Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
bin
 
 
fig
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

vae_assoc

Variational Auto-encoders factored with enforced identity of the latent variables. See reference:

Yin, H., Melo, F. S., Billard, A. and Paiva, A. Associate Latent Encodings in Learning from Demonstrations. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). San Francisco, California, USA.

Downloading data and a model example

$ cd bin
$ ./download_data.sh
$ cd ../output
$ ./download_model.sh

Video demo

Observe associated encodings of letter images and dynamical writing motion

$ python vae_assoc_model_viewer.py

Inference of writing motion from a letter image

Launch roscore for exchanging messages.

$ roscore

In another terminal, start the the GUI and the rendering simulator

$ python baxter_openrave.py &
$ python baxter_vae_assoc_writer.py

Some main dependencies

Mandatory:

Tensorflow (>=0.8.0)

Optional (for robot motion, messaging and rendering purposes):

PyQT

ROS

OpenRAVE

baxter_pykdl

About

Associative Variational Auto-encoders

Topics

Resources

License

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.