Permalink
Switch branches/tags
Nothing to show
Find file
Fetching contributors…
Cannot retrieve contributors at this time
2216 lines (1919 sloc) 59.1 KB
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageData.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageData.h"
#include "vtkCellData.h"
#include "vtkDataArray.h"
#include "vtkGenericCell.h"
#include "vtkInformation.h"
#include "vtkInformationIntegerKey.h"
#include "vtkInformationVector.h"
#include "vtkLargeInteger.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPixel.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkVertex.h"
#include "vtkVoxel.h"
vtkStandardNewMacro(vtkImageData);
//----------------------------------------------------------------------------
vtkImageData::vtkImageData()
{
int idx;
this->Vertex = 0;
this->Line = 0;
this->Pixel = 0;
this->Voxel = 0;
this->DataDescription = VTK_EMPTY;
for (idx = 0; idx < 3; ++idx)
{
this->Dimensions[idx] = 0;
this->Increments[idx] = 0;
this->Origin[idx] = 0.0;
this->Spacing[idx] = 1.0;
}
int extent[6] = {0, -1, 0, -1, 0, -1};
memcpy(this->Extent, extent, 6*sizeof(int));
this->Information->Set(vtkDataObject::DATA_EXTENT_TYPE(), VTK_3D_EXTENT);
this->Information->Set(vtkDataObject::DATA_EXTENT(), this->Extent, 6);
}
//----------------------------------------------------------------------------
vtkImageData::~vtkImageData()
{
if (this->Vertex)
{
this->Vertex->Delete();
}
if (this->Line)
{
this->Line->Delete();
}
if (this->Pixel)
{
this->Pixel->Delete();
}
if (this->Voxel)
{
this->Voxel->Delete();
}
}
//----------------------------------------------------------------------------
// Copy the geometric and topological structure of an input structured points
// object.
void vtkImageData::CopyStructure(vtkDataSet *ds)
{
vtkImageData *sPts=static_cast<vtkImageData *>(ds);
this->Initialize();
int i;
for (i=0; i<3; i++)
{
this->Dimensions[i] = sPts->Dimensions[i];
this->Spacing[i] = sPts->Spacing[i];
this->Origin[i] = sPts->Origin[i];
}
this->SetExtent(sPts->GetExtent());
vtkInformation* thisPInfo = this->GetPipelineInformation();
vtkInformation* thatPInfo = ds->GetPipelineInformation();
if(thisPInfo && thatPInfo)
{
// copy point data.
if (thatPInfo->Has(POINT_DATA_VECTOR()))
{
thisPInfo->CopyEntry(thatPInfo, POINT_DATA_VECTOR());
}
// copy cell data.
if (thatPInfo->Has(CELL_DATA_VECTOR()))
{
thisPInfo->CopyEntry(thatPInfo, CELL_DATA_VECTOR());
}
}
this->CopyInformation(sPts);
}
//----------------------------------------------------------------------------
void vtkImageData::Initialize()
{
this->Superclass::Initialize();
if(this->Information)
{
this->SetDimensions(0,0,0);
}
}
//----------------------------------------------------------------------------
void vtkImageData::CopyInformationToPipeline(vtkInformation* request,
vtkInformation* input,
vtkInformation* output,
int forceCopy)
{
// Let the superclass copy whatever it wants.
this->Superclass::CopyInformationToPipeline(request, input, output, forceCopy);
// Set default pipeline information during a request for information.
if(request->Has(vtkDemandDrivenPipeline::REQUEST_INFORMATION()))
{
// Copy settings from the input if available. Otherwise use our
// current settings.
if(input && input->Has(ORIGIN()))
{
output->CopyEntry(input, ORIGIN());
}
else if (!output->Has(ORIGIN()) || forceCopy)
{
// Set origin (only if it is not set).
output->Set(ORIGIN(), this->GetOrigin(), 3);
}
if(input && input->Has(SPACING()))
{
output->CopyEntry(input, SPACING());
}
else if (!output->Has(SPACING()) || forceCopy)
{
// Set spacing (only if it is not set).
output->Set(SPACING(), this->GetSpacing(), 3);
}
// copy of input to output (if input exists) occurs in vtkDataObject, so
// only to to check need to check if the scalar info exists in the field
// data info of the output. If it exists, then we assume the type and
// number of components are set; if not, set type and number of components
// to default values
vtkInformation *scalarInfo =
vtkDataObject::GetActiveFieldInformation(output,
FIELD_ASSOCIATION_POINTS,
vtkDataSetAttributes::SCALARS);
if (!scalarInfo || forceCopy)
{
vtkDataArray* scalars = this->GetPointData()->GetScalars();
if (scalars)
{
vtkDataObject::SetPointDataActiveScalarInfo(
output, scalars->GetDataType(), scalars->GetNumberOfComponents());
}
else
{
vtkDataObject::SetPointDataActiveScalarInfo(output, VTK_DOUBLE, 1);
}
}
}
}
//----------------------------------------------------------------------------
void vtkImageData::CopyInformationFromPipeline(vtkInformation* request)
{
// Let the superclass copy whatever it wants.
this->Superclass::CopyInformationFromPipeline(request);
// Copy pipeline information to data information before the producer
// executes.
if(request->Has(vtkDemandDrivenPipeline::REQUEST_DATA()))
{
this->CopyOriginAndSpacingFromPipeline();
}
}
//----------------------------------------------------------------------------
// Graphics filters reallocate every execute. Image filters try to reuse
// the scalars.
void vtkImageData::PrepareForNewData()
{
// free everything but the scalars
vtkDataArray *scalars = this->GetPointData()->GetScalars();
if (scalars)
{
scalars->Register(this);
}
this->Initialize();
if (scalars)
{
this->GetPointData()->SetScalars(scalars);
scalars->UnRegister(this);
}
}
//----------------------------------------------------------------------------
// The input data object must be of type vtkImageData or a subclass!
void vtkImageData::CopyTypeSpecificInformation( vtkDataObject *data )
{
vtkImageData *image = static_cast<vtkImageData *>(data);
// Copy the generic stuff
this->CopyInformation( data );
// Now do the specific stuff
this->SetOrigin( image->GetOrigin() );
this->SetSpacing( image->GetSpacing() );
this->SetScalarType( image->GetScalarType() );
this->SetNumberOfScalarComponents(
image->GetNumberOfScalarComponents() );
}
//----------------------------------------------------------------------------
template <class T>
unsigned long vtkImageDataGetTypeSize(T*)
{
return sizeof(T);
}
//----------------------------------------------------------------------------
unsigned long vtkImageData::GetEstimatedMemorySize()
{
vtkLargeInteger size;
int idx;
int *uExt;
unsigned long lsize;
// Start with the number of scalar components
size = static_cast<unsigned long>(this->GetNumberOfScalarComponents());
// Multiply by the number of bytes per scalar
switch (this->GetScalarType())
{
vtkTemplateMacro(
size *= vtkImageDataGetTypeSize(static_cast<VTK_TT*>(0))
);
case VTK_BIT:
size /= 8;
break;
default:
vtkWarningMacro(<< "GetExtentMemorySize: "
<< "Cannot determine input scalar type");
}
// Multiply by the number of scalars.
