 0 2160 j 00 JEAD! 19F3A141
Portl 55/1/MGR 4: MGR: RESET Counters (49196
Portl 55/1/MGR 1: MGR Initialized. Verj 7 S
Portl 55/1/NAV 1: NAV Initialized. VerJ . Vv 7 sl
Portl 55/1/CAM 4: CAM App: RESET Count 1001429
Port1l 55/1/CAM 1: CAM App Initialized. 64858 File Mode Help Command Script Test
6.49783 ES Startup: . Sender Runner Runner
.49855 ES Startup: Target: |STF1 - Command: |ENABLE_TELE = | Send
0.51053 ES Startup: Telemetry
2015-812-14:03:20.51163 ES Startup: CADET Description: Tell STF1TO to start sending telemetry . [
EVS Portl 55/1/SEN 4: SEN: RESET Counters (Ralleecieti = @ o h—1
EVS Portl 55/1/SEN 1: SEN App Initialized. Version 1.0.0.0 Parameters: O * =1
CADET subscribed to 10 packets for HI priority FIFO NaiiE Valigaistate Ukl [conros Yl convos il convos it comvos)
| CADET subscribed to 3 packets for LO priority FIFO T ety o
EVS Portl 55/1/CADET 4: CADET: RESET command —_— 6272 - e et At O
L3C Lib: Open USART port 1 -
L3 Lib: Install USART callback for Cadet Utilities
EVS Portl 55/1/EPS 1: EPS Initialized. Version 1.6.6.0 SEQUENCE: 49152 seq| |-
EVS Port1 55/1/CADET 1: CADET App Initialized. Version 1.0.6.0 S)
2015-012-14:03:20.62305 ES Startup: CFE_ES_Main entering OPERATIONAL state (Command History: (Pressing Enter on the line re-executes the command) TfM cab
EVS Port1 55/1/CFE_TIME 21: Stop FLYWHEEL cmd("STF1 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, R P e D
EVS Port1l 55/1/SCH 21: Major Frame Sync too noisy (Slot 1). Disabling synchroniz SIZE 17, COMMAND_CODE 6, DATA '127.0.0.1") = L L L
ation. Telemetry Command Handbook Table
@ EVS Portl 55/1/SCH 18: Multiple slots processed: slot = 4, count = 2 Extractor Extractor Creator Manager
EVS Portl 55/1/TO_LAB_APP 3: TO telemetry output enabled for IP 127.0.6.1 cmd("STF1 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, ¢

Figure 3 - AIT in Action

4.3 Command Telemetry Link Up

The link to a Ground Station is completed by two applications in cFS. These are the command ingest (Cl) and
telemetry output (TO) applications. In NOS3 these apps utilize UDP to communicate and are not meant for
flight operations. The TO link is closed by default on start-up, but can be activated by sending a specific
command packet. Commanding is done by using the Command Sender tool in COSMOS using the target
named ‘CFS’ with a single command to ‘TO_ENABLE_OUTPUT_CC’. Once sent, the TO app will reply stating
that telemetry is enabled. This is demonstrated in the screenshot below. It should be noted that only
telemetry listed in the ‘to_config.h’ will be captured. Additional telemetry can be appended as necessary.

1 Http://cosmosrb.com/

Page | 10

http://cosmosrb.com/

nos’

* Command Sender

File Mode Help

Target: | CFS * | Command: |TO_ENABLE OUTPUT_CC = Send
Description:
Parameters:
Name Value or State Units Description
DEST IP: '"127.0.0.1' Destination IP
DEST_PORT: 5011 Destination Port

Command History: (Pressing Enter on the line re-executes the command)
cmd("CFS TO_EMNABLE OUTPUT_CC with DEST IP "127.0.0.1", DEST_PORT 5011")

EVS Portl 42/1/CFE_TIME 20: Start FLYWHEEL
EVS Portl 42/1/T0 3: Recvd ENABLE_OUTPUT cmd (2)
EVS Portl 42/1/T0 7: IO_TransUDP: Destination IP set to 127.8.0.1:5011

EVS Portl 42/1/T0 3: ENABLE OUTPUT CMD Succesful for Routes:0x0001

Figure 4 - COSMOS Sender Tool

All communications to, from, and internal to cFS are formatted using the CCSDS standard packet type with
the secondary header enabled. This secondary header allows the specific command to be passed to the
application specified in the primary header. COSMOS requires knowledge of these commands and telemetry
structures to be able to construct and interpret them as needed. An example is provided below:

BIG

M 8§ UINT MIN UIN

Figure 5 - COSMOS cFS communication

Page | 11

nos’

5 Quick Start to Installing, Building, and Running NOS?

5.1 Installing NOS?3

On the host computer: —
1. Install Oracle VirtualBox v6.1 + (https://www.virtualbox.org/) @

Install Vagrant v2.2+ (https://www.vagrantup.com/) \f

Install Git 1.8 + (https://git-scm.com/downloads/) (0

Acquire the nos3 release repository via git clone. Ll

Initalize git submodules for use:

vk W

a. git submodule init

6. Update git submodules:

a. git submodule update

7. Navigate to nos3/deployment

8. Configure the CONFIG file in the deployment directory:

a. Inthis file you can choose the configuration settings for the VM that will be created by Vagrant:
i. Operating Systems are CentOS(1) and Ubuntu(2) CentOS CURRENTLY NOT SUPPORTED
ii. Ground Systems are AIT(1) and COSMOQS(2)

9. Runthe command vagrant up via a command prompt within the nos3/deployment directory, and wait for
the command to return to the prompt. — This can take anywhere from 20 minutes to hours depending on
internet speeds and the specs of the host PC.

10. Vagrant will automatically load the virtual machine to Virtual Box, and it will be ready for use.

Login to the nos3 user using the password nos3123!

Login to the vagrant user using the password vagrant

vagrant's Home

5.2 Building NOS?3

Page | 12

https://www.virtualbox.org/
https://www.vagrantup.com/
https://git-scm.com/downloads/

nos’

Log in to the NOS® VM, username / password : nos3 / nos3123!

1) Access the nos3 repository on the Host Machine. From the Guest:

a) Use Virtual Box — Guest Additions CD Add
) Virtual box Menu > Devices > Shared Folder > Shared Folder Settings
) Add new Shared Folder and select the location of nos3 repo on host
)
)

o O T

Check Select Auto Mount, Make Permanent
Reboot VM

()

2) Make and Install software
a) Navigate to the nos3 shared folder after VM Reboot from Step 1e
b) Navigate to the nos3 shared folder and nos3 parent directory
c) Run “make”

5.3 Running NOS3

1) Navigate to the nos3 shared folder and nos3 parent directory
2) Run “make launch” in the nos3 parent directory from the terminal

File Edit View Search Terminal Tabs Help

Creating Transports:

fsw: tcp://127.0.0.1:12000
nos3: tcp://127.0.0.1:12001

Query Menu:

1. Buses

2. Data Nodes
3. Time Sender
4
5

. Time Clients
. Exit —

29
File Edit View Search Terminal Help EE (:) Q}

Sc[@].AC.Wh1[0].H = ©.000000000000€+0 —
Sc[@].AC.Wh1[1].H = ©.000000000000e+0 D (D =D
SC[0].AC.Wh1[2].H = 6.000000000000e+6 COsMos C°m”§”“ Replay ;m““
SC[6].B[6].wn = 0.0660600000000e+00 0. Telatetry oniter
sc[0].B[0].qn = 0.000000000000e+00 ©. Serve
0000000e+00 E
SC[0].Wh1[0].H = 6.000000000000e+00 [Commanding and Scripting
sc[0].Whl[1].H = ©.000000000000e+00
sc[e].Whl[2].H = ©.000000000000e+00
Sc[0].Gyro[0].TrueRate = 0.0000000000
Sc[e].Gyro[1].TrueRate = 0.0000000000 COSMO:
SC[0].Gyro[2].TrueRate = ©.0000000000. T
[EOF] Mak cipe for target 'stop' failed
op] Error 1
0 ake launch Telemetry

Command Command Script Test Command
Sender Sequence Runner Runner Extractor

File Edit View Search Terminal Help — ° - noomol
EVS Port1 4. FE_SB 25: Pipe Overflow,MsgId 0x808,pipe TO_TLM_PIPE_O,sender RW| : (¢] — b \a TLM

1980-012-14:03:20.56306 ES Startup: CFE_ES_Main entering APPS_INIT state 5 {8 cosvios[liimy cosvos] [cosvos]
1980-012-14:03:20.56308 ES Startup: CFE_ES_Main entering OPERATIONAL state B Packet Telemetry Telemetry Data Telemetry
EVS Portl 42/1/CFE_TIME 21: Stop FLYWHEEL . Viewer Viewer Grapher Viewer Extractor
EVS Portl 42/1/CFE_TIME 20: Start FLYWHEEL A

EVS Portl 42/1/CFE_TIME 21: Stop FLYWHEEL % Utilities

EVS Portl 42/1/CFE_TIME 20: Start FLYWHEEL Z

EVS Portl 42/1/CFE_TIME 21: Stop FLYWHEEL : E g ﬂ @

EVS Portl 42/1/SCH 18: Multiple slots processed: slot = 94, count = 5 L S 2

EVS Portl 42/1/CFE_TIME 20: Start FLYWHEEL ‘ [£ nrre ' lis cosvos [l cosmvos e cosmos e cosvos}

EVS Portl 42/1/CFE_TIME 21: Stop FLYWHEEL = Config Handbook Table DART

EVS Portl 42/1/CFE_TIME 20: Start FLYWHEEL Editor Creator Manager

EVC Dar#4 A3 /4 /CEE_TTME 34. Cénn EI VWUCE! tions and put t

3) To exit the simulation run “make stop” from the terminal
4) To rebuild NOS? from the repository baseline, first run “make clean” then “make”.

