Find file
Fetching contributors…
Cannot retrieve contributors at this time
293 lines (251 sloc) 12.1 KB
Program: Visualization Toolkit
Module: vtkPolyhedron.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or for details.
This software is distributed WITHOUT ANY WARRANTY; without even
PURPOSE. See the above copyright notice for more information.
// .NAME vtkPolyhedron - a 3D cell defined by a set of polygonal faces
// .SECTION Description
// vtkPolyhedron is a concrete implementation that represents a 3D cell
// defined by a set of polygonal faces. The polyhedron should be watertight,
// non-self-intersecting and manifold (each edge is used twice).
// Interpolation functions and weights are defined / computed using the
// method of Mean Value Coordinates (MVC). See the VTK class
// vtkMeanValueCoordinatesInterpolator for more information.
// The class assumes that the polyhedron is non-convex. However, the
// polygonal faces should be planar. Non-planar polygonal faces will
// definitely cause problems, especially in severely warped situations.
// .SECTION See Also
// vtkCell3D vtkConvecPointSet vtkMeanValueCoordinatesInterpolator
#ifndef __vtkPolyhedron_h
#define __vtkPolyhedron_h
#include "vtkCell3D.h"
class vtkIdTypeArray;
class vtkCellArray;
class vtkTriangle;
class vtkQuad;
class vtkTetra;
class vtkPolygon;
class vtkLine;
class vtkPointIdMap;
class vtkIdToIdVectorMapType;
class vtkIdToIdMapType;
class vtkEdgeTable;
class vtkPolyData;
class vtkCellLocator;
class vtkGenericCell;
class vtkPointLocator;
class VTK_FILTERING_EXPORT vtkPolyhedron : public vtkCell3D
// Description:
// Standard new methods.
static vtkPolyhedron *New();
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// See vtkCell3D API for description of these methods.
virtual void GetEdgePoints(int vtkNotUsed(edgeId), int* &vtkNotUsed(pts)) {}
virtual void GetFacePoints(int vtkNotUsed(faceId), int* &vtkNotUsed(pts)) {}
virtual double *GetParametricCoords();
// Description:
// See the vtkCell API for descriptions of these methods.
virtual int GetCellType() {return VTK_POLYHEDRON;}
// Description:
// This cell requires that it be initialized prior to access.
virtual int RequiresInitialization() {return 1;}
virtual void Initialize();
// Description:
// A polyhedron is represented internally by a set of polygonal faces.
// These faces can be processed to explicitly determine edges.
virtual int GetNumberOfEdges();
virtual vtkCell *GetEdge(int);
virtual int GetNumberOfFaces();
virtual vtkCell *GetFace(int faceId);
// Description:
// Satisfy the vtkCell API. This method contours the input polyhedron and outputs
// a polygon. When the result polygon is not planar, it will be triangulated.
// The current implementation assumes water-tight polyhedron cells.
virtual void Contour(double value, vtkDataArray *scalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
// Description:
// Satisfy the vtkCell API. This method clips the input polyhedron and outputs
// a new polyhedron. The face information of the output polyhedron is encoded
// in the output vtkCellArray using a special format:
// CellLength [nCellFaces, nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...].
// Use the static method vtkUnstructuredGrid::DecomposePolyhedronCellArray
// to convert it into a standard format. Note: the algorithm assumes water-tight
// polyhedron cells.
virtual void Clip(double value, vtkDataArray *scalars,
vtkIncrementalPointLocator *locator, vtkCellArray *connectivity,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut);
// Description:
// Satisfy the vtkCell API. The subId is ignored and zero is always
// returned. The parametric coordinates pcoords are normalized values in
// the bounding box of the polyhedron. The weights are determined by
// evaluating the MVC coordinates. The dist is always zero if the point x[3]
// is inside the polyhedron; otherwise it's the distance to the surface.
virtual int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights);
// Description:
// The inverse of EvaluatePosition. Note the weights should be the MVC
// weights.
virtual void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights);
// Description:
// Intersect the line (p1,p2) with a given tolerance tol to determine a
// point of intersection x[3] with parametric coordinate t along the
// line. The parametric coordinates are returned as well (subId can be
// ignored). Returns the number of intersection points.
virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId);
// Description:
// Use vtkOrderedTriangulator to tetrahedralize the polyhedron mesh. This
// method works well for a convex polyhedron but may return wrong result
// in a concave case.
// Once triangulation has been performed, the results are saved in ptIds and
// pts. The ptIds is a vtkIdList with 4xn number of ids (n is the number of
// result tetrahedrons). The first 4 represent the point ids of the first
// tetrahedron, the second 4 represents the point ids of the second tetrahedron
// and so on. The point ids represent global dataset ids.
// The points of result tetrahedons are stored in pts. Note that there are
// 4xm output points (m is the number of points in the original polyhedron).
// A point may be stored multiple times when it is shared by more than one
// tetrahedrons. The points stored in pts are ordered the same as they are
// listed in ptIds.
virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
// Description:
// Computes derivatives at the point specified by the parameter coordinate.