uExt = this->GetUpdateExtent();
for (idx = 0; idx < 3; ++idx)
{
size = size*(uExt[idx*2+1] - uExt[idx*2] + 1);
}
// In case the extent is set improperly, set the size to 0
if (size < 0)
{
vtkWarningMacro("Oops, size should not be negative.");
size = 0;
}
// Convert from double bytes to unsigned long kilobytes
size = size >> 10;
lsize = size.CastToUnsignedLong();
return lsize;
}
//----------------------------------------------------------------------------
vtkCell *vtkImageData::GetCell(vtkIdType cellId)
{
vtkCell *cell = NULL;
int loc[3];
vtkIdType idx, npts;
int iMin, iMax, jMin, jMax, kMin, kMax;
double x[3];
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
// Use vtkIdType to avoid overflow on large images
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
vtkIdType d01 = dims[0]*dims[1];
iMin = iMax = jMin = jMax = kMin = kMax = 0;
if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0)
{
vtkErrorMacro("Requesting a cell from an empty image.");
return NULL;
}
switch (this->DataDescription)
{
case VTK_EMPTY:
//cell = this->EmptyCell;
return NULL;
case VTK_SINGLE_POINT: // cellId can only be = 0
cell = this->Vertex;
break;
case VTK_X_LINE:
iMin = cellId;
iMax = cellId + 1;
cell = this->Line;
break;
case VTK_Y_LINE:
jMin = cellId;
jMax = cellId + 1;
cell = this->Line;
break;
case VTK_Z_LINE:
kMin = cellId;
kMax = cellId + 1;
cell = this->Line;
break;
case VTK_XY_PLANE:
iMin = cellId % (dims[0]-1);
iMax = iMin + 1;
jMin = cellId / (dims[0]-1);
jMax = jMin + 1;
cell = this->Pixel;
break;
case VTK_YZ_PLANE:
jMin = cellId % (dims[1]-1);
jMax = jMin + 1;
kMin = cellId / (dims[1]-1);
kMax = kMin + 1;
cell = this->Pixel;
break;
case VTK_XZ_PLANE:
iMin = cellId % (dims[0]-1);
iMax = iMin + 1;
kMin = cellId / (dims[0]-1);
kMax = kMin + 1;
cell = this->Pixel;
break;
case VTK_XYZ_GRID:
iMin = cellId % (dims[0] - 1);
iMax = iMin + 1;
jMin = (cellId / (dims[0] - 1)) % (dims[1] - 1);
jMax = jMin + 1;
kMin = cellId / ((dims[0] - 1) * (dims[1] - 1));
kMax = kMin + 1;
cell = this->Voxel;
break;
}
// Extract point coordinates and point ids
// Ids are relative to extent min.
npts = 0;
for (loc[2]=kMin; loc[2]<=kMax; loc[2]++)
{
x[2] = origin[2] + (loc[2]+extent[4]) * spacing[2];
for (loc[1]=jMin; loc[1]<=jMax; loc[1]++)
{
x[1] = origin[1] + (loc[1]+extent[2]) * spacing[1];
for (loc[0]=iMin; loc[0]<=iMax; loc[0]++)
{
x[0] = origin[0] + (loc[0]+extent[0]) * spacing[0];
idx = loc[0] + loc[1]*dims[0] + loc[2]*d01;
cell->PointIds->SetId(npts,idx);
cell->Points->SetPoint(npts++,x);
}
}
}
return cell;
}
//----------------------------------------------------------------------------
void vtkImageData::GetCell(vtkIdType cellId, vtkGenericCell *cell)
{
vtkIdType npts, idx;
int loc[3];
int iMin, iMax, jMin, jMax, kMin, kMax;
const double *origin = this->Origin;
const double *spacing = this->Spacing;
double x[3];
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
vtkIdType d01 = dims[0]*dims[1];
iMin = iMax = jMin = jMax = kMin = kMax = 0;
if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0)
{
vtkErrorMacro("Requesting a cell from an empty image.");
cell->SetCellTypeToEmptyCell();
return;
}
switch (this->DataDescription)
{
case VTK_EMPTY:
cell->SetCellTypeToEmptyCell();
return;
case VTK_SINGLE_POINT: // cellId can only be = 0
cell->SetCellTypeToVertex();
break;
case VTK_X_LINE:
iMin = cellId;
iMax = cellId + 1;
cell->SetCellTypeToLine();
break;
case VTK_Y_LINE:
jMin = cellId;
jMax = cellId + 1;
cell->SetCellTypeToLine();
break;
case VTK_Z_LINE:
kMin = cellId;
kMax = cellId + 1;
cell->SetCellTypeToLine();
break;
case VTK_XY_PLANE:
iMin = cellId % (dims[0]-1);
iMax = iMin + 1;
jMin = cellId / (dims[0]-1);
jMax = jMin + 1;
cell->SetCellTypeToPixel();
break;
case VTK_YZ_PLANE:
jMin = cellId % (dims[1]-1);
jMax = jMin + 1;
kMin = cellId / (dims[1]-1);
kMax = kMin + 1;
cell->SetCellTypeToPixel();
break;
case VTK_XZ_PLANE:
iMin = cellId % (dims[0]-1);
iMax = iMin + 1;
kMin = cellId / (dims[0]-1);
kMax = kMin + 1;
cell->SetCellTypeToPixel();
break;
case VTK_XYZ_GRID:
iMin = cellId % (dims[0] - 1);
iMax = iMin + 1;
jMin = (cellId / (dims[0] - 1)) % (dims[1] - 1);
jMax = jMin + 1;
kMin = cellId / ((dims[0] - 1) * (dims[1] - 1));
kMax = kMin + 1;
cell->SetCellTypeToVoxel();
break;
}
// Extract point coordinates and point ids
for (npts=0,loc[2]=kMin; loc[2]<=kMax; loc[2]++)
{
x[2] = origin[2] + (loc[2]+extent[4]) * spacing[2];
for (loc[1]=jMin; loc[1]<=jMax; loc[1]++)
{
x[1] = origin[1] + (loc[1]+extent[2]) * spacing[1];
for (loc[0]=iMin; loc[0]<=iMax; loc[0]++)
{
x[0] = origin[0] + (loc[0]+extent[0]) * spacing[0];
idx = loc[0] + loc[1]*dims[0] + loc[2]*d01;
cell->PointIds->SetId(npts,idx);
cell->Points->SetPoint(npts++,x);
}
}
}
}
//----------------------------------------------------------------------------
// Fast implementation of GetCellBounds(). Bounds are calculated without
// constructing a cell.