Page | 13

nos’

5.4 Running COSMOS
Once NOS? is launched, the cFS flight software and COSMOS ground station will start.

® NOS3Launcher

F

@ & O Y

{8 cosmos e cosvios [y coswvios i cosmos]

e Help

COSMOS Command Replay Limits
and Manitor
Telemetry
Server

Commanding and Scripting

:— o 101001011101
T — -'; o M
[pr— CMD

{8 cosvos ey cosvios i coswios [iie cosmos Jlie) cosmas)

{4

Command Command Script Test Command
Sender Sequence Runner Runner Extractor
Telemetry

Bl &
H— . L]
o = L = TIM
8 cosvos llim cosvos [lim cosvos [lim cosvos s cosmvos |

Packet Telemetry Telemetry Data Telemetry
Viewer Viewer Grapher Viewer Extractor
Utilities

2209

Config Handbook Table DART
Editor Creator Manager

COSMOS may command cFS to send telemetry back to COSMOS by:
1. Openthe Command and Telemetry Server and Enter:

i. --config nos3_cmd_tim_server.txt
ii. —system nos3_system.txt
iii. The Connected? attribute ought to read “True”

e COSMOS Command and Telemetry Server - NOS3 Configuration
File Edit Help

Interfaces | Targets Cmd Packets Tlm Packets | Routers Logging = Status

Interface Connect/Disconnect Connected? Clients TxQSize RxQSize BytesTx BytesRx Cmd Pkl
MISSION_INT Disconnect true 0 [0 0 0 0

2020/05/05 16: 376 INFO: Creating thread for interface MISSION_INT -
INFO: Starting packet reading for MISSION_INT

INFO: Connecting to MISSION_INT...

INFO: MISSION_INT Connection Success

INFO: Starting connection maintenance for PREIDENTIFIED_CMD_ROUTER

INFO: Connecting to PREIDENTIFIED_CMD_ROUTER...

INFO: PREIDENTIFIED_CMD_ROUTER Connection Success

516 INFO: Starting packet reading For PREIDENTIFIED_ROUTER

516 INFO: Connecting to PREIDENTIFIED_ROUTER...

516 INFO: PREIDENTIFIED_ROUTER Connection Success

2020/05/05 16:

Page | 14

nos’

Forn

2. Open COSMOS Command Sender, under “Commanding and Scripting,” and Enter:
i. Inthe Commander Sender Options Window — system nos_system.txt
ii. Inthe Command Sender Window, Select Target: to be “CFS”
iii. Under Command: select TO_ENABLE_OUTPUT_CC,
iv. Click “Send”

* Command Sender

File Mode Help

Iarget:@ =| command_ [TO_ENABLE O 2

Description:
Parameters:
Name Value or State Units Description
DEST_IP: '127.0.0.1" Destination IP
DEST_PORT: 5011 Destination ...

Command History: (Pressing Enter on the line re-executes the command)

Figure 69 - COSMOS Command Sending - Enabling Telemetry

v. Notice under COSMOS Command And Telemetry Server Window, the data field updates
1. “Bytes Tx” and “Cmd Pkts” should change from 0 to a positive number
2. “Bytes Rx” and “TIm Pkts” should start counting up as telemetry is received

Cmd Pkks
1

Interface Connect/Disconnect Connected? Clients Tx QSize Rx Q Sizg
MISSIOM_INT Disconnect true 0 0 0

Tlm Pkts

Bytes Tx
26

Bytes Rx
1188

Figure 710 - COSMOS Command and Telemetry Server - Showing "Bytes Tx", "Bytes Rx"

3. Open COSMOS “Packet Viewer”
i. —system nos3_system.txt
ii. Select Target: to be “CFS”Select Packet Name “CFE_EVS_PACKET’
iii. Scroll to see the “Message” field live updates (Line 16)
iv. This may be repeated for other apps, once they are commanded to send telemetry
v. Fields of applications which have not received telemetry packets are in fuscia

Page | 15

nos’

& Packet Viewer : Formatted Telemetry with Units

File View Help

Description: Event Message Telemetry Packet
Item Value
9 1003054
10 6882
1 CFE_TIME
12 20
13 2
14 42
15 1
17 0
18 0
Structure padding.

Figure 811 - COSMOS Packet Viewer

6 Detailed Installation and Virtual Machine Creation Steps

As mentioned in the background and quick start sections, the key prerequisite to being able to install and run
NOS? on a user’s computer is the installation of Oracle VirtualBox and Vagrant. Information and installers for
these products can be found at:

1. Oracle VirtualBox — https://www.virtualbox.org/
2. Vagrant - https://www.vagrantup.com/

Following installation of these products, the next prerequisite for installing and running NOS? is to obtain the
nos3 code repository. Currently, that repository has a folder structure like the following:

®m -~ /nos3/ contains the repository at the time of the build locally in the VM.

o [fsw
/apps - the open source cFS apps
/build - the unarchived build directory
[cfe - the core flight system (cFS) source files
/components — cFS app support for flight hardware
/nos3_defs — common definitions for cFS-based missions when building in nos3
/osal - operating system abstraction layer (OSAL), enables building for multiple flight
0OS
Ipsp - platform support package (PSP), enables use on multiple types of boards
[tools - standard cFS provided tools
e gsw - all the files needed for ground stations and installation
o [ait - AIT configuration files
o [Icosmos - COSMOS database files
o [OrbitinviewPowerPrediction - OIPP tool for operators
o Iscripts — build and installation scripts
e deployment

O O O O O O

Page | 16

https://www.virtualbox.org/
https://www.vagrantup.com/

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

o lansible - installation scripts
/nos3_filestore
= /backgrounds — VM wallpaper
= /packages - installation packages
o Vagrantfile - main provisioner file used to generate the VM
/sims — source code for simulated hardware components
e .gitignore - list of files and directories to be ommitted from git
e .gitmodules - list of git submodules utilized
Makefile - top level makefile to be used for the build directory
README.md — Basic information contained within this Guide and about the nos3 repository

IMPORTANT: Internet access is required when installing. Also, please do NOT log in to the virtual machine
until the provisioning process is complete and vagrant has finished. All Figures captured were produced from
a Windows install.

6.1 The Vagrantfile and Process

The following section describes the provisioning that is done in the NOS? Vagrantfile using Vagrant.
Vagrantfiles are text files written in a language called Ruby.

6.1.1 Vagrant Plugins

The first items in the Vagrantfile configure optional Vagrant plugins that may or may not be installed in the
user’s environment and which can make virtual machine provisioning easier. These really only benefit the
user if multiple vagrant runs take place. The first is a plugin called vagrant-vbguest, which attempts to keep
the VirtualBox guest additions software up-to-date if newer versions of VirtualBox are installed on the
user’s machine. The second is a plugin called vagrant-cachier. It attempts to cache packages that are
downloaded from the internet as part of virtual machine configuration and provisioning. Once the
packages are cached, the time consuming process of re-downloading them from the internet can be
avoided. The final plugin, vagrant-reload, aids in the provisioning process and provides a means to reboot
the machine without loosing the current position in the installation.

6.1.2 Base Virtual Machine Configuration

The next item defines the base box or base virtual machine configuration which is used for the virtual
machine. In the case of NOS3, this base box is a very minimal installation of Ubuntu Linux, Version 18
(Bionic). This minimal installation is mainly intended as a server installation with no graphical desktop.

When Vagrant starts the NOS3 virtual machine, it automatically creates a synced folder between the host
and the virtual machine. In the host, that synced folder is the directory containing the Vagrantfile
(nos3\support). On the Linux VM, this folder appears as the directory /vagrant. In addition, the Vagrantfile
specifies the creation of an additional synced folder between the host and the virtual machine so that the
other source code and files that are part of the nos3 folder are available on the virtual machine. In the
host, that synced folder is ../, or one level up from where the Vagrantfile exists (nos3). On the Linux VM,
this folder appears as the directory /vagrant_parent.

