Permalink
Switch branches/tags
Nothing to show
Find file
Fetching contributors…
Cannot retrieve contributors at this time
757 lines (660 sloc) 21.8 KB
/*=========================================================================
Program: Visualization Toolkit
Module: vtkTriQuadraticHexahedron.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
//Thanks to Soeren Gebbert who developed this class and
//integrated it into VTK 5.0.
#include "vtkTriQuadraticHexahedron.h"
#include "vtkObjectFactory.h"
#include "vtkDoubleArray.h"
#include "vtkHexahedron.h"
#include "vtkMath.h"
#include "vtkQuadraticEdge.h"
#include "vtkBiQuadraticQuad.h"
#include "vtkPoints.h"
vtkStandardNewMacro (vtkTriQuadraticHexahedron);
//----------------------------------------------------------------------------
// Construct the triquadhex with 27 nodes
vtkTriQuadraticHexahedron::vtkTriQuadraticHexahedron ()
{
this->Points->SetNumberOfPoints (27);
this->PointIds->SetNumberOfIds (27);
for (int i = 0; i < 27; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i,0);
}
this->Edge = vtkQuadraticEdge::New ();
this->Face = vtkBiQuadraticQuad::New ();
this->Hex = vtkHexahedron::New ();
this->Scalars = vtkDoubleArray::New ();
this->Scalars->SetNumberOfTuples (8); // vertices of a linear hexahedron
}
//----------------------------------------------------------------------------
vtkTriQuadraticHexahedron::~vtkTriQuadraticHexahedron ()
{
this->Edge->Delete ();
this->Face->Delete ();
this->Hex->Delete ();
this->Scalars->Delete ();
}
//----------------------------------------------------------------------------
static int LinearHexs[8][8] = {
{ 0, 8, 24, 11, 16, 22, 26, 20},
{ 8, 1, 9, 24, 22, 17, 21, 26},
{11, 24, 10, 3, 20, 26, 23, 19},
{24, 9, 2, 10, 26, 21, 18, 23},
{16, 22, 26, 20, 4, 12, 25, 15},
{22, 17, 21, 26, 12, 5, 13, 25},
{20, 26, 23, 19, 15, 25, 14, 7},
{26, 21, 18, 23, 25, 13, 6, 14} };
static int HexFaces[6][9] = {
{0, 4, 7, 3, 16, 15, 19, 11, 20},
{1, 2, 6, 5, 9, 18, 13, 17, 21},
{0, 1, 5, 4, 8, 17, 12, 16, 22},
{3, 7, 6, 2, 19, 14, 18, 10, 23},
{0, 3, 2, 1, 11, 10, 9, 8, 24},
{4, 5, 6, 7, 12, 13, 14, 15, 25} };
static int HexEdges[12][3] = {
{0, 1, 8}, {1, 2, 9}, {3, 2, 10}, {0, 3, 11},
{4, 5, 12}, {5, 6, 13}, {7, 6, 14}, {4, 7, 15},
{0, 4, 16}, {1, 5, 17}, {3, 7, 19}, {2, 6, 18}
};
//----------------------------------------------------------------------------
int *vtkTriQuadraticHexahedron::GetEdgeArray(int edgeId)
{
return HexEdges[edgeId];
}
//----------------------------------------------------------------------------
int *vtkTriQuadraticHexahedron::GetFaceArray(int faceId)
{
return HexFaces[faceId];
}
//----------------------------------------------------------------------------
vtkCell * vtkTriQuadraticHexahedron::GetEdge (int edgeId)
{
edgeId = (edgeId < 0 ? 0 : (edgeId > 11 ? 11 : edgeId));
for (int i = 0; i < 3; i++)
{
this->Edge->PointIds->SetId (i, this->PointIds->GetId (HexEdges[edgeId][i]));
this->Edge->Points->SetPoint (i, this->Points->GetPoint (HexEdges[edgeId][i]));
}
return this->Edge;
}
//----------------------------------------------------------------------------
vtkCell * vtkTriQuadraticHexahedron::GetFace (int faceId)
{
faceId = (faceId < 0 ? 0 : (faceId > 5 ? 5 : faceId));
for (int i = 0; i < 9; i++)
{
this->Face->PointIds->SetId (i, this->PointIds->GetId (HexFaces[faceId][i]));
