
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Implementation of Volumetric Light
Scattering in Unity

Felix Kosian

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Implementation of Volumetric Light
Scattering in Unity

Implementation von Volumetrischer
Lichtstreuung in Unity

Author: Felix Kosian
Supervisor: Prof. Dr. Rüdiger Westermann
Advisor: Prof. Dr. Rüdiger Westermann
Submission Date: 15.04.2020

I confirm that this bachelor’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 15.04.2020 Felix Kosian

Acknowledgments

I wish to express my sincere thanks to the following people:

• My supervisor Prof. Dr. Rüdiger Westermann for letting me choose and support-
ing my topic

• Sebastian Lague for inspiring me with his coding adventure YouTube series

• My friends for supporting me with ideas, help with Blender and test reading this
thesis

Abstract

This thesis briefly analyzes the physics of light scattering in air, describes and compares
all commonly used mesh-based, post-processing and volumetric approaches to create
the light scattering effect in real-time applications (games). Furthermore it explains how
to implement the view frustum voxelization (froxel) approach with corresponding 3D
textures and compute shaders in Unity to create god rays. This is the newest approach,
which is used in many state of the art game engines. Different depth distributions are
analyzed and future possibilities for optimizations are summarized.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Physics of Volumetric Light Scattering 2
2.1 Scattering . 2
2.2 Transmittance . 4

3 Approaches 5
3.1 Mesh-Based . 5

3.1.1 Billboards . 5
3.1.2 Particles . 5
3.1.3 Semi Transparent Geometry . 6

3.2 Post-Processing . 6
3.2.1 Analytical Fog . 6
3.2.2 Post-Process Ray Marching . 6

3.3 3D Volumes . 7
3.3.1 Volume Ray Marching . 7
3.3.2 Volumetric Textures . 7

4 Comparison 9
4.1 Constraints . 9

4.1.1 Light Sources . 9
4.1.2 Scene Scale . 9
4.1.3 Dynamic Occlusion . 10
4.1.4 Varying Density . 10
4.1.5 Transparent Objects . 11

4.2 Performance . 12
4.3 Visual Quality . 12
4.4 Choice . 12

v

Contents

5 Programming Environment and External Tools 13
5.1 Unity . 13
5.2 Tools . 13
5.3 Hardware . 13

6 Implementation 14
6.1 View Frustum Voxelization . 14

6.1.1 Generation and Transformation 14
6.1.2 Depth Distribution . 16

6.2 Density Estimation . 16
6.3 Light Calculation . 17
6.4 Accumulation by Ray Marching . 19
6.5 Applying Effect . 20

7 Evaluation 22
7.1 Volumetric Textures for God Rays . 22
7.2 Depth Distribution Analysis . 22
7.3 Implementation Optimizations . 23

7.3.1 Performance . 24
7.3.2 Visual . 24
7.3.3 Ideas . 24

8 Conclusion 25

List of Figures 26

List of Tables 27

Glossary 28

Bibliography 29

vi

1 Introduction

Volumetric light effects like fog and clouds add realism and atmospheric feeling
to a scene. Especially the god ray effect is a fascinating phenomenon. The digital
visualization of volumetric effects offers many approaches and is often computationally
intensive. In the first part of this thesis we will analyze what volumetric light scattering
is and how it is present in the real world. In the second part, we will gather and
compare all commonly used methods of implementing this effect in games. In the third
part we will implement a simple version of the newest approach (volumetric textures)
in Unity with focus on visualizing every step of the algorithm. Finally we will compare
the results of different depth distributions and take a look at possible optimizations.

Figure 1.1: Example of god rays in nature [Unk17]

1

2 Physics of Volumetric Light Scattering

Volumetric light scattering describes the effect of light traveling through participating
media e.g. fog, dust and smoke. In reality the path of photons is influenced. The result
is the visibility of light in 3D space.

Four effects take place for this phenomenon: absorption, emission, out-scattering
and in-scattering [Jar08]. See figure 2.1. Those can be categorized into two parts:

The loss of radiance

extinction = absorption + out-scattering

The increase of radiance

radiance-incr = emission + in-scattering

Together those result in the final light that arrives at the viewer

f inal-radiance = radiance− extinction + radiance-incr

Effects due to emission in reality can mostly be neglected [Unk12]. Contrary in games
it is useful for artists and for faking multi-scattering. See chapter 2.1.

(a) Absorption (b) Emission (c) Out-Scattering (d) In-Scattering

Figure 2.1: Four Effects of Scattering

2.1 Scattering

Scattering is the "bouncing" of photons on particles. Two different phenomena can
be described, in-scattering and out-scattering. Light that hits particles and bounces

2

2 Physics of Volumetric Light Scattering

towards the viewer and light that should go to the viewer but getting bounced away by
the particles [Wro14; Unk12; Hoo16]. It is not possible to simulate millions of photons,
so phase functions are used to determine the amount of radiocity that is scattered. They
are similar to bidirectional reflectance distribution functions (BRDFs) of materials for
opaque surfaces.

This scattering differs depending on the particles. For simulating scattering by small
molecules like air, the Rayleigh Phase Function, see equation 2.2, is a close approximation.
It is isotropic but wavelength dependent and without absorption. For aerosol or dust,
complex Mie scattering is used and more physically correct. This model is strongly
anisotropic and takes absorption into account. For easier Mie scattering calculation
the Henyey-Greenstein Phase Function, see equation 2.3, or the even faster Schlick Phase
Function, see equation 2.4, is highly recommended [Yus13; Wro14; Pat13; Jar08].