Page | 17

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

Finally, the Vagrantfile contains some initial configuration information for the virtual machine, including the
name to give the VM, the fact that the GUI should be displayed, the amount of memory and number of
CPUs to give the VM, the ability to have a DVD drive, and several parameters controlling the graphics
capabilities to assign to the VM.

This concludes the basic configuration of Vagrant and the virtual machine.
6.1.3 Provisioning the Virtual Machine

The next section in the Vagrantfile consists of a shell provisioner. This shell provisioner is a series of Linux
shell commands that are run by the root user in the VM in order to configure it to have the packages, users,
directories, and other configuration settings needed for NOS3. The shell provisioner section consists of the
following subsections.

First, there is a section containing additional package installation commands to install Python, Linux
headers, build tools, debuggers, utilities, GUI toolkits, a minimal desktop environment, web browsers, and
other needed packages. This is followed by the installation of AIT or COSMOS.

After these tools have been installed, the next set of commands installs NOS Engine, additional common
functionality provided by the Independent Test Capability (ITC) team, and the 42 open source visualization
and simulation tool for spacecraft attitude and orbital dynamics.

After that, several configuration settings are altered to increase the number of message queues, to set the
path for finding dynamic libraries, and to keep core dumps locally rather than sending them to the Ubuntu
community.

The next section adjusts the user accounts on the virtual machine. It deletes the Ubuntu user if present,
disables the guest user, and adds the nos3 user.

After that, several preferences are changed for the backgrounds and so that double clicking executable
scripts runs them instead of viewing them in an editor.

Next, the nos3 user’s desktop environment is configured by copying various scripts, symbolically linking
several directories to appear in convenient locations, and installing and configuring COSMOS for the nos3

user.

Then several Python packages are installed and several scripts copied to the nos3 user’s environment that
support mission planning.

Finally, VirtualBox Guest Additions are installed/updated for the desktop environment if the desktop
environment is running.

6.1.4 Conclusion and References

Page | 18

nos’

This concludes an overview of the Vagrantfile which is used to install and configure the NOS? environment.
For more details, please consult the Vagrantfile itself.

Page | 19

- nos’

NOS3 Developer's ManualNOS3-User-Manuat and Develope?’o Glide

7 Building NOS2 Components: Flight Software and Simulators

7.1 Detailed Build Steps

To elaborate on the quick start guide, once the NOS? virtual machine is created, the steps to build the flight
software and simulators are:

1. Use “vagrant up” from the nos3/support directory or start from the Oracle VM VirtualBox Manager
2. Once the Ubuntu Linux virtual machine desktop greeter appears, log in using:

a. Username: nos3

b. Password: nos3123!

File hine View Input Devices

Help

nos3

vagrant

802088 ul®®rentcr
Figure 914 - Ubuntu Linux Desktop Greeter

3. Create a shared folder with the host at the host’s /nos3 git repository
4. Navigate to the parent directory of the nos3 shared folder and run “make”

Page | 20

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

Module

Module

Hodule !

Module

Hodule 3

Module / ¥y =% f_z anple_stfl_app
Module i
Hodule

Module

Hodule

Madule

Module

™ ™ & vagrankt_parent -DBUILD_SIMULATOR=YES -G "CodeBlo

mala miccian_sll # +CC anne akes

generated,

Svagrant_parent/cfe/Faw/cfecorefsro/fsfcfe_fs_decompress,ci703:18:
comparison of unsigned expression = 0 iz always true
[Htautolozical compare]

ind

Svagrant_parent/ofe/faufcfe—oore/sroffsfcfe_fs_decompress,ci /0027
comparison of usigned expression >= 0 is always true
[Htautological compare]

if § inde ind

Figure 1117 - NOS3 Building: Make and Install the Flight Software

Page | 21

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

NOS

5.

y /m vagrank_parent -DBUILD_SIMULATOR=YES -G "CodeBlo

mala miccian_sll # +CC anne akes

1 Built target test_eps

Figure 1218 - NOS3 Building: Make and Install Simulators

When this process is complete, a new folder “build” should exist in the fsw and sim repos with the built
software.

7.2 The Makefile

Inside the makefile, the cmake scripts for subsequent flight software and simulation components are being
prepped and invoked:

1.

cmake

CMake is an open-source, cross-platform family of tools designed to build, test and package software.
CMake is used to control the software compilation process using simple platform and compiler
independent configuration files, and generate native makefiles and workspaces that can be used in the
compiler environment of your choice.

In the VM, the source for the flight software and the simulators is located in the directory “~/nos3”. When
Make runs, it preps and procs cmake files in child directories to create makefiles and other build files
necessary for compiling, linking, and installing the flight software and simulators. These files are created
in the shared folder directories “nos3/fsw/build” and “nos3/sim/build”.

make and make launch
Make gets its knowledge of how to build your program from a file called the makefile, which lists each of

the non-source files and how to compute it from other files. When you write a program, you should write
a makefile for it, so that it is possible to use Make to build and install the program.

Page | 22

nos’

When “make” is run, cmake files are invoked to build the flight software, sims, and ground system which
are compiled and linked in “build” subdirectories of their respective directory. When "make launch” is
run, NOS3 launches the flight software, 42 simulator, NOS Engine, and ground station. This includes the
"core-linux” executable of cFS and “cf’ directory which contains the shared objects, libraries, and
configuration tables and files for the flight software.

Page | 23

- nos’

NOS3 Developer's ManualNOS3-User-Manuat and Develope?’o Glide

8 Running NOS3: Standalone Server, Simulators, 42, Flight Software, and COSMOS

To elaborate on the quick start guide, once the NOS? virtual machine is created and the flight software and
simulators are built, all of the software comprising NOS3 can be run:

1. Use “vagrant up” from the nos3/support directory or start from the Oracle VM VirtualBox Manager
2. Once the Ubuntu Linux virtual machine desktop greeter appears, log in using:

a. Username: nos3

b. Password: nos3123!

File hine View Input Devices Help

nos3

vagrant

802088 ul®®rentcr
Figure 1319 - Ubuntu Linux Desktop Greeter

3. Create the NOS? git repository shared folder “/nos3” and run “make”.

Page | 24

NOS®

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

.git
deployment
few
gsw
sims
=| .gitignore
=| .gitmodules
| Makefile
| README.md

Figure 1420 - Open a Terminal in the /nos3 parent directory; run “make” then “make launch”

4. The following software will start up:
a. NOS Engine Standalone Server (1 terminal window)

@ ©) NOS Engine Standalone Server

File Edit View Search Terminal Help

ry document entity '/home/stf1/Desktop/stfi-build/bin/nos_engine_log config.xml'
at line 0 col @

Configuration File Name: [home/stf1/Desktop/stfi-build/bin/nos_engine_server_stf
1_simulator_config.json

Loading Plugins: uart
Creating Transports:
fsw: tcp://127.0.0.1:12000
nos3: tcp://127.0.0.1:12001

* STANDALONE SERVER APPLICATION *

- This application may need to be killed manually using CTRL+C

Query Menu:
Buses
Data Nodes
Time Clients
Time Sender

Figure 1521 - NOS Engine Standalone Server

The NOS Engine Standalone Server provides the software simulated communication bus
structure that is used by NOS? to connect the flight software with simulated flight hardware.
NOS Engine Standalone Server is installed when the ITC NOS Engine package is installed. The
executable is nos_engine_server_standalone. For NOS3, the server is configured using the file
nos3/sims/build/bin/nos_engine_server_config.json which defines plugin protocols and
uniform resource identifiers (URIs) for the server.

b. 42 Dynamic Simulator (1 terminal window, 1 GUI window with CubeSat, 1 GUI window with
map)

Page | 25

nos’

Figure 1622 - 42 Dynamic Simulator

42 is a general-purpose, multi-body, multi-spacecraft simulation. For NOS3, it simulates the
motion of the STF-1 cubesat. The progression of time for 42 is driven through NOS Engine
and 42 provides output ephemeris, attitude, sun vector, magnetic field vector, and other
environmental data to simulators that are part of NOS3. 42 is open source C code. For NOS?
it has been packaged as a zip file which is installed on the virtual machine in the directory
/opt/42. The STF-1 specific configuration files can be found in the directory
nos3/sims/cfg/InOut. The main configuration files are the following:

1. Inp_Sim.txt — The main configuration file which defines items such as the environment

(epoch, gravity models, celestial bodies, etc.), spacecraft reference orbits and configuration
files, spacecraft and configuration files, and ground station locations.

2. Orb_LEO.txt — Spacecraft reference orbit file referred to by Inp_Sim.txt. This file specifies the
orbit center (Earth) and refers to the two line element set file which defines the spacecraft
orbit.