this->Face->Points->SetPoint (i, this->Points->GetPoint (HexFaces[faceId][i]));
}
return this->Face;
}
//----------------------------------------------------------------------------
static const double VTK_DIVERGED = 1.e6;
static const int VTK_HEX_MAX_ITERATION = 10;
static const double VTK_HEX_CONVERGED = 1.e-03;
int vtkTriQuadraticHexahedron::EvaluatePosition (double *x,
double *closestPoint,
int &subId, double pcoords[3], double &dist2, double *weights)
{
int iteration, converged;
double params[3];
double fcol[3], rcol[3], scol[3], tcol[3];
int i, j;
double d = 0.0;
double pt[3];
double derivs[81];
double hexweights[8];
// set initial position for Newton's method
pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2] = 0.5;
subId = 0;
// Use a tri-linear hexahederon to get good starting values
vtkHexahedron *hex = vtkHexahedron::New();
for(i = 0; i < 8; i++)
hex->GetPoints()->SetPoint(i, this->Points->GetPoint(i));
hex->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, hexweights);
hex->Delete();
params[0] = pcoords[0];
params[1] = pcoords[1];
params[2] = pcoords[2];
// enter iteration loop
for (iteration = converged = 0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++)
{
// calculate element interpolation functions and derivatives
this->InterpolationFunctions (pcoords, weights);
this->InterpolationDerivs (pcoords, derivs);
// calculate newton functions
for (i = 0; i < 3; i++)
{
fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0;
}
for (i = 0; i < 27; i++)
{
this->Points->GetPoint (i, pt);
for (j = 0; j < 3; j++)
{
fcol[j] += pt[j] * weights[i];
rcol[j] += pt[j] * derivs[i];
scol[j] += pt[j] * derivs[i + 27];
tcol[j] += pt[j] * derivs[i + 54];
}
}
for (i = 0; i < 3; i++)
{
fcol[i] -= x[i];
}
// compute determinants and generate improvements
d = vtkMath::Determinant3x3 (rcol, scol, tcol);
if (fabs (d) < 1.e-20)
{
vtkErrorMacro (<<"Determinant incorrect, iteration " << iteration);
return -1;
}
pcoords[0] = params[0] - 0.5 * vtkMath::Determinant3x3 (fcol, scol, tcol) / d;
pcoords[1] = params[1] - 0.5 * vtkMath::Determinant3x3 (rcol, fcol, tcol) / d;
pcoords[2] = params[2] - 0.5 * vtkMath::Determinant3x3 (rcol, scol, fcol) / d;
// check for convergence
if (((fabs (pcoords[0] - params[0])) < VTK_HEX_CONVERGED) &&
((fabs (pcoords[1] - params[1])) < VTK_HEX_CONVERGED) &&
((fabs (pcoords[2] - params[2])) < VTK_HEX_CONVERGED))
{
converged = 1;
}
// Test for bad divergence (S.Hirschberg 11.12.2001)
else if ((fabs (pcoords[0]) > VTK_DIVERGED) ||
(fabs (pcoords[1]) > VTK_DIVERGED) || (fabs (pcoords[2]) > VTK_DIVERGED))
{
vtkErrorMacro (<<"Newton did not converged, iteration " << iteration << " det " << d);
return -1;
}
// if not converged, repeat
else
{
params[0] = pcoords[0];
params[1] = pcoords[1];
params[2] = pcoords[2];
}
}
// if not converged, set the parametric coordinates to arbitrary values
// outside of element
if (!converged)
{
vtkErrorMacro (<<"Newton did not converged, iteration " << iteration << " det " << d);
return -1;
}
this->InterpolationFunctions (pcoords, weights);
if (pcoords[0] >= -0.001 && pcoords[0] <= 1.001 &&
pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001)
{
if (closestPoint)
{
closestPoint[0] = x[0];
closestPoint[1] = x[1];
closestPoint[2] = x[2];
dist2 = 0.0; //inside hexahedron
}
return 1;
}
else
{
double pc[3], w[27];