Isotropic Phase Function ρI =
1

4π
(2.1)

ρ = phase factor

Rayleigh Phase Function ρR =
3

16π
(1 + cos2(θ)) (2.2)

ρ = phase factor, θ = angle

Henyey-Greenstein Phase Function ρHG =
1− g2

4π(1 + g2 − 2g cos(θ))1.5 (2.3)

ρ = phase factor, g ∈ [−1, 1] = relative strength of forward and backward scattering,
θ = angle

Schlick Phase Function ρS =
1− k2

4π(1 + k cos(θ))2 (2.4)

ρ = phase factor, k ∈ [−1, 1] = preferential scattering direction, θ = angle

Figure 2.2: Equations of different phase functions [Jar08]

Those scattering events take place multiple times in reality. Because the evaluation of
any scattering function is expensive, most realtime applications only consider single-

3

2 Physics of Volumetric Light Scattering

Figure 2.3: Single-scattering (left), multi-scattering (right) Figure 2.4: Angle θ [Jar08]

scattering. Multi-scattering, the bouncing of one photon on multiple molecules shown
in figure 2.3, is often faked with an ambient term equivalent to indirect lighting for
global illumination [Pat13].

2.2 Transmittance

Transmittance describes the amount of light that is not diverted or absorbed by any
particles and hits the viewer. It is calculated with Beer-Lambert law, see equation 2.5.
The optical depth for this law is calculated with equation 2.6 in which the extinction is
the combination of absorption and out-scattering.

Beer-Lambert Law T = e−τ (2.5)

T = transmittance, τ = optical depth

Optical depth τ = ∑ µ ∗ ∆z (2.6)

µ = extinction, ∆z = interval length, τ = optical depth

4

3 Approaches

All approaches can be split into three categories: mesh-based, post-processing and 3D
volumes. Advantages and disadvantages are discussed in chapter 4.

3.1 Mesh-Based

3.1.1 Billboards

Figure 3.1: Layered sprites [Che18]

Billboards are semi transparent sprites
placed in worldspace and always ori-
ented towards the camera. Often multiple
sprites are stacked behind each other. To
reduce the effect of rotating sprites, the
billboards fade out depending on the dis-
tance to the camera.

3.1.2 Particles

Figure 3.2: Unity VFX Graph [Che18]

This approach is similar to the Billboard
technique. The sprites are much smaller
or only points and managed by the par-
ticle system of the game engine. With an
advanced particle system this can be very
effective.

5

3 Approaches

3.1.3 Semi Transparent Geometry

Figure 3.3: Zelda: The Wind Walker [Mit04]

Semi transparent 3D geometry is an old
approach for creating light shafts. This
is done by extruding polygons from the
light source and stopping when scene
geometry is hit. Alternatively the light
geometry can be created manually. If
the game engine uses light geometry for
shadow casting, this geometry can be di-
rectly used for the semi transparent fog
geometry.

3.2 Post-Processing

3.2.1 Analytical Fog

Figure 3.4: Depth based fog [Cra14]

This approach takes the depth texture of
the final image and alpha blends the fog
depending on the scene depth. This can
be done with any function, most popular
are linear, squared or exponential func-
tions. This effect is especially useful to
hide unloaded parts of the scene.

3.2.2 Post-Process Ray Marching

Figure 3.5: God rays in Crysis [che16]

Post-process ray marching is a more com-
plex approach for light shafts and is com-
pletely done in post-process. In this al-
gorithm rays are sent in screen space
from the light source to the current pixel.
Those samples are evaluated with the
light scattering function and blended onto
the final scene image. This can be ex-
tended by using an occlusion method for
correctly handling scene geometry and generating shadows for the light rays [Mit07].

6

3 Approaches

3.3 3D Volumes

3.3.1 Volume Ray Marching

Figure 3.6: Ray marching result [TU09]

The algorithm by Toth et al. performs ray
marching from the scene towards the cam-
era. On every ray samples are taken in
a defined distance. For each sample the
scattering equation is evaluated depend-
ing on the last sample while taking shad-
ows into account [TU09].

This can be optimised with Epipolar
Sampling. By having the center points on
the camera and the light, all samples of a
ray are on an epipolar line of the camera.
After evaluating the scattering equation the result is transformed back into rectangular
coordinates. Additionally the use of 1D min/max binary trees for evaluating the
shadowmap can increase the performance. Samples at sudden depth value changes
(depth breaks) increase accuracy of sharp shadow edges. A detailed explanation is
available by Yusov: "Practical Implementation of Light Scattering Effects Using Epipolar
Sampling and 1D Min/Max Binary Trees" [Yus13].

Another optimising method is Interleaved Sampling. Instead of taking a sample
at every step, it takes the sample of neighboring pixels [TU09]. With addition of
bilateral Gaussian Blur and depth-aware up-sampling, the resulting image quality and
performance is suitable for games [Gla14].

Guerrilla Games have developed a highly optimized ray marching implementation for
clouds [Sch15].

3.3.2 Volumetric Textures

Key idea of this approach is the separation of typical ray marching operations and the
storing of intermediate results into 3D textures. This allows a faster and even parallel
execution of some steps with compute shaders. Those steps are:

1. Density estimation of participating media

2. Calculating in-scattering light

3. Effect accumulation over depth by ray marching

4. Applying the effect

7

3 Approaches

This requires some type of subdivision of a volume into smaller volumes, called
voxelization. Information of every voxel corresponds to one pixel in the 3D texture.
When placing the volume containing the voxels aligned with the view frustum, the ray
marching operation is a parallel scan through the 3D texture’s depth slices [Wro14].
Frustum aligned voxels are called froxels. A detailed description of these steps is part
of chapter 6.