3. SC_NOS3.txt — Spacecraft definition file referred to by Inp_Sim.txt. This file defines labels,
orbit parameters, initial attitude, body parameters, and other parameters specific to the
spacecraft.

4. Inp_IPC.txt — File defining the TCP/IP or file parameters for communicating input and output
to and from 42.

Page | 26

nos’

5. Inp_Graphics.txt — File defining the GUI configuration for 42, including what windows to
display, parameters for the point of view, various display elements such as grids and labels,
and other graphic elements properties.

6. There are several other input files which are not used much for NOS3, including Inp_Cmd.txt
(defining a command script for 42), Inp_FOV.txt (defining fields of view), Inp_Region.txt
(defining regions for 42), and Inp_TDRS.txt (defining TDRS satellites for 42).

c. Asrunning AIT has previously been discussed, and is configured differently through yaml made
telemetry pages, this section will focus on the use of COSMOS. COSMOS (GUI windows for Legal
Agreement, COSMOS Command and Telemetry Server , Command Sender, Launcher)

mmand Sender

Help
- Target: |STF1 : Command: ENABLE_TELEMETRY - Send
Launcher
File Help Description: Tell STF1 TO to start sending telemetry
Parameters:
Name Value or State Units Description
CMD_ID: 6272 Command Packet ID
SEQUENCE: 49152 Sequence word
SIZE: 17 Size of packet data not including cmd secondary hdr + 1
COMMAND_CODE: 6 Command code
DATA: 127.0.04

Command History: (Pressing Enter on the line re-executes the command)

€OSMOS Command and Telemetry Server - STF1 Configuration

File Edit Help

Interfaces| Targets CmdPackets TimPackets Routers | Logging | Status
Interface | Connect/Disconnect Connected? clients TxQSize RxQSize BytesTx BytesRx CmdPkts Tim Pkts
CFS_INT Disconnect true] 0 o 0 0 0 0
COSMOSINT true 0 0 0 0 [0 1

2016/05/23 17:51:41.161 INFO: COSMOSINT Connection Success

2016/05/23 17:51:41.161 INFO: Starting packet reading For CFS_INT

2016/05/23 17:51:41.161 INFO: Connecting to CFS_INT...

2016/05/23 17:51:41.162 INFO: CF5_INT Connection Success

2016/05/23 17:51:41.162_INFO: Startina nacket reading for PREIDENTIFIED. ROUTER

Figure 1723 - COSMOS
COSMOS is stated to be “The User Interface for Command and Control of Embedded
Systems”. It is used by NOS? as the ground station command and control system to send
commands to and receive telemetry from the NOS3 flight software. COSMOS is installed as a
Ruby Gem. The configuration for NOS? has been created by configuration files which define
the NOS? “system” located nos3/gsw/cosmos/config/system

d. Simulators (1 terminal window with a tab for each simulator, including the NOS Time Driver and
the Simulator Terminal)

Page | 27

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

NOS

x _ simulator Termiral

Figure 1824 - Simulators

Currently, NOS3 starts 8 simulators:
1. GPS Simulator — Simulates a hardware GPS using position and velocity data from 42.

EPS Simulator — Simulates a hardware electrical power system.
Battery Simulator — Simulates a cubesat battery.
CAM Simulator — Simulates a camera.

vk wN

RW Simulator — Simulates a cubesat reaction wheel using momentum and torque data from

42.

6. Sample Simulator — Provides a basic example of a NOS® simulator. The sample simulator
assumes a UART based device. It streams telemetry at a fixed rate and recognizes a single
configuration command to allow modification of the streaming rate.

7. Simulator Terminal — Provides a terminal to the nos3 user. This terminal can be used to send
commands to other simulators on a special NOS Engine command bus and can be used to
report data sent by the simulators on that special bus.

8. NOS Time Driver — This is the simulator component that provides the time source for NOS

Engine. NOS Engine then distributes time to all clients that need it, including flight software

and any simulator that needs to be aware of the passage of time in the simulated real world.

The simulators are all built and installed from source code as described in the previous
section. The installation location is nos3/sims/build/bin. Various data and configuration files
for the simulators can also be found in that location. Two of the main configuration files are
as follows. The sim _log config.xml file specifies the level and location of logging for the
simulators. The nos3-simulator.xml file specifies the configuration for the simulators
including common time, logging, and configuration information and information specific to
each simulator. The specific information defines like the name of the simulator and if it is
active, the hardware model (used to find the code plugin) for the simulator, the connection
information (bus and name or address) for the simulator, and any environmental data
provider information. The exact information for each simulator depends on the simulator,
the hardware model, and potentially the data provider.

Page | 28

nos’

NOS3 Developer's ManualNOS3-UserManual and Developer's Gflide

e.

NOS3 Flight Software (1 terminal window)

oy

NOS3 Flight Software
File Edit View Search Terminal Help
2015-812-14:83:20.27933 ES Startup: Loading file: /cf/sen.so, APP: SEN
2015-812-14:03:20.27980 ES Startup: SEN loaded and created
EVS Portl 55/1/FM 104: Free Space Table verify results: good entries = 3,
8, unused = 5
Portl 55f/1/FM 1: Initialization complete: version 2.4.2.0
Portl 55/1/FM 100: Child Task initialization complete
S Portl 55/1/CI_LAB_APP 6: CI: RESET command
S Portl 55/1/S5CH 1: SCH Initialized. Version 2.
S Portl 55/1/NAV 1: NAV Initialized. Version 1.
S Portl 55/1/5C 21: RTS table file load count = @
Portl 55/1/CAM 4: CAM App: RESET Counters Command
Portl 55/1/CAM 1: CAM App Initialized. Version 1.8.8.1
Portl 55/1/SEN 4: SEN: RESET Counters Command
Portl 55f/1/SEN 1: SEN App Initialized. Version 1.8.8.8
Portl 55/1/SC 9: SC Initialized. Version 2.4.0.0
Portl 55f/1/HK 1: HK Initialized. Version 2.4.08.8
Portl 55/1/TO_LAB_APP 1: TO Lab Initialized. Version 2.1.0.0 Awaiting enable
command.
EVS Portl 55/1/CI_LAB_APP 3: CI Lab Initialized. Version 2.1.0.0
EVS Portl 55/1/EPS 1: EPS Initialized. Version 1.0.0.8
2015-0812-14:93:20.38021 ES Startup: CFE_ES_Main entering OPERATIONAL state
EVS Portl 55/1/CFE_TIME 21: Stop FLYWHEEL
EVS Portl 55/1/SCH 18: Multiple slots processed: slot = 95, count = 5

2.0.0
0.0.0

Figure 1925 - NOS3 Flight Software

Last, but certainly not least is the NOS3 flight software. This is the flight software that will
execute on the single board computer, but cross compiled to run on Linux and to use a
hardware library that connects the flight software to the software only NOS Engine busses
with their simulated hardware components instead of the actual flight hardware sensors and
actuators.

Page | 29

nos’

9 NOS3 Workflows

Two workflows are common to utilize NOS? as a user / developer:
1. Solelyinthe VM

2. Develop on host machine, test in VM

Both options make use of the vagrant virtual machine to provide a stable environment for testing. Out of
the box it is assumed that option 1 is to be used. In order to switch to option 2, the following directions must
be followed to properly configure the environment for use with the current scripts:

1. Inthe VM, go to Devices > Share Folders > Shared Folders Settings...

? NOS3_v1.02.00 [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

vagrant-ubuntu-trusty-32 JFEZEENEONY
Shared Folders

Shared Clipboard
Drag and Drop

Insert Guest Additions CD image...

Display virtual machine settings window to configure shared folders

BFEE @ @ S [-Rntcy

Figure 2026 - Shared Folder Settings

2. Add the ‘nos3’ folder cloned from git to the list of shared folders

Page | 30

NOS®

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

o7
o

vagrant-ubuntu-trusty-32

4) 12:20AM 3

@

:@ General Shared Folders

JL‘TA System Folders List
‘ Display Name Path

Auto-mount Access ‘ [@

Vv Machine Folders
@ Storage vagrant \\NAC:\Users\JPL\git\stf\stf1\support Full
vagra..cache \\I\C:\Users\JP....d\cache\ubuntu\trusty32 Full
| 1{) Audio vagran...arent \\\C:\Users\JPL\git\stf\stf1 Full

‘ Transient Folders

|

1§ Network ||

|

\@ Serial | &3 Add Share ? X

! [59 USB | Folder Path: [|| C:\Users\PLNOS3_v1.02.00 v |

‘E Share¢ Folder Name: [NOS.’;_VI.OZ.OO ‘

| [[] Read-only
| E} User Ir

‘ Auto-mount

Make Permanent

Cancel Help

BaEE @ ® -riohtcl

Figure 2127 - Share in NOS3 Folder

Once these steps are complete, all changes inside will be reflected outside and vice versa. If the VM is
restarted, mounting the shared folder will need to be repeated.

