# naucoin/VTKSlicerWidgets

Switch branches/tags
Nothing to show
Fetching contributors…
Cannot retrieve contributors at this time
179 lines (156 sloc) 6.36 KB
 /*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticQuadraticHexahedron.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkBiQuadraticQuadraticHexahedron - cell represents a biquadratic, // 24-node isoparametric hexahedron // .SECTION Description // vtkBiQuadraticQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to // represent a three-dimensional, 24-node isoparametric biquadratic // hexahedron. The interpolation is the standard finite element, // biquadratic-quadratic // isoparametric shape function. The cell includes mid-edge and center-face nodes. The // ordering of the 24 points defining the cell is point ids (0-7,8-19, 20-23) // where point ids 0-7 are the eight corner vertices of the cube; followed by // twelve midedge nodes (8-19), nodes 20-23 are the center-face nodes. Note that // these midedge nodes correspond lie // on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), // (7,4), (0,4), (1,5), (2,6), (3,7). The center face nodes lieing in quad // 22-(0,1,5,4), 21-(1,2,6,5), 23-(2,3,7,6) and 22-(3,0,4,7) // // \verbatim // // top // 7--14--6 // | | // 15 13 // | | // 4--12--5 // // middle // 19--23--18 // | | // 20 21 // | | // 16--22--17 // // bottom // 3--10--2 // | | // 11 9 // | | // 0-- 8--1 // // \endverbatim // // // .SECTION See Also // vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra // vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge // // .SECTION Thanks // Thanks to Soeren Gebbert who developed this class and // integrated it into VTK 5.0. #ifndef __vtkBiQuadraticQuadraticHexahedron_h #define __vtkBiQuadraticQuadraticHexahedron_h #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkQuadraticQuad; class vtkBiQuadraticQuad; class vtkHexahedron; class vtkDoubleArray; class VTK_FILTERING_EXPORT vtkBiQuadraticQuadraticHexahedron : public vtkNonLinearCell { public: static vtkBiQuadraticQuadraticHexahedron *New(); vtkTypeMacro(vtkBiQuadraticQuadraticHexahedron,vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Implement the vtkCell API. See the vtkCell API for descriptions // of these methods. int GetCellType() {return VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON;} int GetCellDimension() {return 3;} int GetNumberOfEdges() {return 12;} int GetNumberOfFaces() {return 6;} vtkCell *GetEdge(int); vtkCell *GetFace(int); int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); virtual double *GetParametricCoords(); // Description: // Clip this biquadratic hexahedron using scalar value provided. Like // contouring, except that it cuts the hex to produce linear // tetrahedron. void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut); // Description: // Line-edge intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); // Description: // @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 static void InterpolationFunctions(double pcoords[3], double weights[24]); // Description: // @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 static void InterpolationDerivs(double pcoords[3], double derivs[72]); // Description: // Compute the interpolation functions/derivatives // (aka shape functions/derivatives) virtual void InterpolateFunctions(double pcoords[3], double weights[24]) { vtkBiQuadraticQuadraticHexahedron::InterpolationFunctions(pcoords,weights); } virtual void InterpolateDerivs(double pcoords[3], double derivs[72]) { vtkBiQuadraticQuadraticHexahedron::InterpolationDerivs(pcoords,derivs); } // Description: // Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). // Ids are related to the cell, not to the dataset. static int *GetEdgeArray(int edgeId); static int *GetFaceArray(int faceId); // Description: // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void JacobianInverse(double pcoords[3], double **inverse, double derivs[72]); protected: vtkBiQuadraticQuadraticHexahedron(); ~vtkBiQuadraticQuadraticHexahedron(); vtkQuadraticEdge *Edge; vtkQuadraticQuad *Face; vtkBiQuadraticQuad *BiQuadFace; vtkHexahedron *Hex; vtkPointData *PointData; vtkCellData *CellData; vtkDoubleArray *CellScalars; vtkDoubleArray *Scalars; void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars); private: vtkBiQuadraticQuadraticHexahedron(const vtkBiQuadraticQuadraticHexahedron&); // Not implemented. void operator=(const vtkBiQuadraticQuadraticHexahedron&); // Not implemented. }; #endif