8

4 Comparison

To get an overview which method to choose, we compare them by the following
attributes: constraints, performance, visual quality. The evaluation is based on a
standard implementation. This does not include for example camera dependent
dynamic texture generation for billboards or millions of particles for dense fog. Finally,
in table 4.1 those attributes are summarized for all approaches.

4.1 Constraints

Some approaches have limited possibilities. Conditions that can be crucial for deter-
mining which approach to choose are described in the following.

4.1.1 Light Sources

Are light dependent interactions, several light sources and different types of lights
supported?

• Billboards are light independent.
• Particles have often the option of lit shaders.
• For semi transparent geometry the alpha value can be changed in the shader

depending on the distance to the light.
• Analytical fog is light independent.
• Post-process ray marching has the condition to have the light source on screen.
• Volume ray marching needs to be repeated for every light source.
• The volumetric textures approach has the advantage of not repeating all steps

for every light. Only step two, calculating in-scattering light, has to loop over all
relevant lights.

4.1.2 Scene Scale

Can the approach be up- and down-scaled? For example normal room size compared
to landscape with mountains.

• Billboards are good for fog at a far distance, similar to the level of detail (LOD)
method.

9

4 Comparison

• Particles are mostly to small for large area dense fog.
• Semi transparent geometry can be scaled like all other geometry.
• Analytical fog is not depending on the scene geometry.
• Post-process ray marching is not depending on the scene geometry.
• Volume ray marching in large areas means more samples or less quality
• Volumetric textures always have the same amount of samples, so fog in the

distance is not precise because froxels far away from the camera are larger but
still only have one sample.

4.1.3 Dynamic Occlusion

Is it possible to have dynamic objects with shadows or moving lights?

• The sprites of billboards don’t cast shadows.
• Most particles engines support shadow casting.
• Semi transparent geometry is the light if extruded from the light source or can

normally cast shadows.
• Analytical fog is light independent.
• Post-process ray marching uses screen space occlusion.
• Volume ray marching evaluates the lights and shadows at each sample every

frame.
• Volumetric textures evaluate the lights and shadows at each sample every frame

as well.

4.1.4 Varying Density

Can the participating media volume be non-uniform? This is normally done by using
noise textures to have dense concentration of fog and other places without fog.

• The texture of billboards can be noise textures.
• Particles can be placed non-uniformly. They can be dynamic as well.
• The textures of semi transparent geometry can be noise textures but don’t change

with the camera view angle.
• Analytical fog can’t support varying density because it is calculated in screen

space.
• Post-process ray marching can’t support varying density, it is calculated in screen

space as well.
• Volume ray marching evaluates the density at each sample every frame.
• The volumetric textures approach evaluates the density at each sample every

frame as well.

10

4 Comparison

4.1.5 Transparent Objects

Does this approach correctly handle transparent objects in the scene?

• Billboards can be blended in.
• Particles can be blended in.
• Semi transparent geometry is a transparent object itself.
• Analytical fog can be blended in.
• Post-process ray marching is blended in automatically.
• Volume ray marching does not support transparent geometry because the accu-

mulated fog values are only available at the camera and not in the scene.
• The volumetric textures approach does support transparent geometry because

the accumulated fog values are available across the scene.

Billboards Particles Semi Transpar-
ent Geometry

Light Sources no yes yes
Scene Scale yes no yes
Dynamic Occlusion no yes yes
Varying Density yes yes yes
Transparent Objects yes yes no
Performance low medium low
Visual Quality medium medium low

Analytical
Fog

Post-Process
Ray Marching

Volume Ray
Marching

Volumetric
Textures

Light Sources no only on screen yes yes
Scene Scale yes yes yes yes
Dynamic Occlusion no yes yes yes
Varying Density no no yes yes
Transparent Objects yes yes no yes
Performance low medium high high
Visual Quality low high high high

Table 4.1: Approach comparison

11

4 Comparison

4.2 Performance

Depending on the approach a different computing power is required. This can be a
limiting factor depending on the target platform. The evaluation is based on the core
concept of the implementation: loops in shaders, multiple shader passes, complex
computations. For a more detailed analysis an implementation and optimization of all
approaches with multiple different scenarios would be required. This is out of scope
for this thesis.

4.3 Visual Quality

Visual Quality is measured by how close the result of each approach compares to reality.
This is very often not required. On one hand a Low-Poly-Game does not need accurate
light scattering. Semi transparent geometry can even fit better in this case. On the other
hand in a photo-realistic first person shooter it would break the immersion if a dusty
interior had billboards rotating that don’t change with the light. This evaluation is not
based on specific tests but on general observations.

Post-process ray marching has very good looking and high quality results but is not
accurate compared to reality. The volumetric textures approach is very accurate in
regards to single-scattering. This is shown in a comparison between the Frostbite game
engine and the physical path tracer Mitsuba [Hil15]. Semi transparent geometry has
problems with light geometry intersecting normal scene geometry resulting in visible
lines [Mit04].

4.4 Choice

What approach to choose is highly dependent on what result and effect is expected.
For the god ray effect we decided to implement the volumetric textures approach. It
is the newest and most used option in high quality game engines like Unreal Engine,
CRYENGINE, Frostbite engine, Rockstar Advanced Game Engine and Unity (High Definition
Render Pipeline Package). We want to get a deeper understanding what makes this
approach superior compared to the others.

