Permalink
Cannot retrieve contributors at this time
/* | |
* QR Code generator library (C) | |
* | |
* Copyright (c) Project Nayuki. (MIT License) | |
* https://www.nayuki.io/page/qr-code-generator-library | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy of | |
* this software and associated documentation files (the "Software"), to deal in | |
* the Software without restriction, including without limitation the rights to | |
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
* the Software, and to permit persons to whom the Software is furnished to do so, | |
* subject to the following conditions: | |
* - The above copyright notice and this permission notice shall be included in | |
* all copies or substantial portions of the Software. | |
* - The Software is provided "as is", without warranty of any kind, express or | |
* implied, including but not limited to the warranties of merchantability, | |
* fitness for a particular purpose and noninfringement. In no event shall the | |
* authors or copyright holders be liable for any claim, damages or other | |
* liability, whether in an action of contract, tort or otherwise, arising from, | |
* out of or in connection with the Software or the use or other dealings in the | |
* Software. | |
*/ | |
#include <assert.h> | |
#include <limits.h> | |
#include <stdlib.h> | |
#include <string.h> | |
#include "qrcodegen.h" | |
#ifndef QRCODEGEN_TEST | |
#define testable static // Keep functions private | |
#else | |
#define testable // Expose private functions | |
#endif | |
/*---- Forward declarations for private functions ----*/ | |
// Regarding all public and private functions defined in this source file: | |
// - They require all pointer/array arguments to be not null unless the array length is zero. | |
// - They only read input scalar/array arguments, write to output pointer/array | |
// arguments, and return scalar values; they are "pure" functions. | |
// - They don't read mutable global variables or write to any global variables. | |
// - They don't perform I/O, read the clock, print to console, etc. | |
// - They allocate a small and constant amount of stack memory. | |
// - They don't allocate or free any memory on the heap. | |
// - They don't recurse or mutually recurse. All the code | |
// could be inlined into the top-level public functions. | |
// - They run in at most quadratic time with respect to input arguments. | |
// Most functions run in linear time, and some in constant time. | |
// There are no unbounded loops or non-obvious termination conditions. | |
// - They are completely thread-safe if the caller does not give the | |
// same writable buffer to concurrent calls to these functions. | |
testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen); | |
testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]); | |
testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl); | |
testable int getNumRawDataModules(int ver); | |
testable void reedSolomonComputeDivisor(int degree, uint8_t result[]); | |
testable void reedSolomonComputeRemainder(const uint8_t data[], int dataLen, | |
const uint8_t generator[], int degree, uint8_t result[]); | |
testable uint8_t reedSolomonMultiply(uint8_t x, uint8_t y); | |
testable void initializeFunctionModules(int version, uint8_t qrcode[]); | |
static void drawWhiteFunctionModules(uint8_t qrcode[], int version); | |
static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]); | |
testable int getAlignmentPatternPositions(int version, uint8_t result[7]); | |
static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]); | |
static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]); | |
static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask); | |
static long getPenaltyScore(const uint8_t qrcode[]); | |
static int finderPenaltyCountPatterns(const int runHistory[7], int qrsize); | |
static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, int runHistory[7], int qrsize); | |
static void finderPenaltyAddHistory(int currentRunLength, int runHistory[7], int qrsize); | |
testable bool getModule(const uint8_t qrcode[], int x, int y); | |
testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack); | |
testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack); | |
static bool getBit(int x, int i); | |
testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars); | |
testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version); | |
static int numCharCountBits(enum qrcodegen_Mode mode, int version); | |
/*---- Private tables of constants ----*/ | |
// The set of all legal characters in alphanumeric mode, where each character | |
// value maps to the index in the string. For checking text and encoding segments. | |
static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; | |
// For generating error correction codes. | |
testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = { | |
// Version: (note that index 0 is for padding, and is set to an illegal value) | |
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level | |
{-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low | |
{-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium | |
{-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile | |
{-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High | |
}; | |