if (closestPoint)
{
for (i = 0; i < 3; i++) //only approximate, not really true for warped hexa
{
if (pcoords[i] < 0.0)
{
pc[i] = 0.0;
}
else if (pcoords[i] > 1.0)
{
pc[i] = 1.0;
}
else
{
pc[i] = pcoords[i];
}
}
this->EvaluateLocation (subId, pc, closestPoint,
static_cast<double *>(w));
dist2 = vtkMath::Distance2BetweenPoints (closestPoint, x);
}
return 0;
}
}
//----------------------------------------------------------------------------
void vtkTriQuadraticHexahedron::EvaluateLocation (int &vtkNotUsed (subId),
double pcoords[3], double x[3], double *weights)
{
int i, j;
double pt[3];
this->InterpolationFunctions (pcoords, weights);
x[0] = x[1] = x[2] = 0.0;
for (i = 0; i < 27; i++)
{
this->Points->GetPoint (i, pt);
for (j = 0; j < 3; j++)
{
x[j] += pt[j] * weights[i];
}
}
}
//----------------------------------------------------------------------------
int
vtkTriQuadraticHexahedron::CellBoundary (int subId, double pcoords[3], vtkIdList * pts)
{
return this->Hex->CellBoundary (subId, pcoords, pts);
}
//----------------------------------------------------------------------------
void vtkTriQuadraticHexahedron::Contour (double value,
vtkDataArray * cellScalars,
vtkIncrementalPointLocator * locator,
vtkCellArray * verts,
vtkCellArray * lines,
vtkCellArray * polys,
vtkPointData * inPd,
vtkPointData * outPd,
vtkCellData * inCd, vtkIdType cellId, vtkCellData * outCd)
{
//contour each linear hex separately
for (int i = 0; i < 8; i++)
{
for (int j = 0; j < 8; j++)
{
this->Hex->Points->SetPoint (j, this->Points->GetPoint (LinearHexs[i][j]));
this->Hex->PointIds->SetId (j, this->PointIds->GetId(LinearHexs[i][j]));
this->Scalars->SetValue (j, cellScalars->GetTuple1 (LinearHexs[i][j]));
}
this->Hex->Contour (value, this->Scalars, locator, verts, lines, polys,
inPd, outPd, inCd, cellId, outCd);
}
}
//----------------------------------------------------------------------------
// Clip this triquadratic hex using scalar value provided. Like contouring,
// except that it cuts the hex to produce tetrahedra.
void vtkTriQuadraticHexahedron::Clip (double value,
vtkDataArray * cellScalars,
vtkIncrementalPointLocator * locator,
vtkCellArray * tets,
vtkPointData * inPd,
vtkPointData * outPd,
vtkCellData * inCd, vtkIdType cellId,
vtkCellData * outCd, int insideOut)
{
//clip each linear hex separately
for (int i = 0; i < 8; i++)
{
for (int j = 0; j < 8; j++)
{
this->Hex->Points->SetPoint (j, this->Points->GetPoint (LinearHexs[i][j]));
this->Hex->PointIds->SetId (j, this->PointIds->GetId(LinearHexs[i][j]));
this->Scalars->SetValue (j, cellScalars->GetTuple1 (LinearHexs[i][j]));
}
this->Hex->Clip (value, this->Scalars, locator, tets, inPd, outPd, inCd, cellId, outCd, insideOut);
}
}
//----------------------------------------------------------------------------
// Line-hex intersection. Intersection has to occur within [0,1] parametric
// coordinates and with specified tolerance.
int vtkTriQuadraticHexahedron::IntersectWithLine (double *p1, double *p2,
double tol, double &t, double *x, double *pcoords, int &subId)
{
int intersection = 0;
double tTemp;
double pc[3], xTemp[3];
int faceNum;
t = VTK_DOUBLE_MAX;
for (faceNum = 0; faceNum < 6; faceNum++)
{
for (int i = 0; i < 9; i++)
{
this->Face->PointIds->SetId(i,this->PointIds->GetId(HexFaces[faceNum][i]));
this->Face->Points->SetPoint (i, this->Points->GetPoint (HexFaces[faceNum][i]));