12

5 Programming Environment and External
Tools

5.1 Unity

For our implementation we are using Unity version 2019.3.3f1 including the High Defi-
nition Render Pipeline package version 7.1.8. This allows us to use the core infrastructure
of a complete game engine. The Scriptable Render Pipeline allows more access to every
render step if needed. Visual features including tonemapping, bloom and volumes are
disabled.

5.2 Tools

To analyze and debug rendering processes like shaderpasses and compute shader we
use Renderdoc which can be integrated into Unity. Graphics were made in Unity with use
of Sebastian Lague’s Debug Viewer [Lag20] and in Blender. The demo scenes are created
with 3D assets from the Unity Asset Store: HQ Autumn Dry Maple Trees by Roman
Borisenko [Bor18], Rocky Hills Environment - Light Pack by Tobyfredson [Tob18] and
Snaps Prototype | Sci-Fi / Industrial by Asset Store Originals [Ori19].

5.3 Hardware

All tests are performed on NVidea GForce 1060 6GB GPU in combination with an Intel
Core i7-7700K CPU and 16GB DIMM-RAM with 3200MHz.

13

6 Implementation

In this chapter we analyze the Froxel 3D Volume algorithm step by step and present
our implementation. Figure 6.1 shows an illustration of scattering of one ray with
corresponding equations for calculating the light scattering at a sample point and
equation 6.2 for calculating the light accumulation front to back.

6.1 View Frustum Voxelization

Concept The frustum voxelization is needed for detecting intersections with density
volumes, affected light areas and calculating the position of one sample in each froxel.
The amount of froxels is defined in each dimension in x - width, y - height and z -
depth. Recommended is 160 in width, 90 in height and 64 or 128 in depth dependent
on the platform [Wro14]. This results in 921 600 or 1 843 200 froxels. See figure 6.2 for
an example.

6.1.1 Generation and Transformation

Concept There are some options to divide the view frustum. One is to divide an
unit-cube into voxels and then project them into screenspace with the inverse projection-
matrix of the camera. Note that the projection-matrix has a depth factor effect of
1/z [Ree15]. This has to be considered for the depth distribution. The positions can also
be calculated by using ray vectors pointing from the camera towards the view frustum
similar to raycasting. See chapter 7.3 for more information about this option.

Implementation We decided to use simple trilinear interpolation from the view
frustum corners. This is slow but possible because we only calculate those positions
once at the start of the game and save them relative to the camera. On start we
interpolate all (x+1)*(y+1)*(z+1) corners of the froxels in three nested loops, one for
each dimension. After that, in another three nested loops, we group together the eight
corners of each froxel. The center of each froxel is calculated by adding all eight corners
together and dividing the resulting vector by eight. This center will later be our sample
point. For sample position variation see chapter 7.3.

14

6 Implementation

Lscat(xs) =
lights

∑
l=0

Vis(xs, l)L(xs, l)ρ (6.1)

xs = position of sample, l = light index, Vis(xs, l) = visibility of light at a point, L(xs, l)
= light value from light l at point xs, ρ = phase function factor

Laccum =
1

∑
zi=0

T(zi)dLscat(zi)∆z(f − n) (6.2)

zi = normalized slice depth, ∆z = zi − zi−1 = depth of froxel, n = near plane, f = far
plane, d = density

Figure 6.1: Implementation graphic based on [Hil15]

All froxels are relative to the camera. To get the worldspace coordinates we multiply
them with the local-to-world matrix of the camera. This has to be done every frame. To
accelerate those matrix vector multiplications we make use of a compute shader. Getting
the result back from the GPU to the CPU takes time and is a bottleneck described in
chapter 7.3.1. For a small amount of froxels this is acceptable.

15

6 Implementation

Figure 6.2: Frustum voxelization with 8x8x8 tiles

6.1.2 Depth Distribution

Concept Depth distribution defines how the depth slices are distributed with increas-
ing distance to the camera. To distribute the depth slices one could use a fixed function.
Generally a distribution with more slices towards the near plane is recommended to
reduce aliasing artifacts [Wro14].

Implementation We use an Unity-Animation-Curve to change and experiment with
different values more easily. This curve is defined between 0 and 1 with an output from
0 to 1 and can be directly used in our trilinear interpolation. Later for the step applying
effect we need to save the inverted animation curve in a 1D texture because it is not
possible to evaluate an animation curve in a shader. See figure 6.3 for the animation
curves in respect to the resulting depth distribution with 17 depth slices.

6.2 Density Estimation

Concept To know how dense the participating media is at a specific position we take
samples from the density input. The input includes global fog and local fog volumes
consisting of 3D textures in worldspace. This can be done in a compute shader by
looping over all volumes, transforming the sample point into the local normalized space
of the volume, sampling the 3D texture and adding the global fog value. The result is
saved in another 3D texture with the same layout like the froxels. This texture saves
the fog color in the R, G and B channel and the extinction factor in the alpha channel.

16

6 Implementation

(a) Linear animation curve (b) Linear depth distribution

(c) Nonlinear animation curve (d) Nonlinear depth distribution

Figure 6.3: Different depth distributions with animation curves

For wavelength dependent extinction, a second 2D texture is necessary [Bau19]. To
accelerate this step it is possible to test for intersection of the froxel bounding box with
the fog volume bounding box. This can be combined with the detection of samples close
to the volume edge to create softer edges [LG18]. See chapter 7.3 for more information.

Implementation Our implementation does not concentrate on this step. We only
implement global fog by setting the RGBA values of the resulting 3D texture to a
constant.