void vtkImageData::GetCellBounds(vtkIdType cellId, double bounds[6])
{
int loc[3], iMin, iMax, jMin, jMax, kMin, kMax;
double x[3];
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
iMin = iMax = jMin = jMax = kMin = kMax = 0;
if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0)
{
vtkErrorMacro("Requesting cell bounds from an empty image.");
bounds[0] = bounds[1] = bounds[2] = bounds[3]
= bounds[4] = bounds[5] = 0.0;
return;
}
switch (this->DataDescription)
{
case VTK_EMPTY:
return;
case VTK_SINGLE_POINT: // cellId can only be = 0
break;
case VTK_X_LINE:
iMin = cellId;
iMax = cellId + 1;
break;
case VTK_Y_LINE:
jMin = cellId;
jMax = cellId + 1;
break;
case VTK_Z_LINE:
kMin = cellId;
kMax = cellId + 1;
break;
case VTK_XY_PLANE:
iMin = cellId % (dims[0]-1);
iMax = iMin + 1;
jMin = cellId / (dims[0]-1);
jMax = jMin + 1;
break;
case VTK_YZ_PLANE:
jMin = cellId % (dims[1]-1);
jMax = jMin + 1;
kMin = cellId / (dims[1]-1);
kMax = kMin + 1;
break;
case VTK_XZ_PLANE:
iMin = cellId % (dims[0]-1);
iMax = iMin + 1;
kMin = cellId / (dims[0]-1);
kMax = kMin + 1;
break;
case VTK_XYZ_GRID:
iMin = cellId % (dims[0] - 1);
iMax = iMin + 1;
jMin = (cellId / (dims[0] - 1)) % (dims[1] - 1);
jMax = jMin + 1;
kMin = cellId / ((dims[0] - 1) * (dims[1] - 1));
kMax = kMin + 1;
break;
}
// carefully compute the bounds
if (kMax >= kMin && jMax >= jMin && iMax >= iMin)
{
bounds[0] = bounds[2] = bounds[4] = VTK_DOUBLE_MAX;
bounds[1] = bounds[3] = bounds[5] = VTK_DOUBLE_MIN;
// Extract point coordinates
for (loc[2]=kMin; loc[2]<=kMax; loc[2]++)
{
x[2] = origin[2] + (loc[2]+extent[4]) * spacing[2];
bounds[4] = (x[2] < bounds[4] ? x[2] : bounds[4]);
bounds[5] = (x[2] > bounds[5] ? x[2] : bounds[5]);
}
for (loc[1]=jMin; loc[1]<=jMax; loc[1]++)
{
x[1] = origin[1] + (loc[1]+extent[2]) * spacing[1];
bounds[2] = (x[1] < bounds[2] ? x[1] : bounds[2]);
bounds[3] = (x[1] > bounds[3] ? x[1] : bounds[3]);
}
for (loc[0]=iMin; loc[0]<=iMax; loc[0]++)
{
x[0] = origin[0] + (loc[0]+extent[0]) * spacing[0];
bounds[0] = (x[0] < bounds[0] ? x[0] : bounds[0]);
bounds[1] = (x[0] > bounds[1] ? x[0] : bounds[1]);
}
}
else
{
vtkMath::UninitializeBounds(bounds);
}
}
//----------------------------------------------------------------------------
double *vtkImageData::GetPoint(vtkIdType ptId)
{
static double x[3];
int i, loc[3];
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
x[0] = x[1] = x[2] = 0.0;
if (dims[0] == 0 || dims[1] == 0 || dims[2] == 0)
{
vtkErrorMacro("Requesting a point from an empty image.");
return x;
}
// "loc" holds the point x,y,z indices
loc[0] = loc[1] = loc[2] = 0;
switch (this->DataDescription)
{
case VTK_EMPTY:
return x;
case VTK_SINGLE_POINT:
break;
case VTK_X_LINE:
loc[0] = ptId;
break;
case VTK_Y_LINE:
loc[1] = ptId;
break;
case VTK_Z_LINE:
loc[2] = ptId;
break;
case VTK_XY_PLANE:
loc[0] = ptId % dims[0];
loc[1] = ptId / dims[0];
break;
case VTK_YZ_PLANE:
loc[1] = ptId % dims[1];
loc[2] = ptId / dims[1];
break;
case VTK_XZ_PLANE:
loc[0] = ptId % dims[0];
loc[2] = ptId / dims[0];
break;
case VTK_XYZ_GRID:
loc[0] = ptId % dims[0];
loc[1] = (ptId / dims[0]) % dims[1];
loc[2] = ptId / (dims[0]*dims[1]);
break;
}
for (i=0; i<3; i++)
{
x[i] = origin[i] + (loc[i]+extent[i*2]) * spacing[i];
}
return x;
}
//----------------------------------------------------------------------------
vtkIdType vtkImageData::FindPoint(double x[3])
{
int i, loc[3];
double d;
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
//
// Compute the ijk location
//
for (i=0; i<3; i++)
{
d = x[i] - origin[i];
loc[i] = static_cast<int>((d / spacing[i]) + 0.5);
if ( loc[i] < extent[i*2] || loc[i] > extent[i*2+1] )
{
return -1;
}
// since point id is relative to the first point actually stored
loc[i] -= extent[i*2];
}
//
// From this location get the point id
//
return loc[2]*dims[0]*dims[1] + loc[1]*dims[0] + loc[0];
}
//----------------------------------------------------------------------------
vtkIdType vtkImageData::FindCell(double x[3], vtkCell *vtkNotUsed(cell),
vtkGenericCell *vtkNotUsed(gencell),
vtkIdType vtkNotUsed(cellId),
double vtkNotUsed(tol2),
int& subId, double pcoords[3],
double *weights)
{
return
this->FindCell( x, NULL, 0, 0.0, subId, pcoords, weights );
}
//----------------------------------------------------------------------------
vtkIdType vtkImageData::FindCell(double x[3], vtkCell *vtkNotUsed(cell),
vtkIdType vtkNotUsed(cellId),
double vtkNotUsed(tol2),
int& subId, double pcoords[3], double *weights)
{
int loc[3];
if ( this->ComputeStructuredCoordinates(x, loc, pcoords) == 0 )
{
return -1;
}
// NOTE: Do not use the Voxel ivar for this. That ivar may be NULL
// if the dimensionality of the image data is less than 3.
vtkVoxel::InterpolationFunctions(pcoords,weights);
//
// From this location get the cell id
//
subId = 0;
return this->ComputeCellId(loc);
}
//----------------------------------------------------------------------------
vtkCell *vtkImageData::FindAndGetCell(double x[3],
vtkCell *vtkNotUsed(cell),
vtkIdType vtkNotUsed(cellId),
double vtkNotUsed(tol2), int& subId,
double pcoords[3], double *weights)
{
int i, j, k, ijk[3], loc[3];
vtkIdType npts, idx;
double xOut[3];
int iMax = 0;
int jMax = 0;
int kMax = 0;;
vtkCell *cell = NULL;
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
if ( this->ComputeStructuredCoordinates(x, loc, pcoords) == 0 )
{
return NULL;
}
//
// Get the parametric coordinates and weights for interpolation
//
switch (this->DataDescription)
{
case VTK_EMPTY:
return NULL;
case VTK_SINGLE_POINT: // cellId can only be = 0
iMax = loc[0];
jMax = loc[1];
kMax = loc[2];
cell = this->Vertex;
break;
case VTK_X_LINE:
iMax = loc[0] + 1;
jMax = loc[1];
kMax = loc[2];
cell = this->Line;
break;
case VTK_Y_LINE:
iMax = loc[0];
jMax = loc[1] + 1;
kMax = loc[2];
cell = this->Line;
break;
case VTK_Z_LINE:
iMax = loc[0];
jMax = loc[1];
kMax = loc[2] + 1;
cell = this->Line;
break;
case VTK_XY_PLANE:
iMax = loc[0] + 1;
jMax = loc[1] + 1;
kMax = loc[2];
cell = this->Pixel;
break;
case VTK_YZ_PLANE:
iMax = loc[0];