}
if (this->Face->IntersectWithLine (p1, p2, tol, tTemp, xTemp, pc, subId))
{
intersection = 1;
if (tTemp < t)
{
t = tTemp;
x[0] = xTemp[0];
x[1] = xTemp[1];
x[2] = xTemp[2];
switch (faceNum)
{
case 0:
pcoords[0] = 0.0;
pcoords[1] = pc[1];
pcoords[2] = pc[0];
break;
case 1:
pcoords[0] = 1.0;
pcoords[1] = pc[0];
pcoords[2] = pc[1];
break;
case 2:
pcoords[0] = pc[0];
pcoords[1] = 0.0;
pcoords[2] = pc[1];
break;
case 3:
pcoords[0] = pc[1];
pcoords[1] = 1.0;
pcoords[2] = pc[0];
break;
case 4:
pcoords[0] = pc[1];
pcoords[1] = pc[0];
pcoords[2] = 0.0;
break;
case 5:
pcoords[0] = pc[0];
pcoords[1] = pc[1];
pcoords[2] = 1.0;
break;
}
}
}
}
return intersection;
}
//----------------------------------------------------------------------------
int vtkTriQuadraticHexahedron::Triangulate (int vtkNotUsed (index), vtkIdList * ptIds, vtkPoints * pts)
{
pts->Reset ();
ptIds->Reset ();
ptIds->InsertId (0, this->PointIds->GetId (0));
pts->InsertPoint (0, this->Points->GetPoint (0));
ptIds->InsertId (1, this->PointIds->GetId (1));
pts->InsertPoint (1, this->Points->GetPoint (1));
return 1;
}
//----------------------------------------------------------------------------
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void
vtkTriQuadraticHexahedron::JacobianInverse (double pcoords[3], double **inverse, double derivs[81])
{
int i, j;
double *m[3], m0[3], m1[3], m2[3];
double x[3];
// compute interpolation function derivatives
this->InterpolationDerivs (pcoords, derivs);
// create Jacobian matrix
m[0] = m0;
m[1] = m1;
m[2] = m2;
for (i = 0; i < 3; i++) //initialize matrix
{
m0[i] = m1[i] = m2[i] = 0.0;
}
for (j = 0; j < 27; j++)
{
this->Points->GetPoint (j, x);
for (i = 0; i < 3; i++)
{
m0[i] += x[i] * derivs[j];
m1[i] += x[i] * derivs[27 + j];
m2[i] += x[i] * derivs[54 + j];
}
}
// now find the inverse
if (vtkMath::InvertMatrix (m, inverse, 3) == 0)
{
vtkErrorMacro (<<"Jacobian inverse not found");
return;
}
}
//----------------------------------------------------------------------------
void vtkTriQuadraticHexahedron::Derivatives (int vtkNotUsed (subId),
double pcoords[3], double *values, int dim, double *derivs)
{
double *jI[3], j0[3], j1[3], j2[3];
double functionDerivs[81], sum[3];
int i, j, k;
// compute inverse Jacobian and interpolation function derivatives
jI[0] = j0;
jI[1] = j1;
jI[2] = j2;
this->JacobianInverse (pcoords, jI, functionDerivs);
// now compute derivates of values provided
for (k = 0; k < dim; k++) //loop over values per vertex
{
sum[0] = sum[1] = sum[2] = 0.0;
for (i = 0; i < 27; i++) //loop over interp. function derivatives
{
sum[0] += functionDerivs[i] * values[dim * i + k];
sum[1] += functionDerivs[27 + i] * values[dim * i + k];
sum[2] += functionDerivs[54 + i] * values[dim * i + k];
}
for (j = 0; j < 3; j++) //loop over derivative directions
{
derivs[3 * k + j] = sum[0] * jI[j][0] + sum[1] * jI[j][1] + sum[2] * jI[j][2];
}
}
}
//----------------------------------------------------------------------------
// Compute interpolation functions for the 27 nodes.
void vtkTriQuadraticHexahedron::InterpolationFunctions (double pcoords[3], double weights[27])
{
//VTK needs parametric coordinates to be between (0,1). Isoparametric
//shape functions are formulated between (-1,1). Here we do a
//coordinate system conversion from (0,1) to (-1,1).