Page | 31

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

10 Hardware Simulator Framework / Example Simulator

NOS? simulator code has been developed in C++ with Boost and relies on the NASA Operational Simulator
(NOS) Engine for providing the software busses, nodes, and other connections that simulate the hardware
busses such as UART (universal asynchronous receiver/transmitter), 12C (Inter-Integrated Circuit), SPI (Serial
Peripheral Interface), CAN (Controller Area Network), and discrete 1/O (input/output) signals/connections/
busses. NOS Engine also provides the mechanism to distribute time to all the simulators (and to the flight
software).

10.1 Background and Supporting Concepts

10.1.1 Abstract Factory Design Pattern

C++ is a programming language that supports the Object Oriented programming paradigm, and within that
paradigm, one of the most powerful design abstractions built on top of that paradigm are design patterns.
The specific design pattern which has been heavily used within the NOS? simulators to make them flexible
and extensible is the Abstract Factory design pattern. This design pattern is described in many places, but
one fairly easy to understand description is in the article “Abstract Factory Step-by-Step Implementation in
C++” at http://www.codeproject.com/Articles/751869/Abstract-Factory-Step-by-Step-Implementation-in-

Cp.

It is this factory design pattern that allows additional simulators to be easily constructed and built as plug-in
libraries, even after the development of the initial NOS® simulator code base. Instead of the shapes and
shape factory in the article, the components in NOS? simulators which are constructed via factories are
hardware models and data providers.

10.1.2 XML Configuration

In addition to using the factory design pattern, each particular simulator must be configured to specify the
hardware model to create. In addition, the hardware model may need parameters for configuring how the
hardware acts. Also, hardware has connections for communication such as discrete 1/0, 12C, or UART, and
so in the simulation the hardware model will need to create software versions of these connections and these
connections may also need configuration data such as bus type, bus name, and bus address. In addition,
some hardware models (such as a GPS or magnetometer simulator) may need environmental data, and so
the hardware model will need to create a data provider which will provide environmental data. The data
provider may need configuration data such as the type of data provider and a filename or host and port.

The configuration for a specific simulation executable will be specified in a file via XML (eXtensible Markup
Language), which will provide a list of simulators that are to be instantiated within that executable. Each
simulator will specify a hardware model, which might have additional configuration parameters. The
hardware model might specify reliance on an optional data provider with data provider configuration
parameters. The hardware model might also specify one or more software communication connections with
connection configuration parameters.

Page | 32

http://www.codeproject.com/Articles/751869/Abstract-Factory-Step-by-Step-Implementation-in-Cp
http://www.codeproject.com/Articles/751869/Abstract-Factory-Step-by-Step-Implementation-in-Cp

NOS®

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

10.2 Implementing Your Own Hardware Model (and Data Provider, and Connections)

The following sections describe how to implement your own hardware model.
10.2.1 Configuration Data Property Tree

If configuration data from the XML file, which is represented as a configuration data property tree, is needed,
it is retrieved using code like the following:

std::string param = config.get ("simulator.<subname>.<subsubname>", “LITERAL”) ;

The following are a few notes regarding this code. First, config is a variable of type const
boost::property tree::ptree& Each hardware model and data provider must provide a
constructor that takes a single parameter of this type (see below), and thus this parameter will be available
to constructor code to perform any necessary configuration and initialization.

Second, when the code above is executed, the data type of the literal *"LITERAL” determines the data type
that the ptree tries to return your parameters as (here it is a literal string, and the variable the value is
assigned to is declared accordingly as a std: : string). Also note that you separate the XML tag names
with periods in the key name to retrieve to indicate nested XML tag levels. Note also that you do not include
the “nos3-configuration” or “simulators” prefixes in the key name (these appear in the default
configuration file); they are stripped off by the SimConfig object which is used to read and parse the
configuration data in the main program. Thus key names should either begin “common.” or “simulator.”
If the key cannot be found in the property tree (which represents the XML), the value *"LITERAL” is used
as the default value.

The following is a list of common keys:

1. common.log-config-file —The name of the configuration file for logging using the ITC Logger
class; you should not normally need to do anything with this.

2. common.nos-connection-string— Connectto nos time node (“<commonkey>", “tcp://ip:port”)

3. common.absolute-start-time —The absolute start time of the simulation in decimal seconds
from the J2000 epoch.

4. common.sim-microseconds-per-tick—The integer number of microseconds the simulation
should advance for every time tick. Note that NOS Engine distributes time on its busses as a count of
ticks. So if your hardware model or data provider receive the number of ticks that represents the

simulation time, it can convert this to real world simulation time using:

double abs_ time = absolute start time + (double(ticks * sim microseconds per tick)) / 1000000.0;
5. simulator.name —The name you gave your simulator; it should agree with the string you put in the

main function (see below).

6. simulator.active — Normally true; if false, then your simulator will not be run when the
SimConfig::run simulator method is called in the main function (see below).

7. simulator.hardware-model.type —The name string for your hardware model.

8. simulator.hardware-model.connections — A list of <connection></connection> tags which
describes the connections that the hardware model has.

Page | 33

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

nos*

9.

10.

10.2.2

simulator.hardware-model.data-provider — Information on the data provider (if one is
used and created using the data provider factory).
simulator.hardware-model.data-provider.type — The name string for your data provider
(if one is used).

Hardware Model

The formula for creating a new hardware model is the following:

In namespace Nos3, create a class (e.g. FooHardwareModel) that inherits publicly from
SimIHardwareModel.

Create a constructor that takes a const boost::property tree::ptreeé& parameter which
contains configuration data. Have the constructor retrieve configuration data and save any parameters
and create any connections, data providers, or perform any other initialization that needs done for the
hardware model.

Create a void run (void) method. This method should perform whatever tasks are supposed to be
done when the hardware model is running.

Create a name string for your hardware model (e.g. FOOHARDWARE) and add a line like the following to

your source file:
REGISTER_HARDWARE_MODEL(FOOHardwareModel,”FOOHARDWARE”);

If the hardware model uses a data provider, the hardware model could have a member variable of type
SimIDataProvider *, which can be setinthe hardware model constructor based on configuration
data by lines like (assuming the member variable nameis sim data provider)):

std::string dp name = config.get ("simulator.hardware-model.data-provider.type",
"BARPROVIDER") ;
_sim data provider = SimDataProviderFactory::Instance().Create (dp_name, config);

10.2.3 Data Provider

The formula for creating a new data provider is the following:

In namespace Nos3, create a class (e.g. BarDataProvider) that inherits publicly from
SimIDataProvider.

Create a constructor that takes a const boost::property tree::ptreeé& parameter which
contains configuration data. Have the constructor retrieve configuration data and save any parameters
or do any initialization that needs done for the data provider.

Createavirtual boost::shared ptr<SimIDataPoint> get data point (void)
const; method... that does whatever is supposed to be done to retrieve (or compute or whatever) a
data point when your data provider is asked for a data point and which returns a pointer to the
retrieved data point. You should also create a class that inherits publicly from SimIDataPoint to
hold the data that you return from the data provider.

Create a name string for your data provider (e.g. BARPROVIDER) and add a line like the following to
your source file:

REGISTER DATA PROVIDER (BarDataProvider, "BARPROVIDER") ;

Page | 34

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

10.2.4 Connections

The general procedure for creating a connection is to create an object that is called a hub (a default
constructed object can be used), then create bus and node objects or a connection object (depending on
the connection type). With the node or connection object, various things can be done to handle the
connection such as registering a callback so that when a message is received on the connection, the
hardware model can respond to it and send a response. The basics for using a few of the connection types
are described below, but for examples, please consult the example code and existing simulators.

10.2.4.1 Command Connection

The command connection of a simulation hardware model is not a normal connection in the sense of a
connection that the hardware would have to a hardware bus. It is used just to perform out of band
commanding of the simulation itself. One way to perform this commanding is to use the SimTerminal
executable that is part of NOS3. This terminal starts up and registers as a node on the command bus. It can
then be used to send messages to any other node on the command bus. These messages can be ASCII or
hexadecimal bytes.

The base SimIHardwareModel creates a node on a command bus so that any hardware model simulation
can be commanded. In order for a simulation to perform actions based on commands received on the
command bus, the only thing that needs done in the hardware model is the following:

1. Inthe hardware model class, override the SimIHardwareModel method:
void command callback (NosEngine::Common: :Message msg)

For an example of how data is received by and returned from the hardware model in response to a command,
refer to the command callback method inthe base SimIHardwareModel class.