jMax = loc[1] + 1;
kMax = loc[2] + 1;
cell = this->Pixel;
break;
case VTK_XZ_PLANE:
iMax = loc[0] + 1;
jMax = loc[1];
kMax = loc[2] + 1;
cell = this->Pixel;
break;
case VTK_XYZ_GRID:
iMax = loc[0] + 1;
jMax = loc[1] + 1;
kMax = loc[2] + 1;
cell = this->Voxel;
break;
}
cell->InterpolateFunctions(pcoords, weights);
npts = 0;
for (k = loc[2]; k <= kMax; k++)
{
ijk[2] = k;
xOut[2] = origin[2] + k * spacing[2];
for (j = loc[1]; j <= jMax; j++)
{
ijk[1] = j;
xOut[1] = origin[1] + j * spacing[1];
for (i = loc[0]; i <= iMax; i++)
{
ijk[0] = i;
xOut[0] = origin[0] + i * spacing[0];
idx = this->ComputePointId(ijk);
cell->PointIds->SetId(npts,idx);
cell->Points->SetPoint(npts++,xOut);
idx++;
}
}
}
subId = 0;
return cell;
}
//----------------------------------------------------------------------------
int vtkImageData::GetCellType(vtkIdType vtkNotUsed(cellId))
{
switch (this->DataDescription)
{
case VTK_EMPTY:
return VTK_EMPTY_CELL;
case VTK_SINGLE_POINT:
return VTK_VERTEX;
case VTK_X_LINE: case VTK_Y_LINE: case VTK_Z_LINE:
return VTK_LINE;
case VTK_XY_PLANE: case VTK_YZ_PLANE: case VTK_XZ_PLANE:
return VTK_PIXEL;
case VTK_XYZ_GRID:
return VTK_VOXEL;
default:
vtkErrorMacro(<<"Bad data description!");
return VTK_EMPTY_CELL;
}
}
//----------------------------------------------------------------------------
void vtkImageData::ComputeBounds()
{
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
if ( extent[0] > extent[1] ||
extent[2] > extent[3] ||
extent[4] > extent[5] )
{
vtkMath::UninitializeBounds(this->Bounds);
return;
}
int swapXBounds = (spacing[0] < 0); // 1 if true, 0 if false
int swapYBounds = (spacing[1] < 0); // 1 if true, 0 if false
int swapZBounds = (spacing[2] < 0); // 1 if true, 0 if false
this->Bounds[0] = origin[0] + (extent[0+swapXBounds] * spacing[0]);
this->Bounds[2] = origin[1] + (extent[2+swapYBounds] * spacing[1]);
this->Bounds[4] = origin[2] + (extent[4+swapZBounds] * spacing[2]);
this->Bounds[1] = origin[0] + (extent[1-swapXBounds] * spacing[0]);
this->Bounds[3] = origin[1] + (extent[3-swapYBounds] * spacing[1]);
this->Bounds[5] = origin[2] + (extent[5-swapZBounds] * spacing[2]);
}
//----------------------------------------------------------------------------
// Given structured coordinates (i,j,k) for a voxel cell, compute the eight
// gradient values for the voxel corners. The order in which the gradient
// vectors are arranged corresponds to the ordering of the voxel points.
// Gradient vector is computed by central differences (except on edges of
// volume where forward difference is used). The scalars s are the scalars
// from which the gradient is to be computed. This method will treat
// only 3D structured point datasets (i.e., volumes).
void vtkImageData::GetVoxelGradient(int i, int j, int k, vtkDataArray *s,
vtkDataArray *g)
{
double gv[3];
int ii, jj, kk, idx=0;
for ( kk=0; kk < 2; kk++)
{
for ( jj=0; jj < 2; jj++)
{
for ( ii=0; ii < 2; ii++)
{
this->GetPointGradient(i+ii, j+jj, k+kk, s, gv);
g->SetTuple(idx++, gv);
}
}
}
}
//----------------------------------------------------------------------------
// Given structured coordinates (i,j,k) for a point in a structured point
// dataset, compute the gradient vector from the scalar data at that point.
// The scalars s are the scalars from which the gradient is to be computed.
// This method will treat structured point datasets of any dimension.
void vtkImageData::GetPointGradient(int i, int j, int k, vtkDataArray *s,
double g[3])
{
const double *ar = this->Spacing;
double sp, sm;
const int *extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
vtkIdType ijsize=dims[0]*dims[1];
// Adjust i,j,k to the start of the extent
i -= extent[0];
j -= extent[2];
k -= extent[4];
// Check for out-of-bounds
if (i < 0 || i >= dims[0] || j < 0 || j >= dims[1] || k < 0 || k >= dims[2])
{
g[0] = g[1] = g[2] = 0.0;
return;
}
// x-direction
if ( dims[0] == 1 )
{
g[0] = 0.0;
}
else if ( i == 0 )
{
sp = s->GetComponent(i+1 + j*dims[0] + k*ijsize, 0);
sm = s->GetComponent(i + j*dims[0] + k*ijsize, 0);
g[0] = (sm - sp) / ar[0];
}
else if ( i == (dims[0]-1) )
{
sp = s->GetComponent(i + j*dims[0] + k*ijsize,0);
sm = s->GetComponent(i-1 + j*dims[0] + k*ijsize,0);
g[0] = (sm - sp) / ar[0];
}
else
{
sp = s->GetComponent(i+1 + j*dims[0] + k*ijsize,0);
sm = s->GetComponent(i-1 + j*dims[0] + k*ijsize,0);
g[0] = 0.5 * (sm - sp) / ar[0];
}
// y-direction
if ( dims[1] == 1 )
{
g[1] = 0.0;
}
else if ( j == 0 )
{
sp = s->GetComponent(i + (j+1)*dims[0] + k*ijsize,0);
sm = s->GetComponent(i + j*dims[0] + k*ijsize,0);
g[1] = (sm - sp) / ar[1];
}
else if ( j == (dims[1]-1) )
{
sp = s->GetComponent(i + j*dims[0] + k*ijsize,0);
sm = s->GetComponent(i + (j-1)*dims[0] + k*ijsize,0);
g[1] = (sm - sp) / ar[1];
}
else
{
sp = s->GetComponent(i + (j+1)*dims[0] + k*ijsize,0);
sm = s->GetComponent(i + (j-1)*dims[0] + k*ijsize,0);
g[1] = 0.5 * (sm - sp) / ar[1];
}
// z-direction
if ( dims[2] == 1 )
{
g[2] = 0.0;
}
else if ( k == 0 )
{
sp = s->GetComponent(i + j*dims[0] + (k+1)*ijsize,0);
sm = s->GetComponent(i + j*dims[0] + k*ijsize,0);
g[2] = (sm - sp) / ar[2];
}
else if ( k == (dims[2]-1) )
{
sp = s->GetComponent(i + j*dims[0] + k*ijsize,0);
sm = s->GetComponent(i + j*dims[0] + (k-1)*ijsize,0);
g[2] = (sm - sp) / ar[2];
}
else
{
sp = s->GetComponent(i + j*dims[0] + (k+1)*ijsize,0);
sm = s->GetComponent(i + j*dims[0] + (k-1)*ijsize,0);
g[2] = 0.5 * (sm - sp) / ar[2];
}
}
//----------------------------------------------------------------------------
// Set dimensions of structured points dataset.
void vtkImageData::SetDimensions(int i, int j, int k)
{
this->SetExtent(0, i-1, 0, j-1, 0, k-1);
}
//----------------------------------------------------------------------------
// Set dimensions of structured points dataset.
void vtkImageData::SetDimensions(const int dim[3])
{
this->SetExtent(0, dim[0]-1, 0, dim[1]-1, 0, dim[2]-1);
}
//----------------------------------------------------------------------------
// Convenience function computes the structured coordinates for a point x[3].