#define qrcodegen_REED_SOLOMON_DEGREE_MAX 30 // Based on the table above | |
// For generating error correction codes. | |
testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = { | |
// Version: (note that index 0 is for padding, and is set to an illegal value) | |
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level | |
{-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low | |
{-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium | |
{-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile | |
{-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High | |
}; | |
// For automatic mask pattern selection. | |
static const int PENALTY_N1 = 3; | |
static const int PENALTY_N2 = 3; | |
static const int PENALTY_N3 = 40; | |
static const int PENALTY_N4 = 10; | |
/*---- High-level QR Code encoding functions ----*/ | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[], | |
enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { | |
size_t textLen = strlen(text); | |
if (textLen == 0) | |
return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); | |
size_t bufLen = (size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion); | |
struct qrcodegen_Segment seg; | |
if (qrcodegen_isNumeric(text)) { | |
if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen) | |
goto fail; | |
seg = qrcodegen_makeNumeric(text, tempBuffer); | |
} else if (qrcodegen_isAlphanumeric(text)) { | |
if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen) | |
goto fail; | |
seg = qrcodegen_makeAlphanumeric(text, tempBuffer); | |
} else { | |
if (textLen > bufLen) | |
goto fail; | |
for (size_t i = 0; i < textLen; i++) | |
tempBuffer[i] = (uint8_t)text[i]; | |
seg.mode = qrcodegen_Mode_BYTE; | |
seg.bitLength = calcSegmentBitLength(seg.mode, textLen); | |
if (seg.bitLength == -1) | |
goto fail; | |
seg.numChars = (int)textLen; | |
seg.data = tempBuffer; | |
} | |
return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); | |
fail: | |
qrcode[0] = 0; // Set size to invalid value for safety | |
return false; | |
} | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[], | |
enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { | |
struct qrcodegen_Segment seg; | |
seg.mode = qrcodegen_Mode_BYTE; | |
seg.bitLength = calcSegmentBitLength(seg.mode, dataLen); | |
if (seg.bitLength == -1) { | |
qrcode[0] = 0; // Set size to invalid value for safety | |
return false; | |
} | |
seg.numChars = (int)dataLen; | |
seg.data = dataAndTemp; | |
return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode); | |
} | |
// Appends the given number of low-order bits of the given value to the given byte-based | |
// bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits. | |
testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) { | |
assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0); | |
for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) | |
buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); | |
} | |
/*---- Low-level QR Code encoding functions ----*/ | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len, | |
enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[]) { | |
return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl, | |
qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true, tempBuffer, qrcode); | |
} | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl, | |
int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[]) { | |
assert(segs != NULL || len == 0); | |
assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); | |
assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7); | |
// Find the minimal version number to use | |
int version, dataUsedBits; | |
for (version = minVersion; ; version++) { | |
int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available | |
dataUsedBits = getTotalBits(segs, len, version); | |
if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) | |
break; // This version number is found to be suitable | |
if (version >= maxVersion) { // All versions in the range could not fit the given data | |
qrcode[0] = 0; // Set size to invalid value for safety | |
return false; | |
} | |
} | |
assert(dataUsedBits != -1); | |
// Increase the error correction level while the data still fits in the current version number | |
for (int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { // From low to high | |
if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8) | |
ecl = (enum qrcodegen_Ecc)i; | |
} | |
// Concatenate all segments to create the data bit string | |
memset(qrcode, 0, (size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); | |
int bitLen = 0; | |
for (size_t i = 0; i < len; i++) { | |
const struct qrcodegen_Segment *seg = &segs[i]; | |
appendBitsToBuffer((unsigned int)seg->mode, 4, qrcode, &bitLen); | |
appendBitsToBuffer((unsigned int)seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen); | |
for (int j = 0; j < seg->bitLength; j++) { | |
int bit = (seg->data[j >> 3] >> (7 - (j & 7))) & 1; | |
appendBitsToBuffer((unsigned int)bit, 1, qrcode, &bitLen); | |
} | |
} | |
assert(bitLen == dataUsedBits); | |
// Add terminator and pad up to a byte if applicable | |
int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; | |
assert(bitLen <= dataCapacityBits); | |
int terminatorBits = dataCapacityBits - bitLen; | |
if (terminatorBits > 4) | |