10.2.4.2 Time Connection

For the hardware simulator to have a notion of time in the real world, it registers a node with NOS Engine as
a time client node. The formula for creating and using a time client node is:
1. Inthe hardware model class, add member variables for the bus and time node, e.g.:
std::unique ptr<NosEngine::Client::Bus> time bus;
NosEngine::Client::TimeClient* _time node;
2. Inthe hardware model constructor:

a. The base SimIHardwareModel class has an existing hub, member variable hub for the bus
to connect to. The connection string for NOS Engine can be retrieved from the XML configuration
data by a call like:
std::string connection string = config.get ("common.nos—-connection-
string", "tcp://127.0.0.1:12001");

b. Adda “time” type connection to the XML configuration file something like:
<connection><type>time</type><bus-name>command</bus-name><node-
name>my-time-node</node-name></connection>

c. Retrieve the bus name and node nameinto std: : stringvariables like time bus nameand
time node name. For an example of how to do so, please see the example simulator.

Page | 35

nos’

NOS3 Developer's ManualNOS3-UserManual and Developer's Gflide

d. Create a bus object:

_time bus.reset (new NosEngine::Client::Bus(_hub,
connection string, time bus name));

e. Create a time client node on the bus:

_time node = _time bus-
>get or create time client (time node name);
3. In hardware model methods that need time:
a. To get the number of “ticks” that have elapsed, call:
_time node->get last time ()

b. To convert this to real world time, the SimIHardwareModel has member variables
_absolute start time and sim microseconds per tick (set from data in the
common section of the XML configuration file), and they can be used to compute real world time
by:

_absolute start time + (double (time node->get last time () *
_sim microseconds per tick)) / 1000000.0);
4. To clean up, in the hardware model destructor, call:
_time bus.reset();

10.2.4.3 UART Connection
For hardware that is connected via UART, the formula for the hardware to creating and using a node on the
UART bus is the following:
1. Inthe hardware model class, add a member variable for the UART connection like the following:
std::unique ptr<NosEngine::Uart::Uart> uart connection;
2. Inthe hardware model constructor:

a. The base SimIHardwareModel class has an existing hub, member variable hub for the bus
to connect to. The connection string for NOS Engine can be retrieved from the XML configuration
data by a call like:
std::string connection string = config.get ("common.nos-connection-
string", "tcp://127.0.0.1:12001");

b. Add a “usart” type connection to the XML configuration file something like:
<connection><type>usart</type><bus-name>usart 0</bus-name><node-
port>99999</node-port></connection>

c. Retrieve the bus name and node port into std::string variables like bus name and
node port. For an example of how to do so, please see the example simulator.

d. Create a UART connection object:

_uart connection.reset (new NosEngine::Uart::Uart (_hub,
config.get ("simulator.name", "foosim"), connection string,
bus name)) ;

e. Open the connection and set a callback for when the hardware UART is read:

_uart connection->open (node port);
_uart connection->set read callback(

std: :bind(&FooHardwareModel: :uart read callback,
this, std::placeholders:: 1, std::placeholders:: 2));

Page | 36

nos’

3. Create a hardware model method for the callback (here is where most of the custom work for a specific
hardware model would be done):
a. The signature should be like:
void FooHardwareModel: :uart read callback(const uint8 t *buf, size t
len) ;
b. To return data, use the UART method:
size_t UART::write(const uint8_t *const buf, size_t len);
c. For an example, consult the example sim code.
4. Inthe hardware model destructor, make the call:
_uart connection->close();

10.3 Writing Your Own Simulator

The following formula describes how to create a simulator using a hardware model (and optionally a data
provider) created using the formulas above:

1. Create a main source file with the following contents:

#include <ItcLogger/Logger.hpp>
#include <sim config.hpp>

namespace Nos3

{
ItcLogger::Logger *sim logger;
}

int
main(int argc, char *argvl[])
{

std::string simulator name = "foosim"; // this is the ONLY simulator specific line!

// Determine the configuration and run the simulator

Nos3::SimConfig sc(argc, argv);

Nos3::sim logger->info("main: %s simulator starting",
simulator name.c str());

sc.run_simulator (simulator name);

Nos3::sim logger->info("main: $%s simulator terminating",
simulator name.c str());

}
2. Change “foosim” to whatever you would like the name of your simulator to be

3. Add XML like the following inside the <simulators></simulators> tagsin the standard

configuration file (the standard configuration file name is nos3-simulator.xml)
<simulator>
<name>foosim</name>
<active>true</active>
<library>libexample sim.so</library>
<hardware-model>
<type>FOOHARDWARE</type>
<connections>
<connection>
<connection-paraml>cpl</connection-paraml>
<l== .. ==>
<connection-paramN>cpN</connection-paramN>
</connection>
</connections>
<data-provider>
<type>FOOPROVIDER</type>

<provider-paraml>fppl</provider-paraml>
| —

Page | 37

NOS3 Developer's ManualNOS3-User-Manual and Developer's Gfide

nos’

<l== .0 ==>

<provider-paramN>fppN</provider-paramN>
</data-provider>
<other-hardware-parameterl1>0THER-FOO</other-hardware-parameterl>
<l== ... ==>
<other-hardware-parameterN>OTHER-FOO</other-hardware-parameterN>

</hardware-model>
</simulator>

4. Customizing the XML:

a.
b.

The simulator.name should be the same as in your main function in #1.

The simulator.active tag should be true unless you do not want your simulator to run in
which case it should be false.

The simulator.library tag should contain the name of the example simulator shared
object library file (normally 1ib<project>.so where <project> is the project name given
the project in the CMakeLists. txt file; see below)

The simulator.hardware-model . type should be the same as the string you used in the
REGISTER HARDWARE MODEL line above.

The simulator hardware-model data-provider type should be the same as the string you used in
theREGISTER_DATA_PROVIDERHneabove

All other tags are up to you... create your own names and then use the information above for
accessing the data. Note that there are examples in the source code for using several common
connection types such as UART, 12C and the command connection (used to control the simulator
with the simulator terminal). Also note that the command connection is automatically
configured for you in the SimIHardwareModel base class. To have your simulator respond
to commands to it on the command bus, all you need to do is override the
SimIHardwareModel: :command callback method in your hardware model class (the
default implementation does nothing).

Page | 38

nos’

10.4 Example Simulator

Hopefully this introduction is useful in describing the flexible, extensible framework employed in developing
NOS? simulators. This introduction has attempted to describe the design pattern used within NOS3 simulators
and described how to add hardware models (and data providers and other supporting items), and put
hardware models together into standalone simulators that can be part of the NOS? simulation environment.

For a complete example, refer to the source code and CMakelists.txt file in the nos3 git repository,
subdirectory sims/sample sim/ and refer to the configuration file in the nos3 git repository, file
sims/cfg/nos3-simulator.xml (see the simulator section with name “sample sim”). Note also
that if a new simulator's CMakeLists.txt file for a simulator has a project name line like
“project (sample sim)” at the beginning, the line “add subdirectory (sample sim)” may be
added under # NOS3 Sim Core in the sims/CMakeLists. txt file in the nos3 git repository so that the
new simulator will be built, but the sims/CMakeLists. txt fileis written to find all properly structured
and properly named directories following the form of the parent folder in nos3/sims/ being: “<name-of-your-
sim>_sim”.

Page | 39

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

11 42, A Visualization and Simulation Tool for Spacecraft Orbit and Attitude Dynamics

11.1 42 Overview

Some of the simulated hardware components require dynamic environmental data. 42 is an open source
visualization and simulation tool for spacecraft attitude and orbital dynamics and environmental data
developed by NASA’s Goddard Space Flight Center (GSFC). The role of 42 within NOS? is to provide dynamic
environmental data required by the simulated hardware components.

The presentation material on 42 describes it as a general-purpose, multi-body, multi-spacecraft simulation.
The presentation materials describe the following features of 42 which are of interest to NOS? (other features
are described as well):

1. Multiple spacecraft, anywhere in the solar system

a. Two-body, three-body orbit dynamics (with seamless transition between)
b. One sun, nine planets, 45 major moons

The presentation materials also list the following environmental models which are of interest to NOS3
(other models are described as well):
1. Planetary Ephemerides

a. From Meeus, “Astronomical Algorithms”

b. Good enough for GNC validation, not intended for mission planning
2. Gravity Models have coefficients up to 18th order and degree

a. Earth: EGM96
3. Planetary Magnetic Field Models

a. IGRF up to 10th order (Earth only)
4. Earth Atmospheric Density Models

a. MSIS-86 (thanks to John Downing)

b. Jacchia-Roberts Atmospheric Density Model (NASA SP-8021)

42 uses a collection of input files to control its execution. For NOS3, the main configuration files of interest
are the following:

7. Inp_Sim.txt — The main configuration file which defines items such as the environment (epoch, gravity
models, celestial bodies, etc.), spacecraft reference orbits and configuration files, spacecraft and
configuration files, and ground station locations.