// The voxel is specified by the array ijk[3], and the parametric coordinates
// in the cell are specified with pcoords[3]. The function returns a 0 if the
// point x is outside of the volume, and a 1 if inside the volume.
int vtkImageData::ComputeStructuredCoordinates(double x[3], int ijk[3],
double pcoords[3])
{
int i;
double d, doubleLoc;
const double *origin = this->Origin;
const double *spacing = this->Spacing;
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
//
// Compute the ijk location
//
for (i=0; i<3; i++)
{
d = x[i] - origin[i];
doubleLoc = d / spacing[i];
// Floor for negative indexes.
ijk[i] = static_cast<int>(floor(doubleLoc));
if ( ijk[i] >= extent[i*2] && ijk[i] < extent[i*2 + 1] )
{
pcoords[i] = doubleLoc - static_cast<double>(ijk[i]);
}
else if ( ijk[i] < extent[i*2] || ijk[i] > extent[i*2+1] )
{
return 0;
}
else //if ( ijk[i] == extent[i*2+1] )
{
if (dims[i] == 1)
{
pcoords[i] = 0.0;
}
else
{
ijk[i] -= 1;
pcoords[i] = 1.0;
}
}
}
return 1;
}
//----------------------------------------------------------------------------
void vtkImageData::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
int idx;
const int *dims = this->GetDimensions();
const int* extent = this->Extent;
os << indent << "ScalarType: " << this->GetScalarType() << endl;
os << indent << "NumberOfScalarComponents: " <<
this->GetNumberOfScalarComponents() << endl;
os << indent << "Spacing: (" << this->Spacing[0] << ", "
<< this->Spacing[1] << ", "
<< this->Spacing[2] << ")\n";
os << indent << "Origin: (" << this->Origin[0] << ", "
<< this->Origin[1] << ", "
<< this->Origin[2] << ")\n";
os << indent << "Dimensions: (" << dims[0] << ", "
<< dims[1] << ", "
<< dims[2] << ")\n";
os << indent << "Increments: (" << this->Increments[0] << ", "
<< this->Increments[1] << ", "
<< this->Increments[2] << ")\n";
os << indent << "Extent: (" << extent[0];
for (idx = 1; idx < 6; ++idx)
{
os << ", " << extent[idx];
}
os << ")\n";
}
//----------------------------------------------------------------------------
void vtkImageData::UpdateInformation()
{
// Use the compatibility method in the superclass to update the
// information.
this->Superclass::UpdateInformation();
// Now copy the information the caller is probably expecting to get
// from this data object instead of the pipeline information. This
// preserves compatibility.
this->CopyOriginAndSpacingFromPipeline();
}
//----------------------------------------------------------------------------
void vtkImageData::SetNumberOfScalarComponents(int num)
{
this->GetProducerPort();
if(vtkInformation* info = this->GetPipelineInformation())
{
vtkDataObject::SetPointDataActiveScalarInfo(info, -1, num);
}
else
{
vtkErrorMacro("SetNumberOfScalarComponents called with no "
"executive producing this image data object.");
}
this->ComputeIncrements();
}
//----------------------------------------------------------------------------
int vtkImageData::GetNumberOfScalarComponents()
{
this->GetProducerPort();
if(vtkInformation* info = this->GetPipelineInformation())
{
vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation(info,
FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS);
if (scalarInfo && scalarInfo->Has(FIELD_NUMBER_OF_COMPONENTS()))
{
return scalarInfo->Get( FIELD_NUMBER_OF_COMPONENTS() );
}
}
return 1;
}
//----------------------------------------------------------------------------
vtkIdType *vtkImageData::GetIncrements()
{
// Make sure the increments are up to date. The filter bypass and update
// mechanism make it tricky to update the increments anywhere other than here
this->ComputeIncrements();
return this->Increments;
}
//----------------------------------------------------------------------------
void vtkImageData::GetIncrements(vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ)
{
// Make sure the increments are up to date. The filter bypass and update
// mechanism make it tricky to update the increments anywhere other than here
this->ComputeIncrements();
incX = this->Increments[0];
incY = this->Increments[1];
incZ = this->Increments[2];
}
//----------------------------------------------------------------------------
void vtkImageData::GetIncrements(vtkIdType inc[3])
{
// Make sure the increments are up to date. The filter bypass and update
// mechanism make it tricky to update the increments anywhere other than here
this->ComputeIncrements();
inc[0] = this->Increments[0];
inc[1] = this->Increments[1];
inc[2] = this->Increments[2];
}
//----------------------------------------------------------------------------
void vtkImageData::GetContinuousIncrements(int extent[6], vtkIdType &incX,
vtkIdType &incY, vtkIdType &incZ)
{
int e0, e1, e2, e3;
incX = 0;
const int* selfExtent = this->Extent;
e0 = extent[0];
if (e0 < selfExtent[0])
{
e0 = selfExtent[0];
}
e1 = extent[1];
if (e1 > selfExtent[1])
{
e1 = selfExtent[1];
}
e2 = extent[2];
if (e2 < selfExtent[2])
{
e2 = selfExtent[2];
}
e3 = extent[3];
if (e3 > selfExtent[3])
{
e3 = selfExtent[3];
}
// Make sure the increments are up to date
this->ComputeIncrements();
incY = this->Increments[1] - (e1 - e0 + 1)*this->Increments[0];
incZ = this->Increments[2] - (e3 - e2 + 1)*this->Increments[1];
}
//----------------------------------------------------------------------------
// This method computes the increments from the MemoryOrder and the extent.
void vtkImageData::ComputeIncrements()
{
int idx;
// make sure we have data before computing incrments to traverse it
if (!this->GetPointData()->GetScalars())
{
return;
}
vtkIdType inc = this->GetPointData()->GetScalars()->GetNumberOfComponents();
const int* extent = this->Extent;
for (idx = 0; idx < 3; ++idx)
{
this->Increments[idx] = inc;
inc *= (extent[idx*2+1] - extent[idx*2] + 1);
}
}
//----------------------------------------------------------------------------
void vtkImageData::CopyOriginAndSpacingFromPipeline()
{
// Copy origin and spacing from pipeline information to the internal
// copies.
vtkInformation* info = this->PipelineInformation;
if(info->Has(SPACING()))
{
this->SetSpacing(info->Get(SPACING()));
}
if(info->Has(ORIGIN()))
{
this->SetOrigin(info->Get(ORIGIN()));
}
}
//----------------------------------------------------------------------------
template <class TIn, class TOut>
void vtkImageDataConvertScalar(TIn* in, TOut* out)
{
*out = static_cast<TOut>(*in);
}
//----------------------------------------------------------------------------
double vtkImageData::GetScalarComponentAsDouble(int x, int y, int z, int comp)
{
// Check the component index.
if(comp < 0 || comp >= this->GetNumberOfScalarComponents())
{
vtkErrorMacro("Bad component index " << comp);
return 0.0;
}
// Get a pointer to the scalar tuple.
void* ptr = this->GetScalarPointer(x, y, z);
if(!ptr)
{
// An error message was already generated by GetScalarPointer.
return 0.0;
}
double result = 0.0;
// Convert the scalar type.
switch (this->GetScalarType())
{
vtkTemplateMacro(vtkImageDataConvertScalar(static_cast<VTK_TT*>(ptr)+comp,
&result));
default:
{
vtkErrorMacro("Unknown Scalar type " << this->GetScalarType());
}
}
return result;
}
//----------------------------------------------------------------------------
void vtkImageData::SetScalarComponentFromDouble(int x, int y, int z, int comp,
double value)
{
// Check the component index.