6.3 Light Calculation

Concept All lights have to inject their information into the froxels. This is done in
a compute shader by looping over all lights and calculating for each sample if it is
in shadow, what light or shadow color is present and what intensity the light has.
This step implements equation 6.1 which includes one of the scattering functions from
chapter 2.1. The result is saved in another view frustum aligned 3D texture. Like with
density estimation this can be accelerated by testing for intersections between the froxel
with bounding boxes of the effective light area.

17

6 Implementation

green = samples, purple = occluding depth point

Figure 6.4: Visibility test of one sample

Implementation Due to limited access to Unity’s internal processes, we decided to
calculate the visibility of a light manually. This is done by first rendering the depth
texture from the light position with a second camera. This light-camera’s view frustum
covers the same area as the light. Then the position of each sample is projected with
the light-camera’s view projection matrix into light clip space like shown in figure
6.4. Now we test if the sample is inside the light’s view frustum by checking if it is
inside the unit-cube. If the sample is inside the light’s view frustum we transform the
projected position from the [(-1,-1,-1),(1,1,1)] unit-cube to a [(0,0,0),(1,1,1)] unit-cube.
Finally we only need to compare the projected position with the value we read from the
depth texture with the projected position’s x and y coordinates. If 1 minus the depth is
smaller than the projected point, the sample is in shadow, else the sample is lit by the
light and we can insert the light values into the light 3D texture. See image 6.5a for a
buffer slice example.

For our example we use the isotropic phase function shown in equation 2.1.

18

6 Implementation

(a) Light buffer texture slice 40 (b) Accumulated buffer slice 128

(c) Accumulated buffer at index x=35, y=32 from front (left) to back (right)

Figure 6.5: Buffer examples from image 6.6

6.4 Accumulation by Ray Marching

Concept This step is necessary to get the accurate accumulation of the fog values over
the depth. Strictly speaking this is not done by ray marching because we have no ray,
only a x and y coordinate of the density and 3D light texture. By looping over the z
values of the 3D textures from the near plane to the far plane, we can calculate for each
z value the accumulated radiance and optical depth. Those values are saved in another
3D texture. See equation 6.2.

Implementation The optical depth of the current froxel is calculated by multiplying
the extinction with the slice depth delta. The accumulated optical depth is the sum of
the current optical depth and the optical depth of the froxel from the last slice. Because
the sample lies between two depth slices, only half of the current optical depth is added
to the last result and saved in the accumulation 3D texture’s alpha channel. The other
half is added after saving the value and the result is stored outside the loop for the
next slice.

To calculate the transmittance in between the depth slices and the transmittance from
the camera to the depth slice, we use Beer-Lambert law, see equation 2.5. The density is
simply read from the density 3D texture. The light values are read from the light 3D
texture and multiplied with the transmittance from the camera to the depth slice. The
final color radiance of the current sample is calculated by multiplying the transmittance
of the depth slice with the density color values and the light color values. This is added

19

6 Implementation

to the radiance of the last depth. The result is saved in the accumulation 3D texture.
See image 6.5b for an example of the last depth slice and image 6.5c for all values of
one x and y coordinate of the accumulation 3D texture across the depth.

6.5 Applying Effect

Concept The final effect is applied as a fullscreen pass. The accumulated light value
can be read from the 3D texture depending on the linear depth of the cameras depth
texture because the algorithm calculated the values from the near plane towards the
far plane. The opacity for alpha blending is calculated from the optical depth in the
alpha channel with equation 6.3. It is also possible to implement compatibility with
semi-transparent objects because the accumulated values are available before and after
any semi-transparent objects. They can simply be blended in [Wro14].

Opacity α = 1− T (6.3)

T = transmittance, α = opacity

Implementation To correctly apply our depth distribution from chapter 6.1.2 we have
to modify our depth value. First we read the depth value d from the depth buffer and
linearize it as dlin. Then we use dlin to sample the inverted animation curve texture so
we get dcurve. Finally we can use dcurve together with the normalized screen coordinates
to sample the 3D texture with the accumulated values and use the RGB values as
output combined with the calculated opacity from optical depth. Blend mode is one
minus source alpha and Z write off.

Transparent objects are ignored in our implementation.

20

6 Implementation

Figure 6.6: Demo result with 64x64x128 froxels

21

7 Evaluation

7.1 Volumetric Textures for God Rays

If the desired effects are only god rays, the post-process ray marching approach is
easier to implement. For overall fog including god rays, the chosen volumetric textures
approach offers a unified solution with many possibilities for optimization, see chapter
7.3.

For implementation in a game engine it might be worth testing a combination
of several approaches. For example Rockstar’s Rockstar Advanced Game Engine uses
volumetric textures for near fog and volume ray marching for clouds [Bau19].

7.2 Depth Distribution Analysis

During testing we discovered that a depth distribution with more slices near the
camera (non linear) does not always yield better results. In figure 7.1, 7.2 and 7.3 we
compare three different positions of the camera each with linear and non linear depth
distribution shown in chapter 6.1.2 in figure 6.3. All pictures have 80 x 45 x 64 froxels.

In figure 7.1 the camera is inside the lit fog volume and looking away from the light.
The non linear distribution has far less artifacts. In figure 7.2 the camera is inside the
lit fog volume and looking towards the light. Artifacts are visible in both pictures but
in different areas. In figure 7.3 the camera is outside the lit fog volume and looking
perpendicular to the light. The linear distribution has less artifacts than the non linear
distribution.