8. Orb_LEO.txt —Spacecraft reference orbit file referred to by Inp_Sim.txt. This file specifies the orbit center
(Earth) and refers to the two line element set file which defines the spacecraft orbit.

9. SC_NOS3.txt — Spacecraft definition file referred to by Inp_Sim.txt. This file defines labels, orbit
parameters, initial attitude, body parameters, and other parameters specific to the spacecraft.

10. Inp_IPC.txt — File defining the TCP/IP or file parameters for communicating input and output to and from
42.

11. Inp_Graphics.txt — File defining the GUI configuration for 42, including what windows to display,
parameters for the point of view, various display elements such as grids and labels, and other graphic
elements properties.

Page | 40

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

12. There are several other input files which are not used much for NOS3, including Inp_Cmd.txt (defining a
command script for 42), Inp_FOV.txt (defining fields of view), Inp_Region.txt (defining regions for 42), and
Inp_TDRS.txt (defining TDRS satellites for 42).

11.2 Providing Data to a Simulator from 42

When 42 is run, it writes environmental data to a set of files that have the extension “.42”. The data written
in the “MAG.42” file can be used by the MagnetometerSimDataFileProvider data provider while
the data written in the “FOTON.42” file can be used by the GPSSimDataFileProvider.

In addition to using files of 42 data, 42 can output data to a TCP/IP socket. This output is controlled by the
input file “Inp_IPC.txt”. To output data to a TCP/IP socket and act as a server (the mode used by NOS3
hardware simulator data providers such as MagnetometerSimData42SocketProvider and
GPSSimDatad42SocketProvider), the “IPC Mode” should be set to “TX”, the “Socket Role” should be
set to “SERVER” and the “Server Host Name, Port” should be set to the host name or IP address to use and
the TCP socket port number to use.

11.3 Coordinating 42 Time

When data is output to a TCP/IP socket and In order to maintain a consistent real time reference within the
system, 42 has been modified so that it can have its time driven by NOS Engine (which also drives hardware
simulator and flight software time as well). To configure 42 to use NOS Engine driven time, the “Inp_Sim.txt”
and “Inp_NOS3.txt” files are modified as follows. In “Inp_Sim.txt” change the “Time Mode” line to have the
value “NOS3”. In “Inp_NOS3.txt” set the “NOS3 Time Connection String” line to have the connection string
for contacting the NOS Engine Standalone Server and set the “Sim Time Bus” line to the NOS Engine bus name
to use to retrieve time from.

Page | 41

nos’

11.4 Data Available from 42

The following data is currently written by 42 to the TCP/IP socket and can be used as environmental data for
data providers: date/time, spacecraft in eclipse/sunlight, spacecraft position in the inertial world frame,
direction cosine matrix for conversion from inertial world frame to rotating world frame, spacecraft position
in the rotating world frame, spacecraft velocity in the inertial world frame, direction cosine matrix for
conversion from spacecraft inertial frame to spacecraft body frame, spacecraft angular velocity, quaternion
for conversion from spacecraft inertial frame to spacecraft body frame, vector from spacecraft to sun in the
inertial world frame, magnetic field vector at the spacecraft in the inertial world frame, and spacecraft
angular momentum.

Page | 42

NOS

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

12 Flight Software Development, Especially Using cFS

The preferred operating system for use with NOS? is the open-source Core Flight System (cFS) originally
developed by NASA GSFC. This section will describe the method utilized to interface NOS® with cFS, as well
as a generic method to interface with any flight software that can compile for Linux.

12.1 cFS and NOS3

12.1.1 Operating System Abstraction Layer

Core Flight System is the FSW selected for the STF-1 mission partially due to the implementation of the
Operating System Abstraction Layer (OSAL). The OSAL provides an API that allows flight software applications
to be written without operating system (OS) specific calls. When cFS is compiled, the target OS is specified
and the build system includes the proper libraries. This allows the FSW written for the FreeRTOS target to be
built to execute on Linux and the opposite remains true. This makes NOS? an ideal development environment
when using the OSAL Linux target.

12.1.2 Platform Support Package

In addition to the OSAL, cFS includes a Platform Support Package (PSP) that includes libraries that are not OS
specific, but can be reused for a specific flight board, such as memory, clocks, timers, etc. The PSP used for
NOS? is a modified version of the Linux PSP release. In order to control timing in flight software, cFS uses
multiple timers, the main being a 1 Hz timer tick. By replacing the 1 Hz timer provided by Linux with the NOS
Engine time ticker, we can sync the time from the PSP, with the time that other NOS® components are
running.

12.1.3 Hardware Library

The third component of flight software implemented for hardware abstraction is a hardware library (HWLIB).
The HWLIB is used for component specific 1/O calls, such as 12C, UART, etc. The hardware library includes a
single header file, typically provided as drivers from the on-board computer (OBC) manufacturer, that define
the I/O function calls. When building cFS, the CMAKE build system then selects the driver source
corresponding to the target being built.

As an example, the Clyde Space EPS I/O functionality is well defined in the user’s manual, and
communications are performed over 12C. Using the NanoMind (STF-1 OBC) I12C drivers, a library called epslib.c
is written to communicate over I12C and exercise all of the EPS functionality as described in its documentation.
When compiling for the flight target, the NanoMind driver source code is selected by CMAKE and the
executable can be run on the OBC. When compiling for Linux, the CMAKE build will select the NOS? driver
source code and the executable can be run in the NOS® environment. With either path, the HWLIB and all
code using the HWLIB will remain unchanged, and only the low level drivers will be effected. The diagram
below shows the two path example as it applies to STF-1, where LIBA3200 is the NanoMind source, and
LIBA3200NOS is the NOS3source.

Page | 43

nos’

LEGEND Flight Setup Simulation Setup
CFSs Software
MOS Engine

Transports and 10

=
o
l:l HW and Drivers
H
[

Other Software

Library Selected by CMAKE
upon build. No Software
changes required

LIBA3 200

GOMSPACE Drivers

UART, I12C, 5P1, GPIO TCP, IPC

Flight Hardware

Simulated HW TCP, IPC Flight HW

Simulated HW I/O to NOS Engine Packager

Linux Drivers

Can add as many HW NOS Clients UART, 12C, 5P1, GPIO
as required by the FSW

Flight Hardware

| Figure 2228 - Flight and Simulation Targets

12.2 Connecting cFS to NOS?

In order to use NOS? with cFS, modifications are required to the open-source release. The recommended
method for using NOS3 is described in the NOS? User’s Guide, in which these modifications have already been
made. If not using the cFS included with the NOS3 release, it is recommended to use the CMAKE build system,
as the legacy build is not currently supported. The necessary changes are described below, where “proj” is
the cFS directory being integrated.

1. Edit the targets.cmake file in the nos3/fsw/nos3_defs folder to include the list of applications to be built.
Set the target name and system as shown below.

SET (TGT1_NAME linux)
SET (TGT1_SYSTEM linux)

2. Edit the toolchain-linux.cmake from the nos3/fsw/nos3_defs directory .
3. Edit the nos-linux PSP from the nos3/fsw/psp/fsw directory.
4. Add to the apps directory in nos3/fsw/apps as needed.

Page | 44

NOS®

NOS3 Developer's ManualNOS3-UserManual and Developer's Glide

5. Create a nos3/fsw/components/hwlib or edit the nos3/fsw/components/hwlib directory.
a. The CMakelists.txt file in nos3/fsw/components/hwlib will provide a good example of how to
include driver source code as described in section 6.1.3.
b. Add a sim folder to this directory to store the NOS? drivers for 1/0. (See section 6.3 for an
example driver)
6. Edit or Add the needed simulation components in the nos3/sims directory.

12.3 NOS:® Drivers and Other FSW

It is possible to connect NOS? to FSWs other than cFS, although this has not been extensively tested. The two
main requirements are the availability of source code for the 1/O drivers, and the ability to compile/run on
Linux. If these two conditions are met, the drivers for the target hardware can be swapped for NOS3 drivers
as described in previous sections.

12.3.1 Writing a NOS? Driver

The NOS? source is the best resource for examples to aid in writing a new NOS? driver. The UART driver and
STF-1 NAV (navigation) application will be used in the example described in this section. For this example,
the NAV application is written for cFS and located in the novatel_oem615 component folder, but this
application could just as easily be any other FSW source file.

12.3.1.1 Application and Hardware Library

The application that is communicating with hardware will require the 1/0 calls to be implemented exactly as
provided by the OBC manufacturer. The NAV application makes certain calls to a Novatel GPS over the UART
from the OBC. Not all of the GPS functionality is necessary to be exercised by the NAV application, so the
low level calls to the UART are wrapped in functions in the hardware library, and the NAV app includes this
library. As an example, the NAV application will be commanded to get the current Position/Velocity/Time
reading, and will make the call NAV_ReadAvailableData as seen in the following code excerpt. Notice the
include statement for the hardware library.