if(comp < 0 || comp >= this->GetNumberOfScalarComponents())
{
vtkErrorMacro("Bad component index " << comp);
return;
}
// Get a pointer to the scalar tuple.
void* ptr = this->GetScalarPointer(x, y, z);
if(!ptr)
{
// An error message was already generated by GetScalarPointer.
return;
}
// Convert the scalar type.
switch (this->GetScalarType())
{
vtkTemplateMacro(vtkImageDataConvertScalar(
&value, static_cast<VTK_TT*>(ptr)+comp));
default:
{
vtkErrorMacro("Unknown Scalar type " << this->GetScalarType());
}
}
}
//----------------------------------------------------------------------------
float vtkImageData::GetScalarComponentAsFloat(int x, int y, int z, int comp)
{
return this->GetScalarComponentAsDouble(x, y, z, comp);
}
//----------------------------------------------------------------------------
void vtkImageData::SetScalarComponentFromFloat(int x, int y, int z, int comp,
float value)
{
this->SetScalarComponentFromDouble(x, y, z, comp, value);
}
//----------------------------------------------------------------------------
// This Method returns a pointer to a location in the vtkImageData.
// Coordinates are in pixel units and are relative to the whole
// image origin.
void *vtkImageData::GetScalarPointer(int x, int y, int z)
{
int tmp[3];
tmp[0] = x;
tmp[1] = y;
tmp[2] = z;
return this->GetScalarPointer(tmp);
}
//----------------------------------------------------------------------------
// This Method returns a pointer to a location in the vtkImageData.
// Coordinates are in pixel units and are relative to the whole
// image origin.
void *vtkImageData::GetScalarPointerForExtent(int extent[6])
{
int tmp[3];
tmp[0] = extent[0];
tmp[1] = extent[2];
tmp[2] = extent[4];
return this->GetScalarPointer(tmp);
}
//----------------------------------------------------------------------------
void *vtkImageData::GetScalarPointer(int coordinate[3])
{
vtkDataArray *scalars = this->GetPointData()->GetScalars();
// Make sure the array has been allocated.
if (scalars == NULL)
{
vtkDebugMacro("Allocating scalars in ImageData");
this->AllocateScalars();
scalars = this->PointData->GetScalars();
}
if (scalars == NULL)
{
vtkErrorMacro("Could not allocate scalars.");
return NULL;
}
const int* extent = this->Extent;
// error checking: since most access will be from pointer arithmetic.
// this should not waste much time.
for (int idx = 0; idx < 3; ++idx)
{
if (coordinate[idx] < extent[idx*2] ||
coordinate[idx] > extent[idx*2+1])
{
vtkErrorMacro(<< "GetScalarPointer: Pixel (" << coordinate[0] << ", "
<< coordinate[1] << ", "
<< coordinate[2] << ") not in memory.\n Current extent= ("
<< extent[0] << ", " << extent[1] << ", "
<< extent[2] << ", " << extent[3] << ", "
<< extent[4] << ", " << extent[5] << ")");
return NULL;
}
}
return this->GetArrayPointer(scalars, coordinate);
}
//----------------------------------------------------------------------------
// This method returns a pointer to the origin of the vtkImageData.
void *vtkImageData::GetScalarPointer()
{
if (this->PointData->GetScalars() == NULL)
{
vtkDebugMacro("Allocating scalars in ImageData");
this->AllocateScalars();
}
return this->PointData->GetScalars()->GetVoidPointer(0);
}
//----------------------------------------------------------------------------
void vtkImageData::SetScalarType(int type)
{
this->GetProducerPort();
if(vtkInformation* info = this->GetPipelineInformation())
{
vtkDataObject::SetPointDataActiveScalarInfo(info, type, -1);
}
else
{
vtkErrorMacro("SetScalarType called with no "
"executive producing this image data object.");
}
}
//----------------------------------------------------------------------------
int vtkImageData::GetScalarType()
{
this->GetProducerPort();
if(vtkInformation* info = this->GetPipelineInformation())
{
vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation(info,
FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS);
if (scalarInfo)
{
return scalarInfo->Get( FIELD_ARRAY_TYPE() );
}
}
return VTK_DOUBLE;
}
//----------------------------------------------------------------------------
void vtkImageData::AllocateScalars()
{
int newType = VTK_DOUBLE;
int newNumComp = 1;
// basically allocate the scalars based on the
this->GetProducerPort();
if(vtkInformation* info = this->GetPipelineInformation())
{
vtkInformation *scalarInfo = vtkDataObject::GetActiveFieldInformation(info,
FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS);
if (scalarInfo)
{
newType = scalarInfo->Get( FIELD_ARRAY_TYPE() );
if ( scalarInfo->Has(FIELD_NUMBER_OF_COMPONENTS()) )
{
newNumComp = scalarInfo->Get( FIELD_NUMBER_OF_COMPONENTS() );
}
}
}
vtkDataArray *scalars;
// if the scalar type has not been set then we have a problem
if (newType == VTK_VOID)
{
vtkErrorMacro("Attempt to allocate scalars before scalar type was set!.");
return;
}
const int* extent = this->Extent;
// Use vtkIdType to avoid overflow on large images
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
vtkIdType imageSize = dims[0]*dims[1]*dims[2];
// if we currently have scalars then just adjust the size
scalars = this->PointData->GetScalars();
if (scalars && scalars->GetDataType() == newType
&& scalars->GetReferenceCount() == 1)
{
scalars->SetNumberOfComponents(newNumComp);
scalars->SetNumberOfTuples(imageSize);
// Since the execute method will be modifying the scalars
// directly.
scalars->Modified();
return;
}
// allocate the new scalars
scalars = vtkDataArray::CreateDataArray(newType);
scalars->SetNumberOfComponents(newNumComp);
scalars->SetName("ImageScalars");
// allocate enough memory
scalars->SetNumberOfTuples(imageSize);
this->PointData->SetScalars(scalars);
scalars->Delete();
}
//----------------------------------------------------------------------------
int vtkImageData::GetScalarSize()
{
return vtkDataArray::GetDataTypeSize(this->GetScalarType());
}
//----------------------------------------------------------------------------
// This templated function executes the filter for any type of data.
template <class IT, class OT>
void vtkImageDataCastExecute(vtkImageData *inData, IT *inPtr,
vtkImageData *outData, OT *outPtr,
int outExt[6])
{
int idxR, idxY, idxZ;
int maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
int rowLength;
// find the region to loop over
rowLength = (outExt[1] - outExt[0]+1)*inData->GetNumberOfScalarComponents();
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
// Get increments to march through data
inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// Loop through ouput pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
for (idxY = 0; idxY <= maxY; idxY++)
{
for (idxR = 0; idxR < rowLength; idxR++)
{
// Pixel operation
*outPtr = static_cast<OT>(*inPtr);
outPtr++;
inPtr++;
}
outPtr += outIncY;
inPtr += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
//----------------------------------------------------------------------------
template <class T>
void vtkImageDataCastExecute(vtkImageData *inData, T *inPtr,
vtkImageData *outData, int outExt[6])
{
void *outPtr = outData->GetScalarPointerForExtent(outExt);
if (outPtr == NULL)
{
vtkGenericWarningMacro("Scalars not allocated.");
return;
}
switch (outData->GetScalarType())
{
vtkTemplateMacro(
vtkImageDataCastExecute(inData,
static_cast<T *>(inPtr),
outData,
static_cast<VTK_TT *>(outPtr),
outExt) );
default:
vtkGenericWarningMacro("Execute: Unknown output ScalarType");
return;
}
}
//----------------------------------------------------------------------------
// This method is passed a input and output region, and executes the filter
// algorithm to fill the output from the input.