22

7 Evaluation

(a) Linear distribution (b) Non linear distribution

Figure 7.1: Camera inside looking away from the light

(a) Linear distribution (b) Non linear distribution

Figure 7.2: Camera inside looking towards the light

(a) Linear distribution (b) Non linear distribution

Figure 7.3: Camera outside looking perpendicular to the light

7.3 Implementation Optimizations

This implementation is not meant to be a finished solution to use in real-time applica-
tions. For production ready rendering in games a lot of optimizations are necessary.

Figure 6.6 shows our results without any optimizations mentioned in this chapter.

23

7 Evaluation

7.3.1 Performance

Most notable are the "GetBuffer" and "SetBuffer" calls to move data between the GPU
and the CPU. This can be avoided by simply staying on the GPU. This could possibly
be achieved by global shader variables and buffers. Another option is to calculate the
sample point on the fly by calculating them as points on rays from the near plane to
the far plane. Each ray would correspond to one x and y coordinate of the 3D textures.
Note that the depths are bound to x and y because otherwise all points of the same
depth would not lie on a flat plane but on a curved one.

To optimize the renderpipeline we have to consider the injection points of our
compute shaders. In our implementation they are currently called in the Unity update
loop. Density estimation can be called anytime because it does not depend on other
steps. Light calculation requires the geometry and light of the scene so any time after
shadow calculations is possible. Accumulation by ray marching has to be done after
the two previous steps. Applying effect has to be performed after the previous steps
and after transparency.

For many light sources close together light clustering improves performance because
step light calculation has to be performed only once per cluster.

7.3.2 Visual

The most needed visual improvement is to reduce the visibility of artifacts especially
while the camera is moving. One commonly used approach is to implement temporal
integration, also referred to as temporal reprojection. This is a way to use previ-
ous frames and combine the calculated values with the current frame [Hil15; LG18].
Other improvements to increase visual quality include down-sampling and blurring
shadowmaps [Wro14], jittering samples, applying filters, detecting partial overlapping
fog-volumes with voxels and including importance sampling [LG18].

7.3.3 Ideas

For accelerating the calculation of many small lights it could be beneficial to have a
hierarchical structure of different sized froxels. This would allow for faster detection of
light affected froxels.

Another idea is to change the depth distribution of the depth slices dynamically to
allow higher precision where it is needed. Chapter 7.2 shows possible improvements
for certain situations.

24

8 Conclusion

In this thesis, we created the god ray effect by analyzing how light scattering is present
in reality, categorized and compared advantages and disadvantages of all commonly
used methods of creating this effect and implemented the volumetric textures approach
in Unity. This implementation visualizes the underlying concept and is the base for
implementing and testing future optimizations.

(a) Scattering effect off (b) Scattering effect on

Figure 8.1: Demo result of our implementation

25

List of Figures

1.1 Example of god rays in nature [Unk17] 1

2.1 Four Effects of Scattering . 2
2.2 Equations of different phase functions [Jar08] 3
2.3 Single-scattering (left), multi-scattering (right) 4
2.4 Angle θ [Jar08] . 4

3.1 Layered sprites [Che18] . 5
3.2 Unity VFX Graph [Che18] . 5
3.3 Zelda: The Wind Walker [Mit04] . 6
3.4 Depth based fog [Cra14] . 6
3.5 God rays in Crysis [che16] . 6
3.6 Ray marching result [TU09] . 7

6.1 Implementation graphic based on [Hil15] 15
6.2 Frustum voxelization with 8x8x8 tiles . 16
6.3 Different depth distributions with animation curves 17
6.4 Visibility test of one sample . 18
6.5 Buffer examples from image 6.6 . 19
6.6 Demo result with 64x64x128 froxels . 21

7.1 Camera inside looking away from the light 23
7.2 Camera inside looking towards the light 23
7.3 Camera outside looking perpendicular to the light 23

8.1 Demo result of our implementation . 25

26

List of Tables

4.1 Approach comparison . 11

27

Glossary

absorption Transformation of a photon’s energy into other types of energy like heat.

anisotropic Light intensity depends on direction, opposite of isotropic.

artifact Unwanted sudden color change.

compute shader Special code programmed to run on the GPU. It allows parallel
computations following the single instruction, multiple data (SIMD) concept.

emission The emergence of photons by molecules due to various chemical and physical
reasons.

epipolar Mathematical concept which describes a relation between two points of view.

god ray Fog with visible light and shadow stripes. Also called light shafts, sunbeams
or crepuscular rays.

isotropic Same light intensity regardless of direction, opposite of anisotropic.

optical depth Describes the loss of radiance through a medium.

post-process An image processing step where only the final image and the depth
buffer is available.

radiance The amount of radiation defined for an area.

28

Bibliography

[Bau19] F. Bauer. Creating the Atmospheric World of Red Dead Redemption 2: A Complete
and Integrated Solution. July 30, 2019. url: https://advances.realtimerendering.
com/s2019/slides_public_release.pptx (visited on 04/05/2020).

[Bor18] R. Borisenko. HQ Autumn Dry Maple Trees. Oct. 15, 2018. url: https : / /
assetstore.unity.com/packages/3d/vegetation/trees/hq- autumn- dry-
maple-trees-93117 (visited on 04/12/2020).

[che16] chetanjags. Volumetric Lighting : SunShafts. Feb. 2, 2016. url: https://chetanjags.
wordpress.com/2016/02/02/volumetric- lighting-sunshafts/ (visited on
04/05/2020).

[Che18] S. Cherkasov. Oct. 23, 2018. url: https://www.gamasutra.com/blogs/
SvyatoslavCherkasov/20181023/329151/Graveyard_Keeper_How_the_
graphics_effects_are_made.php (visited on 04/05/2020).