double r = 2.0 * (pcoords[0] - 0.5);
double s = 2.0 * (pcoords[1] - 0.5);
double t = 2.0 * (pcoords[2] - 0.5);
double g1r = -0.5 * r * (1 - r);
double g1s = -0.5 * s * (1 - s);
double g1t = -0.5 * t * (1 - t);
double g2r = (1 + r)*(1 - r);
double g2s = (1 + s)*(1 - s);
double g2t = (1 + t)*(1 - t);
double g3r = 0.5 * r * (1 + r);
double g3s = 0.5 * s * (1 + s);
double g3t = 0.5 * t * (1 + t);
//The eight corner points
weights[0] = g1r * g1s * g1t;
weights[1] = g3r * g1s * g1t;
weights[2] = g3r * g3s * g1t;
weights[3] = g1r * g3s * g1t;
weights[4] = g1r * g1s * g3t;
weights[5] = g3r * g1s * g3t;
weights[6] = g3r * g3s * g3t;
weights[7] = g1r * g3s * g3t;
//The mid-edge nodes
weights[8] = g2r * g1s * g1t;
weights[9] = g3r * g2s * g1t;
weights[10] = g2r * g3s * g1t;
weights[11] = g1r * g2s * g1t;
weights[12] = g2r * g1s * g3t;
weights[13] = g3r * g2s * g3t;
weights[14] = g2r * g3s * g3t;
weights[15] = g1r * g2s * g3t;
weights[16] = g1r * g1s * g2t;
weights[17] = g3r * g1s * g2t;
weights[18] = g3r * g3s * g2t;
weights[19] = g1r * g3s * g2t;
//face center nodes
weights[22] = g2r * g1s * g2t;
weights[21] = g3r * g2s * g2t;
weights[23] = g2r * g3s * g2t;
weights[20] = g1r * g2s * g2t;
weights[24] = g2r * g2s * g1t;
weights[25] = g2r * g2s * g3t;
//Cell center node
weights[26] = g2r * g2s * g2t;
}
//----------------------------------------------------------------------------
// Derivatives in parametric space.
void vtkTriQuadraticHexahedron::InterpolationDerivs (double pcoords[3],
double derivs[81])
{
//VTK needs parametric coordinates to be between (0,1). Isoparametric
//shape functions are formulated between (-1,1). Here we do a
//coordinate system conversion from (0,1) to (-1,1).
double r = 2.0 * (pcoords[0] - 0.5);
double s = 2.0 * (pcoords[1] - 0.5);
double t = 2.0 * (pcoords[2] - 0.5);
double g1r = -0.5 * r * (1 - r);
double g1s = -0.5 * s * (1 - s);
double g1t = -0.5 * t * (1 - t);
double g2r = (1 + r)*(1 - r);
double g2s = (1 + s)*(1 - s);
double g2t = (1 + t)*(1 - t);
double g3r = 0.5 * r * (1 + r);
double g3s = 0.5 * s * (1 + s);
double g3t = 0.5 * t * (1 + t);
double g1r_r = r - 0.5;
double g1s_s = s - 0.5;
double g1t_t = t - 0.5;
double g2r_r = -2*r;
double g2s_s = -2*s;
double g2t_t = -2*t;
double g3r_r = r + 0.5;
double g3s_s = s + 0.5;
double g3t_t = t + 0.5;
//r-derivatives
derivs[0] = g1r_r * g1s * g1t;
derivs[1] = g3r_r * g1s * g1t;
derivs[2] = g3r_r * g3s * g1t;
derivs[3] = g1r_r * g3s * g1t;
derivs[4] = g1r_r * g1s * g3t;
derivs[5] = g3r_r * g1s * g3t;
derivs[6] = g3r_r * g3s * g3t;
derivs[7] = g1r_r * g3s * g3t;
derivs[8] = g2r_r * g1s * g1t;
derivs[9] = g3r_r * g2s * g1t;
derivs[10]= g2r_r * g3s * g1t;
derivs[11]= g1r_r * g2s * g1t;
derivs[12]= g2r_r * g1s * g3t;
derivs[13]= g3r_r * g2s * g3t;
derivs[14]= g2r_r * g3s * g3t;
derivs[15]= g1r_r * g2s * g3t;
derivs[16]= g1r_r * g1s * g2t;
derivs[17]= g3r_r * g1s * g2t;
derivs[18]= g3r_r * g3s * g2t;
derivs[19]= g1r_r * g3s * g2t;
derivs[20]= g1r_r * g2s * g2t;
derivs[21]= g3r_r * g2s * g2t;
derivs[22]= g2r_r * g1s * g2t;
derivs[23]= g2r_r * g3s * g2t;
derivs[24]= g2r_r * g2s * g1t;