terminatorBits = 4; | |
appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen); | |
appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen); | |
assert(bitLen % 8 == 0); | |
// Pad with alternating bytes until data capacity is reached | |
for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) | |
appendBitsToBuffer(padByte, 8, qrcode, &bitLen); | |
// Draw function and data codeword modules | |
addEccAndInterleave(qrcode, version, ecl, tempBuffer); | |
initializeFunctionModules(version, qrcode); | |
drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode); | |
drawWhiteFunctionModules(qrcode, version); | |
initializeFunctionModules(version, tempBuffer); | |
// Handle masking | |
if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask | |
long minPenalty = LONG_MAX; | |
for (int i = 0; i < 8; i++) { | |
enum qrcodegen_Mask msk = (enum qrcodegen_Mask)i; | |
applyMask(tempBuffer, qrcode, msk); | |
drawFormatBits(ecl, msk, qrcode); | |
long penalty = getPenaltyScore(qrcode); | |
if (penalty < minPenalty) { | |
mask = msk; | |
minPenalty = penalty; | |
} | |
applyMask(tempBuffer, qrcode, msk); // Undoes the mask due to XOR | |
} | |
} | |
assert(0 <= (int)mask && (int)mask <= 7); | |
applyMask(tempBuffer, qrcode, mask); | |
drawFormatBits(ecl, mask, qrcode); | |
return true; | |
} | |
/*---- Error correction code generation functions ----*/ | |
// Appends error correction bytes to each block of the given data array, then interleaves | |
// bytes from the blocks and stores them in the result array. data[0 : dataLen] contains | |
// the input data. data[dataLen : rawCodewords] is used as a temporary work area and will | |
// be clobbered by this function. The final answer is stored in result[0 : rawCodewords]. | |
testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) { | |
// Calculate parameter numbers | |
assert(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); | |
int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version]; | |
int blockEccLen = ECC_CODEWORDS_PER_BLOCK [(int)ecl][version]; | |
int rawCodewords = getNumRawDataModules(version) / 8; | |
int dataLen = getNumDataCodewords(version, ecl); | |
int numShortBlocks = numBlocks - rawCodewords % numBlocks; | |
int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; | |
// Split data into blocks, calculate ECC, and interleave | |
// (not concatenate) the bytes into a single sequence | |
uint8_t rsdiv[qrcodegen_REED_SOLOMON_DEGREE_MAX]; | |
reedSolomonComputeDivisor(blockEccLen, rsdiv); | |
const uint8_t *dat = data; | |
for (int i = 0; i < numBlocks; i++) { | |
int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1); | |
uint8_t *ecc = &data[dataLen]; // Temporary storage | |
reedSolomonComputeRemainder(dat, datLen, rsdiv, blockEccLen, ecc); | |
for (int j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data | |
if (j == shortBlockDataLen) | |
k -= numShortBlocks; | |
result[k] = dat[j]; | |
} | |
for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC | |
result[k] = ecc[j]; | |
dat += datLen; | |
} | |
} | |
// Returns the number of 8-bit codewords that can be used for storing data (not ECC), | |
// for the given version number and error correction level. The result is in the range [9, 2956]. | |
testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) { | |
int v = version, e = (int)ecl; | |
assert(0 <= e && e < 4); | |
return getNumRawDataModules(v) / 8 | |
- ECC_CODEWORDS_PER_BLOCK [e][v] | |
* NUM_ERROR_CORRECTION_BLOCKS[e][v]; | |
} | |
// Returns the number of data bits that can be stored in a QR Code of the given version number, after | |
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. | |
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. | |
testable int getNumRawDataModules(int ver) { | |
assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX); | |
int result = (16 * ver + 128) * ver + 64; | |
if (ver >= 2) { | |
int numAlign = ver / 7 + 2; | |
result -= (25 * numAlign - 10) * numAlign - 55; | |
if (ver >= 7) | |
result -= 36; | |
} | |
assert(208 <= result && result <= 29648); | |
return result; | |
} | |
/*---- Reed-Solomon ECC generator functions ----*/ | |
// Computes a Reed-Solomon ECC generator polynomial for the given degree, storing in result[0 : degree]. | |
// This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm. | |
testable void reedSolomonComputeDivisor(int degree, uint8_t result[]) { | |
assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); | |
// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. | |
// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. | |
memset(result, 0, (size_t)degree * sizeof(result[0])); | |
result[degree - 1] = 1; // Start off with the monomial x^0 | |
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), | |
// drop the highest monomial term which is always 1x^degree. | |
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). | |
uint8_t root = 1; | |
for (int i = 0; i < degree; i++) { | |
// Multiply the current product by (x - r^i) | |
for (int j = 0; j < degree; j++) { | |
result[j] = reedSolomonMultiply(result[j], root); | |
if (j + 1 < degree) | |
result[j] ^= result[j + 1]; | |
} | |
root = reedSolomonMultiply(root, 0x02); | |
} | |
} | |
// Computes the Reed-Solomon error correction codeword for the given data and divisor polynomials. | |