[Cra14] S. Craitoiu. Create a fog shader. July 22, 2014. url: http://in2gpu.com/2014/
07/22/create-fog-shader/ (visited on 04/05/2020).

[Gla14] B. Glatzel. Volumetric Lighting for Many Lights in Lord of the Fallen. Digital
Dragon Conference. Deck13 Interactive GmbH. 2014. url: https://www.
slideshare.net/BenjaminGlatzel/volumetric-lighting-for-many-lights-in-
lords-of-the-fallen (visited on 01/27/2020).

[Hil15] S. Hillaire. Towards Unified and Physically-Based Volumetric Lighting in Frost-
bite. Siggraph 2015. Electronic Arts / Frostbite. 2015. url: http://advances.
realtimerendering.com/s2015/Frostbite%20PB%20and%20unified%20volumetrics.
pptx (visited on 02/17/2020).

[Hoo16] N. Hoobler. Fast, Flexible, Physically-Based Volumetric Light Scattering. GDC
2016. NVIDEA Developer Technology. Mar. 16, 2016. url: https://developer.
nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/
NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
(visited on 01/27/2020).

[Jar08] W. Jarosz. “Efficient Monte Carlo Methods for Light Transport in Scattering
Media.” PhD thesis. UC San Diego, Sept. 2008. Chap. 4.

29

https://advances.realtimerendering.com/s2019/slides_public_release.pptx
https://advances.realtimerendering.com/s2019/slides_public_release.pptx
https://assetstore.unity.com/packages/3d/vegetation/trees/hq-autumn-dry-maple-trees-93117
https://assetstore.unity.com/packages/3d/vegetation/trees/hq-autumn-dry-maple-trees-93117
https://assetstore.unity.com/packages/3d/vegetation/trees/hq-autumn-dry-maple-trees-93117
https://chetanjags.wordpress.com/2016/02/02/volumetric-lighting-sunshafts/
https://chetanjags.wordpress.com/2016/02/02/volumetric-lighting-sunshafts/
https://www.gamasutra.com/blogs/SvyatoslavCherkasov/20181023/329151/Graveyard_Keeper_How_the_graphics_effects_are_made.php
https://www.gamasutra.com/blogs/SvyatoslavCherkasov/20181023/329151/Graveyard_Keeper_How_the_graphics_effects_are_made.php
https://www.gamasutra.com/blogs/SvyatoslavCherkasov/20181023/329151/Graveyard_Keeper_How_the_graphics_effects_are_made.php
http://in2gpu.com/2014/07/22/create-fog-shader/
http://in2gpu.com/2014/07/22/create-fog-shader/
https://www.slideshare.net/BenjaminGlatzel/volumetric-lighting-for-many-lights-in-lords-of-the-fallen
https://www.slideshare.net/BenjaminGlatzel/volumetric-lighting-for-many-lights-in-lords-of-the-fallen
https://www.slideshare.net/BenjaminGlatzel/volumetric-lighting-for-many-lights-in-lords-of-the-fallen
http://advances.realtimerendering.com/s2015/Frostbite%20PB%20and%20unified%20volumetrics.pptx
http://advances.realtimerendering.com/s2015/Frostbite%20PB%20and%20unified%20volumetrics.pptx
http://advances.realtimerendering.com/s2015/Frostbite%20PB%20and%20unified%20volumetrics.pptx
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf

Bibliography

[Lag20] S. Lague. Debug Viewer. Mar. 3, 2020. url: https://github.com/SebLague/
DebugViewer (visited on 04/12/2020).

[LG18] S. Lagarde and E. Golubev. The Road toward Unified Rendering with Unity’s
High Definition Render Pipeline. page 135 - 186. Unity Technologies. Aug. 25,
2018. url: http : / / advances . realtimerendering . com / s2018 / Siggraph %
202018%20HDRP%20talk_with%20notes.pdf (visited on 01/29/2020).

[Mit04] J. Mitchell. Light Shafts. GDC 2004. 2004. url: http : / / developer. amd .
com/wordpress/media/2012/10/Mitchell_LightShafts .pdf (visited on
01/27/2020).

[Mit07] K. Mitchell. Volumetric Light Scattering as a Post-Process. GPU Gems 3. Elec-
tronic Arts / NVIDEA. Aug. 12, 2007. url: https://developer.nvidia.com/
gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-
light-scattering-post-process (visited on 02/18/2020).

[Ori19] A. S. Originals. Snaps Prototype | Sci-Fi / Industrial. Dec. 23, 2019. url: https://
assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-
sci-fi-industrial-136759 (visited on 04/12/2020).

[Pat13] Patapom. Real-Time Volumetric Rendering - What’s a participating medium? 2013.
url: https://patapom.com/topics/Revision2013/Revision%202013%20-
%20Real-time%20Volumetric%20Rendering%20Course%20Notes.pdf (visited
on 03/26/2020).

[Ree15] N. Reed. Depth Precision Visualized. July 15, 2015. url: https://developer.
nvidia.com/content/depth-precision-visualized (visited on 03/27/2020).

[Sch15] A. Schneider. The Real-time Volumetric Cloudscapes of Horizon: Zero Dawn.
Siggraph 2015. Guerrilla Games. Aug. 26, 2015. url: http : / / advances .
realtimerendering.com/s2015/The%20Real-time%20Volumetric%20Cloudscapes%
20of%20Horizon%20- %20Zero%20Dawn%20- %20ARTR.pdf (visited on
04/07/2020).