#include “hwlib.h”

/* some code removed for readability see nos3/fsw/components/novatel oem6l5/fsw/src/nav_app.c */

/* Request NAV data */
case NAV_REQ DATA CC:

CFE_EVS_SendEvent (NAV_CMD REQ DATA EID, CFE_EVS DEBUG, "Request NAV GPS Data");

/* todo - fix the 1024 hard coded number */
DataBuffer = (uint8 t *)malloc((1024) * sizeof (uint8 t));

/* Read the GPS data from the UART */
NAV_ReadAvailableData (DataBuffer, &Datalen);

GPSSerialiation GPSData = NAV_ ParseOEM615Bestxyza (DataBuffer, Datalen);

The function NAV_ReadAvailableData is a wrapper for the low level UART calls to the OBC driver. The function
can be seen in the following code excerpt. This code must include the hardware library, as seen in the first line
of the excerpt, which includes the OBC drivers itself. The bold function calls are from the OBC driver.

Page | 45

nos’

NOS3 Developer's ManualNOS3-UserManual and Developer's Gflide

#include “hwlib.h”
/* some code removed for readability see nos3/fsw/components/novatel oemé6l5/fsw/src/nav_app.c */

static void NAV ReadAvailableData (uint8 DataBuffer[], int32 *DatalLen)

{
int32 1 = 0;

/* check how many bytes are waiting on the uart */

*Datalen = uart bytes available (NAV_UART.handle);

//0S_printf ("NAV ReadAvailableData(): gps messages waiting: %1d bytes\n", (long
int) *DatalLen) ;

/* declare an out buffer to hold that data */
if (*DatalLen > 0)
{
/* grab the bytes */
uart _read port (NAV_UART.handle, DataBuffer, *Datalen);
}

else
{
/* 0S_printf ("GPS_ReadAvailableData(): gps uart data len is 0\n"); */

12.3.1.2 The NOS? Driver

The example described above uses the hwlib.h header which provides the device drivers for the

Novatel OEM615. This header is included by any library making calls to the UART and can be stored at any
location. In this case both the hardware library and device drivers are located in
nos3/fsw/components/hwlib/fsw/public_inc/.

The functions used by the GPS app in this example are uart_bytes_available and uart_read_port, which are
defined in nos3/fsw/components/hwlib/sim/src/libuart.c. The uart_bytes_available function will be
examined in more detail for this example. The code excerpt below shows the function.

/* usart number bytes available */
int32 uart bytes available (int32 handle)
{
int bytes = 0;
NE Uart *dev =
if (dev)
{

nos_get usart device((int)handle);

0S MutSemTake (nos_usart mutex);
bytes = (int)NE uart available (dev);
OS_MutSemGive (nos_usart mutex);

}

return bytes;

The function above is used to return the number of bytes available from the USART buffer to the calling
function. The NE_uart_available function used in this code is provided by NOS Engine (reference section 3).
Ddetails about the UART, 12C, and SPI NOS plugins can be found in the NOS Engine user’s manual.

12.3.1.3 Build System

The build system must be able to properly select the correct driver source code based on the target being
compiled. In this case, CMake is used by both cFS and NOS® and can accomplish this swap easily. As

Page | 46

nos’

described in section 6.2 the targets.cmake file in nos3/fsw/nos3_defs will an example of how to include
driver source code; an example Cmake build may be found in

nos3/fsw/components/novatel_oem615/CmakelList.txt.

Page | 47

nos’

13 Hardware In The Loop

Hardware in the Loop functionality is being reevaluated as a feature to include in future releases.

Page | 48

nos’

14 Orbit, Inview, and Power Planning Tool

Several planning tools are envisioned to be created for STF-1 mission operations. The first is the Orbit, Inview,
and Power Planning tool. The role of OIPP will be to execute daily and perform the following tasks:

1. Retrieve the most up to date two-line element set (TLE) data string for the STF-1 CubeSat,
Propagate this element set forward for a number of days in the future, compute in view periods with STF-
1 ground antennas (nominally only NASA Wallops) for a number of days in the future, and determine
sunlight and eclipse periods for STF-1 for a number of days.

It should be noted that the accuracy of all predictions deteriorates as the propagation is performed further
into the future, thus the most accurate data will typically be for the first day in the future predictions and the
least accurate data will typically be for the last day in the future predictions. Thus, the later future data is
used for approximate planning, while the near future data is used for upcoming day(s) operations.

Satellite STF1 Report

NOTE: Times displayed on the timeline are for the timezone: EDT

Report from day -1 to day |

Two Line Element Set for Epoch 2017-06-29 16:59:59.999712 (UTC) -
Satellite Name=STF1 Satellite Number=77777. Launch Year=17, Launch Day=077. Launch Piece=A Epoch Year=17. Epoch Day=180.70833333. Mean Motion Dot= 00000000 Mean Motion Double Dot=0. 00000-0, BSTAR=0. 46471-4, Element Number= 5 Inclination= 85.9976. RAAN=
75.0000, Eccentricity=0.0012644 Argument of Perigee=249 2390. Mean Anomaly=287.5576 Mean Motion=15 24071118, Rev at Epoch="7

With inviews for ground station: Wallops Antenna (Radar Road, Temperanceville, VA 23442)
(Latitude 37.861943, Longitude -75.509577, Elevation 3.8, Timezone EDT)
Minimum elevation above the horizen for inview: 10.0

QLT EVE PN gl YESTERDAY, Day -1: 2017-06-29 00:00:00-04:00 to 2017-08-20 23:58:50-04:00

Wiallops Antenna Day Shift Wallops Antenna Day Shift (BAM-4PM ground station local fime, which is EDT)

Wallops Antenna - S/C 77777 imiews | o
SIC 77777 In Sunlight Times [2 3 4 5 6 7 8 9 10 il 12 13 1 15

12 1 2 3 4 5 6 7 8 9 10 il 12 1 2 3 4 5 6 7 8 9 10 il

ULESEEEVER Y=gl TODAY, Day 0: 2017-06-30 00:00:00-04:00 to 2017-06-30 23:59:59-04:00

Wallops Antenna Day Shif jon local time, which is EDT)

Wallops Antenna - S/C 77777 Iniews o i | Y |
SIC 77777 In Sunlight Times 0 1 2 3 4 5 5 7 8 9 10 gl 12 13 14

12 1 2 3 4 5 6 7 8 9 10 1 12 1 2 3 4 5 6 7 8 9 10 1
AN PM

Times Displayed are EDT FUTURE, Day 1: 2017-07-01 00:00:00-04:00 to 2017-07-01 23:59:58-04:00

Wallops Antenna Day Shift Wallops Antenna Day Shift 8AN-4PM ground station local fime, which is EDT)

Figure 2329 - Example-OIPP Report

A link to execute OIPP in the NOS3 VM can be found on the desktop at “stf1-oipp-demo.sh”. Double clicking
the script will run for a while, generating the report “stf1-oipp.html” on the desktop, which will then be
displayed similar to what is shown above in a web browser. The tool can be found in the directory
“/home/nos3/Desktop/planning/OrbitinviewPowerPrediction”. For the demo version, the TLE that is used is
the same one that is used by 42 and is symbolically linked in the directory “/home/nos3/Desktop/planning”.
QUICK-START : python ./generate_html_report.py

Read the README.MD

sudo -H pip install pytz

sudo -H pip install pyorbital

sudo -H pip install geocoder

sudo -H pip install openpyxl

Page | 49

NOS3 Developer's ManualNOS3-UserManual and Developer's Gflide

nos’

sudo -H pip install python-dateutil
sudo -H pip install matplotlib

15 FAQ

e How do I logon?

O

O

User: Vagrant Password: Vagrant
User: nos3 Pasword: nos3123!

e NOS Engine bus ports fail on launch

@)

NOS Engine allows dynamic connections and disconnects and ensures ports are closed before
connecting. Check to make sure, the ports may work again after an initial “Not connect.”

e When the cFS FSW starts it cannot find my application or startup script

@)

Make sure that your application is built correctly and the .so is present. Likewise, ensure that the
app name is correctly listed in nos3/fsw/nos3_defs/cfe es startup.scr and
nos3/fsw/nos3_defs/targets.cmake.

For further information, please check the NASA/cFS Git Repository and documentation.

e How do | connect my own standalone FSW?

O

Be sure to have all port numbers consistent between all components in NOS?, including 42.

e Why does cFS constantly crash on start-up and/or force me to restart my PC to rerun?

O

NASA’s cFS is safety-critical flight software, make sure your are building your applications to
specification and that you are properly using the PSP and OSAL calls from within your apps.

It is best to not run cFS as sudo. If you are doing this, make sure you have configured for your host
or are providing appropriate run-time arguments with cFS.

Page | 50