derivs[25]= g2r_r * g2s * g3t;
derivs[26]= g2r_r * g2s * g2t;
//s-derivatives
derivs[27] = g1r * g1s_s * g1t;
derivs[28] = g3r * g1s_s * g1t;
derivs[29] = g3r * g3s_s * g1t;
derivs[30] = g1r * g3s_s * g1t;
derivs[31] = g1r * g1s_s * g3t;
derivs[32] = g3r * g1s_s * g3t;
derivs[33] = g3r * g3s_s * g3t;
derivs[34] = g1r * g3s_s * g3t;
derivs[35] = g2r * g1s_s * g1t;
derivs[36] = g3r * g2s_s * g1t;
derivs[37] = g2r * g3s_s * g1t;
derivs[38] = g1r * g2s_s * g1t;
derivs[39] = g2r * g1s_s * g3t;
derivs[40] = g3r * g2s_s * g3t;
derivs[41] = g2r * g3s_s * g3t;
derivs[42] = g1r * g2s_s * g3t;
derivs[43] = g1r * g1s_s * g2t;
derivs[44] = g3r * g1s_s * g2t;
derivs[45] = g3r * g3s_s * g2t;
derivs[46] = g1r * g3s_s * g2t;
derivs[47] = g1r * g2s_s * g2t;
derivs[48] = g3r * g2s_s * g2t;
derivs[49] = g2r * g1s_s * g2t;
derivs[50] = g2r * g3s_s * g2t;
derivs[51] = g2r * g2s_s * g1t;
derivs[52] = g2r * g2s_s * g3t;
derivs[53] = g2r * g2s_s * g2t;
//t-derivatives
derivs[54] = g1r * g1s * g1t_t;
derivs[55] = g3r * g1s * g1t_t;
derivs[56] = g3r * g3s * g1t_t;
derivs[57] = g1r * g3s * g1t_t;
derivs[58] = g1r * g1s * g3t_t;
derivs[59] = g3r * g1s * g3t_t;
derivs[60] = g3r * g3s * g3t_t;
derivs[61] = g1r * g3s * g3t_t;
derivs[62] = g2r * g1s * g1t_t;
derivs[63] = g3r * g2s * g1t_t;
derivs[64] = g2r * g3s * g1t_t;
derivs[65] = g1r * g2s * g1t_t;
derivs[66] = g2r * g1s * g3t_t;
derivs[67] = g3r * g2s * g3t_t;
derivs[68] = g2r * g3s * g3t_t;
derivs[69] = g1r * g2s * g3t_t;
derivs[70] = g1r * g1s * g2t_t;
derivs[71] = g3r * g1s * g2t_t;
derivs[72] = g3r * g3s * g2t_t;
derivs[73] = g1r * g3s * g2t_t;
derivs[74] = g1r * g2s * g2t_t;
derivs[75] = g3r * g2s * g2t_t;
derivs[76] = g2r * g1s * g2t_t;
derivs[77] = g2r * g3s * g2t_t;
derivs[78] = g2r * g2s * g1t_t;
derivs[79] = g2r * g2s * g3t_t;
derivs[80] = g2r * g2s * g2t_t;
// we compute derivatives in in [-1; 1] but we need them in [ 0; 1]
for(int i = 0; i < 81; i++)
derivs[i] *= 2;
}
//----------------------------------------------------------------------------
static double vtkQHexCellPCoords[81] = {
0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0,
1.0, 1.0, 1.0,
0.0, 1.0, 1.0,
0.5, 0.0, 0.0,
1.0, 0.5, 0.0,
0.5, 1.0, 0.0,
0.0, 0.5, 0.0,
0.5, 0.0, 1.0,
1.0, 0.5, 1.0,
0.5, 1.0, 1.0,
0.0, 0.5, 1.0,
0.0, 0.0, 0.5,
1.0, 0.0, 0.5,
1.0, 1.0, 0.5,
0.0, 1.0, 0.5,
0.0, 0.5, 0.5, // 20
1.0, 0.5, 0.5, // 21
0.5, 0.0, 0.5, // 22
0.5, 1.0, 0.5, // 23
0.5, 0.5, 0.0, // 24
0.5, 0.5, 1.0, // 25
0.5, 0.5, 0.5 // 26
};
double *vtkTriQuadraticHexahedron::GetParametricCoords ()
{
return vtkQHexCellPCoords;
}
//----------------------------------------------------------------------------
void vtkTriQuadraticHexahedron::PrintSelf (ostream & os, vtkIndent indent)
{
this->Superclass::PrintSelf (os, indent);
os << indent << "Edge:\n";
this->Edge->PrintSelf (os, indent.GetNextIndent ());
os << indent << "Face:\n";
this->Face->PrintSelf (os, indent.GetNextIndent ());
os << indent << "Hex:\n";
this->Hex->PrintSelf (os, indent.GetNextIndent ());
os << indent << "Scalars:\n";
this->Scalars->PrintSelf (os, indent.GetNextIndent ());
}