// It just executes a switch statement to call the correct function for
// the regions data types.
void vtkImageData::CopyAndCastFrom(vtkImageData *inData, int extent[6])
{
void *inPtr = inData->GetScalarPointerForExtent(extent);
if (inPtr == NULL)
{
vtkErrorMacro("Scalars not allocated.");
return;
}
switch (inData->GetScalarType())
{
vtkTemplateMacro(vtkImageDataCastExecute(inData,
static_cast<VTK_TT *>(inPtr),
this, extent) );
default:
vtkErrorMacro(<< "Execute: Unknown input ScalarType");
return;
}
}
//----------------------------------------------------------------------------
void vtkImageData::Crop()
{
int nExt[6];
int idxX, idxY, idxZ;
int maxX, maxY, maxZ;
vtkIdType outId, inId, inIdY, inIdZ, incZ, incY;
vtkImageData *newImage;
vtkIdType numPts, numCells, tmp;
const int* extent = this->Extent;
int updateExtent[6] = {0,-1,0,-1,0,-1};
this->GetUpdateExtent(updateExtent);
// If extents already match, then we need to do nothing.
if (extent[0] == updateExtent[0]
&& extent[1] == updateExtent[1]
&& extent[2] == updateExtent[2]
&& extent[3] == updateExtent[3]
&& extent[4] == updateExtent[4]
&& extent[5] == updateExtent[5])
{
return;
}
// Take the intersection of the two extent so that
// we are not asking for more than the extent.
this->GetUpdateExtent(nExt);
if (nExt[0] < extent[0]) { nExt[0] = extent[0];}
if (nExt[1] > extent[1]) { nExt[1] = extent[1];}
if (nExt[2] < extent[2]) { nExt[2] = extent[2];}
if (nExt[3] > extent[3]) { nExt[3] = extent[3];}
if (nExt[4] < extent[4]) { nExt[4] = extent[4];}
if (nExt[5] > extent[5]) { nExt[5] = extent[5];}
// If the extents are the same just return.
if (extent[0] == nExt[0] && extent[1] == nExt[1]
&& extent[2] == nExt[2] && extent[3] == nExt[3]
&& extent[4] == nExt[4] && extent[5] == nExt[5])
{
vtkDebugMacro("Extents already match.");
return;
}
// How many point/cells.
numPts = (nExt[1]-nExt[0]+1)*(nExt[3]-nExt[2]+1)*(nExt[5]-nExt[4]+1);
// Conditional are to handle 3d, 2d, and even 1d images.
tmp = nExt[1] - nExt[0];
if (tmp <= 0)
{
tmp = 1;
}
numCells = tmp;
tmp = nExt[3] - nExt[2];
if (tmp <= 0)
{
tmp = 1;
}
numCells *= tmp;
tmp = nExt[5] - nExt[4];
if (tmp <= 0)
{
tmp = 1;
}
numCells *= tmp;
// Create a new temporary image.
newImage = vtkImageData::New();
newImage->SetScalarType(this->GetScalarType());
newImage->SetNumberOfScalarComponents(this->GetNumberOfScalarComponents());
newImage->SetExtent(nExt);
vtkPointData *npd = newImage->GetPointData();
vtkCellData *ncd = newImage->GetCellData();
npd->CopyAllocate(this->PointData, numPts);
ncd->CopyAllocate(this->CellData, numCells);
// Loop through outData points
incY = extent[1]-extent[0]+1;
incZ = (extent[3]-extent[2]+1)*incY;
outId = 0;
inIdZ = incZ * (nExt[4]-extent[4])
+ incY * (nExt[2]-extent[2])
+ (nExt[0]-extent[0]);
for (idxZ = nExt[4]; idxZ <= nExt[5]; idxZ++)
{
inIdY = inIdZ;
for (idxY = nExt[2]; idxY <= nExt[3]; idxY++)
{
inId = inIdY;
for (idxX = nExt[0]; idxX <= nExt[1]; idxX++)
{
npd->CopyData( this->PointData, inId, outId);
++inId;
++outId;
}
inIdY += incY;
}
inIdZ += incZ;
}
// Loop through outData cells
// Have to handle the 2d and 1d cases.
maxX = nExt[1];
maxY = nExt[3];
maxZ = nExt[5];
if (maxX == nExt[0])
{
++maxX;
}
if (maxY == nExt[2])
{
++maxY;
}
if (maxZ == nExt[4])
{
++maxZ;
}
incY = extent[1]-extent[0];
incZ = (extent[3]-extent[2])*incY;
outId = 0;
inIdZ = incZ * (nExt[4]-extent[4])
+ incY * (nExt[2]-extent[2])
+ (nExt[0]-extent[0]);
for (idxZ = nExt[4]; idxZ < maxZ; idxZ++)
{
inIdY = inIdZ;
for (idxY = nExt[2]; idxY < maxY; idxY++)
{
inId = inIdY;
for (idxX = nExt[0]; idxX < maxX; idxX++)
{
ncd->CopyData(this->CellData, inId, outId);
++inId;
++outId;
}
inIdY += incY;
}
inIdZ += incZ;
}
this->PointData->ShallowCopy(npd);
this->CellData->ShallowCopy(ncd);
this->SetExtent(nExt);
newImage->Delete();
}
//----------------------------------------------------------------------------
double vtkImageData::GetScalarTypeMin()
{
return vtkDataArray::GetDataTypeMin(this->GetScalarType());
}
//----------------------------------------------------------------------------
double vtkImageData::GetScalarTypeMax()
{
return vtkDataArray::GetDataTypeMax(this->GetScalarType());
}
//----------------------------------------------------------------------------
void vtkImageData::SetExtent(int x1, int x2, int y1, int y2, int z1, int z2)
{
int ext[6];
ext[0] = x1;
ext[1] = x2;
ext[2] = y1;
ext[3] = y2;
ext[4] = z1;
ext[5] = z2;
this->SetExtent(ext);
}
//----------------------------------------------------------------------------
void vtkImageData::SetDataDescription(int desc)
{
if (desc == this->DataDescription)
{
return;
}
this->DataDescription = desc;
if (this->Vertex)
{
this->Vertex->Delete();
this->Vertex = 0;
}
if (this->Line)
{
this->Line->Delete();
this->Line = 0;
}
if (this->Pixel)
{
this->Pixel->Delete();
this->Pixel = 0;
}
if (this->Voxel)
{
this->Voxel->Delete();
this->Voxel = 0;
}
switch (this->DataDescription)
{
case VTK_SINGLE_POINT:
this->Vertex = vtkVertex::New();
break;
case VTK_X_LINE:
case VTK_Y_LINE:
case VTK_Z_LINE:
this->Line = vtkLine::New();
break;
case VTK_XY_PLANE:
case VTK_YZ_PLANE:
case VTK_XZ_PLANE:
this->Pixel = vtkPixel::New();
break;
case VTK_XYZ_GRID:
this->Voxel = vtkVoxel::New();;
break;
}
}
//----------------------------------------------------------------------------
void vtkImageData::SetExtent(int *extent)
{
int description;
description = vtkStructuredData::SetExtent(extent, this->Extent);
if ( description < 0 ) //improperly specified
{
vtkErrorMacro (<< "Bad Extent, retaining previous values");
}
if (description == VTK_UNCHANGED)
{
return;
}
this->SetDataDescription(description);
this->Modified();
}
//----------------------------------------------------------------------------
int *vtkImageData::GetDimensions()
{
const int* extent = this->Extent;
this->Dimensions[0] = extent[1] - extent[0] + 1;
this->Dimensions[1] = extent[3] - extent[2] + 1;
this->Dimensions[2] = extent[5] - extent[4] + 1;
return this->Dimensions;
}
//----------------------------------------------------------------------------
void vtkImageData::GetDimensions(int *dOut)
{
int *dims = this->GetDimensions();
dOut[0] = dims[0];
dOut[1] = dims[1];