// Current implementation uses all vertices and subId is not used.
// To accelerate the speed, the future implementation can triangulate and
// extract the local tetrahedron from subId and pcoords, then evaluate
// derivatives on the local tetrahedron.
virtual void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs);
// Description:
// Find the boundary face closest to the point defined by the pcoords[3]
// and subId of the cell (subId can be ignored).
virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
// Description:
// Return the center of the cell in parametric coordinates. In this cell,
// the center of the bounding box is returned.
virtual int GetParametricCenter(double pcoords[3]);
// Description:
// A polyhedron is a full-fledged primary cell.
int IsPrimaryCell() {return 1;}
// Description:
// Compute the interpolation functions/derivatives
// (aka shape functions/derivatives). Here we use the MVC calculation
// process to compute the interpolation functions.
virtual void InterpolateFunctions(double x[3], double *sf);
virtual void InterpolateDerivs(double x[3], double *derivs);
// Description:
// Methods supporting the definition of faces. Note that the GetFaces()
// returns a list of faces in vtkCellArray form; use the method
// GetNumberOfFaces() to determine the number of faces in the list.
// The SetFaces() method is also in vtkCellArray form, except that it
// begins with a leading count indicating the total number of faces in
// the list.
virtual int RequiresExplicitFaceRepresentation() {return 1;}
virtual void SetFaces(vtkIdType *faces);
virtual vtkIdType *GetFaces();
// Descriprion:
// A method particular to vtkPolyhedron. It determines whether a point x[3]
// is inside the polyhedron or not (returns 1 is the point is inside, 0
// otherwise). The tolerance is expressed in normalized space; i.e., a
// fraction of the size of the bounding box.
int IsInside(double x[3], double tolerance);
// Description:
// Construct polydata if no one exist, then return this->PolyData
vtkPolyData* GetPolyData();
// Internal classes for supporting operations on this cell
vtkLine *Line;
vtkTriangle *Triangle;
vtkQuad *Quad;
vtkPolygon *Polygon;
vtkTetra *Tetra;
vtkIdTypeArray *GlobalFaces; //these are numbered in gloabl id space
vtkIdTypeArray *FaceLocations;
// vtkCell has the data members Points (x,y,z coordinates) and PointIds
// (global cell ids corresponsing to cell canonical numbering (0,1,2,....)).
// These data members are implicitly organized in canonical space, i.e., where
// the cell point ids are (0,1,...,npts-1). The PointIdMap maps global point id
// back to these canonoical point ids.
vtkPointIdMap *PointIdMap;
// If edges are needed. Note that the edge numbering is in
// canonical space.
int EdgesGenerated; //true/false
vtkEdgeTable *EdgeTable; //keep track of all edges
vtkIdTypeArray *Edges; //edge pairs kept in this list, in canonical id space
int GenerateEdges(); //method populates the edge table and edge array
// If faces need renumbering into canonical numbering space these members
// are used. When initiallly loaded, the face numbering uses global dataset
// ids. Once renumbered, they are converted to canonical space.
vtkIdTypeArray *Faces; //these are numbered in canonical id space
int FacesGenerated;
void GenerateFaces();
// Bounds management
int BoundsComputed;
void ComputeBounds();
void ComputeParametricCoordinate(double x[3], double pc[3]);
void ComputePositionFromParametricCoordinate(double pc[3], double x[3]);
// Members for supporting geometric operations
int PolyDataConstructed;
vtkPolyData *PolyData;
vtkCellArray *Polys;
vtkIdTypeArray *PolyConnectivity;
void ConstructPolyData();
int LocatorConstructed;
vtkCellLocator *CellLocator;
void ConstructLocator();
vtkIdList *CellIds;
vtkGenericCell *Cell;
// This is the internal implementation of contouring a polyhedron. It is used
// by both Clip and Contour functions.
int InternalContour(double value,
int insideOut,
vtkIncrementalPointLocator *locator,
vtkDataArray *inScalars,
vtkDataArray *outScalars,
vtkPointData *inPd,
vtkPointData *outPd,
vtkCellArray *contourPolys,
vtkIdToIdVectorMapType & faceToPointsMap,
vtkIdToIdVectorMapType & pointToFacesMap,
vtkIdToIdMapType & pointIdMap);
// Check if the polyhedron cell intersect with the contour/clip function.
// If intersect, return 0. Otherwise return 1 or -1 when the polyhedron cell
// is on the positive or negative side of contour/clip function respectively.
int IntersectWithContour(double value,
int insideOut,
vtkDataArray *inScalars);
vtkPolyhedron(const vtkPolyhedron&); // Not implemented.
void operator=(const vtkPolyhedron&); // Not implemented.
class vtkInternal;
vtkInternal * Internal;
inline int vtkPolyhedron::GetParametricCenter(double pcoords[3])
pcoords[0] = pcoords[1] = pcoords[2] = 0.5;
return 0;