[Tob18] Tobyfredson. Rocky Hills Environment - Light Pack. Feb. 28, 2018. url: https:
//assetstore.unity.com/packages/3d/environments/landscapes/rocky-
hills-environment-light-pack-89939 (visited on 04/12/2020).

[TU09] B. Toth and T. Umenhoffer. “Real-time Volumetric Lighting in Participating
Media.” In: Eurographics 2009 - Short Papers. Ed. by P. Alliez and M. Magnor.
The Eurographics Association, 2009. doi: 10.2312/egs.20091048.

[Unk12] Unknown. IVB Atmospheric Light Scattering. Intel Software - Game Dev. Aug. 6,
2012. url: https://software.intel.com/en-us/articles/ivb-atmospheric-light-
scattering (visited on 01/27/2020).

30

https://github.com/SebLague/DebugViewer
https://github.com/SebLague/DebugViewer
http://advances.realtimerendering.com/s2018/Siggraph%202018%20HDRP%20talk_with%20notes.pdf
http://advances.realtimerendering.com/s2018/Siggraph%202018%20HDRP%20talk_with%20notes.pdf
http://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf
http://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-sci-fi-industrial-136759
https://assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-sci-fi-industrial-136759
https://assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-sci-fi-industrial-136759
https://patapom.com/topics/Revision2013/Revision%202013%20-%20Real-time%20Volumetric%20Rendering%20Course%20Notes.pdf
https://patapom.com/topics/Revision2013/Revision%202013%20-%20Real-time%20Volumetric%20Rendering%20Course%20Notes.pdf
https://developer.nvidia.com/content/depth-precision-visualized
https://developer.nvidia.com/content/depth-precision-visualized
http://advances.realtimerendering.com/s2015/The%20Real-time%20Volumetric%20Cloudscapes%20of%20Horizon%20-%20Zero%20Dawn%20-%20ARTR.pdf
http://advances.realtimerendering.com/s2015/The%20Real-time%20Volumetric%20Cloudscapes%20of%20Horizon%20-%20Zero%20Dawn%20-%20ARTR.pdf
http://advances.realtimerendering.com/s2015/The%20Real-time%20Volumetric%20Cloudscapes%20of%20Horizon%20-%20Zero%20Dawn%20-%20ARTR.pdf
https://assetstore.unity.com/packages/3d/environments/landscapes/rocky-hills-environment-light-pack-89939
https://assetstore.unity.com/packages/3d/environments/landscapes/rocky-hills-environment-light-pack-89939
https://assetstore.unity.com/packages/3d/environments/landscapes/rocky-hills-environment-light-pack-89939
https://doi.org/10.2312/egs.20091048
https://software.intel.com/en-us/articles/ivb-atmospheric-light-scattering
https://software.intel.com/en-us/articles/ivb-atmospheric-light-scattering

Bibliography

[Unk17] Unknown. low angle photography of crepuscular rays in forest wallpaper. Dec. 30,
2017. url: https://www.wallpaperflare.com/low-angle-photography-of-
crepuscular-rays-in-forest-wallpaper-21336/800x600 (visited on 04/12/2020).

[Wro14] B. Wronski. Volumetric Fog: Unified compute shader based solution to atmospheric
scattering. Siggraph2014. Ubisoft Montreal. 2014. url: https://bartwronski.
files.wordpress.com/2014/08/bwronski_volumetric_fog_siggraph2014.pdf
(visited on 01/27/2020).

[Yus13] E. Yusov. Practical Implementation of Light Scattering Effects Using Epipolar
Sampling and 1D Min/Max Binary Trees. GDC 2013. Intel Corporation. Mar. 27,
2013. url: https://software.intel.com/sites/default/files/managed/b9/1d/
gdc2013-lightscattering-final.pdf (visited on 01/27/2020).

31

https://www.wallpaperflare.com/low-angle-photography-of-crepuscular-rays-in-forest-wallpaper-21336/800x600
https://www.wallpaperflare.com/low-angle-photography-of-crepuscular-rays-in-forest-wallpaper-21336/800x600
https://bartwronski.files.wordpress.com/2014/08/bwronski_volumetric_fog_siggraph2014.pdf
https://bartwronski.files.wordpress.com/2014/08/bwronski_volumetric_fog_siggraph2014.pdf
https://software.intel.com/sites/default/files/managed/b9/1d/gdc2013-lightscattering-final.pdf
https://software.intel.com/sites/default/files/managed/b9/1d/gdc2013-lightscattering-final.pdf

	Acknowledgments
	Abstract
	Contents
	Introduction
	Physics of Volumetric Light Scattering
	Scattering
	Transmittance

	Approaches
	Mesh-Based
	Billboards
	Particles
	Semi Transparent Geometry

	Post-Processing
	Analytical Fog
	Post-Process Ray Marching

	3D Volumes
	Volume Ray Marching
	Volumetric Textures

	Comparison
	Constraints
	Light Sources
	Scene Scale
	Dynamic Occlusion
	Varying Density
	Transparent Objects

	Performance
	Visual Quality
	Choice

	Programming Environment and External Tools
	Unity
	Tools
	Hardware

	Implementation
	View Frustum Voxelization
	Generation and Transformation
	Depth Distribution

	Density Estimation
	Light Calculation
	Accumulation by Ray Marching
	Applying Effect

	Evaluation
	Volumetric Textures for God Rays
	Depth Distribution Analysis
	Implementation Optimizations
	Performance
	Visual
	Ideas

	Conclusion
	List of Figures
	List of Tables
	Glossary
	Bibliography