dOut[2] = dims[2];
}
//----------------------------------------------------------------------------
void vtkImageData::SetAxisUpdateExtent(int idx, int min, int max)
{
int modified = 0;
if (idx > 2)
{
vtkWarningMacro("illegal axis!");
return;
}
int updateExtent[6] = {0,-1,0,-1,0,-1};
this->GetUpdateExtent(updateExtent);
if (updateExtent[idx*2] != min)
{
modified = 1;
updateExtent[idx*2] = min;
}
if (updateExtent[idx*2+1] != max)
{
modified = 1;
updateExtent[idx*2+1] = max;
}
this->SetUpdateExtent(updateExtent);
if (modified)
{
this->Modified();
}
}
//----------------------------------------------------------------------------
void vtkImageData::GetAxisUpdateExtent(int idx, int &min, int &max)
{
if (idx > 2)
{
vtkWarningMacro("illegal axis!");
return;
}
int updateExtent[6] = {0,-1,0,-1,0,-1};
this->GetUpdateExtent(updateExtent);
min = updateExtent[idx*2];
max = updateExtent[idx*2+1];
}
//----------------------------------------------------------------------------
unsigned long vtkImageData::GetActualMemorySize()
{
return this->vtkDataSet::GetActualMemorySize();
}
//----------------------------------------------------------------------------
void vtkImageData::ShallowCopy(vtkDataObject *dataObject)
{
vtkImageData *imageData = vtkImageData::SafeDownCast(dataObject);
if ( imageData != NULL )
{
this->InternalImageDataCopy(imageData);
}
// Do superclass
this->vtkDataSet::ShallowCopy(dataObject);
}
//----------------------------------------------------------------------------
void vtkImageData::DeepCopy(vtkDataObject *dataObject)
{
vtkImageData *imageData = vtkImageData::SafeDownCast(dataObject);
if ( imageData != NULL )
{
this->InternalImageDataCopy(imageData);
}
// Do superclass
this->vtkDataSet::DeepCopy(dataObject);
}
//----------------------------------------------------------------------------
// This copies all the local variables (but not objects).
void vtkImageData::InternalImageDataCopy(vtkImageData *src)
{
int idx;
this->SetScalarType(src->GetScalarType());
this->SetNumberOfScalarComponents(src->GetNumberOfScalarComponents());
for (idx = 0; idx < 3; ++idx)
{
this->Dimensions[idx] = src->Dimensions[idx];
this->Increments[idx] = src->Increments[idx];
this->Origin[idx] = src->Origin[idx];
this->Spacing[idx] = src->Spacing[idx];
}
this->SetExtent(src->GetExtent());
}
//----------------------------------------------------------------------------
vtkIdType vtkImageData::GetNumberOfCells()
{
vtkIdType nCells=1;
int i;
const int* extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
for (i=0; i<3; i++)
{
if (dims[i] == 0)
{
return 0;
}
if (dims[i] > 1)
{
nCells *= (dims[i]-1);
}
}
return nCells;
}
//============================================================================
// Starting to make some more general methods that deal with any array
// (not just scalars).
//============================================================================
//----------------------------------------------------------------------------
// This Method returns a pointer to a location in the vtkImageData.
// Coordinates are in pixel units and are relative to the whole
// image origin.
void vtkImageData::GetArrayIncrements(vtkDataArray* array, vtkIdType increments[3])
{
const int* extent = this->Extent;
// We could store tuple increments and just
// multiply by the number of components...
increments[0] = array->GetNumberOfComponents();
increments[1] = increments[0] * (extent[1]-extent[0]+1);
increments[2] = increments[1] * (extent[3]-extent[2]+1);
}
//----------------------------------------------------------------------------
void *vtkImageData::GetArrayPointerForExtent(vtkDataArray* array,
int extent[6])
{
int tmp[3];
tmp[0] = extent[0];
tmp[1] = extent[2];
tmp[2] = extent[4];
return this->GetArrayPointer(array, tmp);
}
//----------------------------------------------------------------------------
// This Method returns a pointer to a location in the vtkImageData.
// Coordinates are in pixel units and are relative to the whole
// image origin.
void *vtkImageData::GetArrayPointer(vtkDataArray* array, int coordinate[3])
{
vtkIdType incs[3];
vtkIdType idx;
if (array == NULL)
{
return NULL;
}
const int* extent = this->Extent;
// error checking: since most acceses will be from pointer arithmetic.
// this should not waste much time.
for (idx = 0; idx < 3; ++idx)
{
if (coordinate[idx] < extent[idx*2] ||
coordinate[idx] > extent[idx*2+1])
{
vtkErrorMacro(<< "GetPointer: Pixel (" << coordinate[0] << ", "
<< coordinate[1] << ", "
<< coordinate[2] << ") not in current extent: ("
<< extent[0] << ", " << extent[1] << ", "
<< extent[2] << ", " << extent[3] << ", "
<< extent[4] << ", " << extent[5] << ")");
return NULL;
}
}
// compute the index of the vector.
this->GetArrayIncrements(array, incs);
idx = ((coordinate[0] - extent[0]) * incs[0]
+ (coordinate[1] - extent[2]) * incs[1]
+ (coordinate[2] - extent[4]) * incs[2]);
// I could check to see if the array has the correct number
// of tuples for the extent, but that would be an extra multiply.
if (idx < 0 || idx > array->GetMaxId())
{
vtkErrorMacro("Coordinate (" << coordinate[0] << ", " << coordinate[1]
<< ", " << coordinate[2] << ") out side of array (max = "
<< array->GetMaxId());
return NULL;
}
return array->GetVoidPointer(idx);
}
//----------------------------------------------------------------------------
void vtkImageData::ComputeInternalExtent(int *intExt, int *tgtExt, int *bnds)
{
int i;
const int* extent = this->Extent;
for (i = 0; i < 3; ++i)
{
intExt[i*2] = tgtExt[i*2];
if (intExt[i*2] - bnds[i*2] < extent[i*2])
{
intExt[i*2] = extent[i*2] + bnds[i*2];
}
intExt[i*2+1] = tgtExt[i*2+1];
if (intExt[i*2+1] + bnds[i*2+1] > extent[i*2+1])
{
intExt[i*2+1] = extent[i*2+1] - bnds[i*2+1];
}
}
}
//----------------------------------------------------------------------------
vtkImageData* vtkImageData::GetData(vtkInformation* info)
{
return info? vtkImageData::SafeDownCast(info->Get(DATA_OBJECT())) : 0;
}
//----------------------------------------------------------------------------
vtkImageData* vtkImageData::GetData(vtkInformationVector* v, int i)
{
return vtkImageData::GetData(v->GetInformationObject(i));
}