// The remainder when data[0 : dataLen] is divided by divisor[0 : degree] is stored in result[0 : degree]. | |
// All polynomials are in big endian, and the generator has an implicit leading 1 term. | |
testable void reedSolomonComputeRemainder(const uint8_t data[], int dataLen, | |
const uint8_t generator[], int degree, uint8_t result[]) { | |
assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); | |
memset(result, 0, (size_t)degree * sizeof(result[0])); | |
for (int i = 0; i < dataLen; i++) { // Polynomial division | |
uint8_t factor = data[i] ^ result[0]; | |
memmove(&result[0], &result[1], (size_t)(degree - 1) * sizeof(result[0])); | |
result[degree - 1] = 0; | |
for (int j = 0; j < degree; j++) | |
result[j] ^= reedSolomonMultiply(generator[j], factor); | |
} | |
} | |
#undef qrcodegen_REED_SOLOMON_DEGREE_MAX | |
// Returns the product of the two given field elements modulo GF(2^8/0x11D). | |
// All inputs are valid. This could be implemented as a 256*256 lookup table. | |
testable uint8_t reedSolomonMultiply(uint8_t x, uint8_t y) { | |
// Russian peasant multiplication | |
uint8_t z = 0; | |
for (int i = 7; i >= 0; i--) { | |
z = (uint8_t)((z << 1) ^ ((z >> 7) * 0x11D)); | |
z ^= ((y >> i) & 1) * x; | |
} | |
return z; | |
} | |
/*---- Drawing function modules ----*/ | |
// Clears the given QR Code grid with white modules for the given | |
// version's size, then marks every function module as black. | |
testable void initializeFunctionModules(int version, uint8_t qrcode[]) { | |
// Initialize QR Code | |
int qrsize = version * 4 + 17; | |
memset(qrcode, 0, (size_t)((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0])); | |
qrcode[0] = (uint8_t)qrsize; | |
// Fill horizontal and vertical timing patterns | |
fillRectangle(6, 0, 1, qrsize, qrcode); | |
fillRectangle(0, 6, qrsize, 1, qrcode); | |
// Fill 3 finder patterns (all corners except bottom right) and format bits | |
fillRectangle(0, 0, 9, 9, qrcode); | |
fillRectangle(qrsize - 8, 0, 8, 9, qrcode); | |
fillRectangle(0, qrsize - 8, 9, 8, qrcode); | |
// Fill numerous alignment patterns | |
uint8_t alignPatPos[7]; | |
int numAlign = getAlignmentPatternPositions(version, alignPatPos); | |
for (int i = 0; i < numAlign; i++) { | |
for (int j = 0; j < numAlign; j++) { | |
// Don't draw on the three finder corners | |
if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))) | |
fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); | |
} | |
} | |
// Fill version blocks | |
if (version >= 7) { | |
fillRectangle(qrsize - 11, 0, 3, 6, qrcode); | |
fillRectangle(0, qrsize - 11, 6, 3, qrcode); | |
} | |
} | |
// Draws white function modules and possibly some black modules onto the given QR Code, without changing | |
// non-function modules. This does not draw the format bits. This requires all function modules to be previously | |
// marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules. | |
static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { | |
// Draw horizontal and vertical timing patterns | |
int qrsize = qrcodegen_getSize(qrcode); | |
for (int i = 7; i < qrsize - 7; i += 2) { | |
setModule(qrcode, 6, i, false); | |
setModule(qrcode, i, 6, false); | |
} | |
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) | |
for (int dy = -4; dy <= 4; dy++) { | |
for (int dx = -4; dx <= 4; dx++) { | |
int dist = abs(dx); | |
if (abs(dy) > dist) | |
dist = abs(dy); | |
if (dist == 2 || dist == 4) { | |
setModuleBounded(qrcode, 3 + dx, 3 + dy, false); | |
setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false); | |
setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false); | |
} | |
} | |
} | |
// Draw numerous alignment patterns | |
uint8_t alignPatPos[7]; | |
int numAlign = getAlignmentPatternPositions(version, alignPatPos); | |
for (int i = 0; i < numAlign; i++) { | |
for (int j = 0; j < numAlign; j++) { | |
if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) | |
continue; // Don't draw on the three finder corners | |
for (int dy = -1; dy <= 1; dy++) { | |
for (int dx = -1; dx <= 1; dx++) | |
setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0); | |
} | |
} | |
} | |
// Draw version blocks | |
if (version >= 7) { | |
// Calculate error correction code and pack bits | |
int rem = version; // version is uint6, in the range [7, 40] | |
for (int i = 0; i < 12; i++) | |
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); | |
long bits = (long)version << 12 | rem; // uint18 | |
assert(bits >> 18 == 0); | |
// Draw two copies | |
for (int i = 0; i < 6; i++) { | |
for (int j = 0; j < 3; j++) { | |
int k = qrsize - 11 + j; | |
setModule(qrcode, k, i, (bits & 1) != 0); | |
setModule(qrcode, i, k, (bits & 1) != 0); | |
bits >>= 1; | |
} | |
} | |
} | |
} | |
// Draws two copies of the format bits (with its own error correction code) based | |
// on the given mask and error correction level. This always draws all modules of | |
// the format bits, unlike drawWhiteFunctionModules() which might skip black modules. | |
static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) { | |
// Calculate error correction code and pack bits | |
assert(0 <= (int)mask && (int)mask <= 7); | |
static const int table[] = {1, 0, 3, 2}; | |
int data = table[(int)ecl] << 3 | (int)mask; // errCorrLvl is uint2, mask is uint3 | |
int rem = data; | |
for (int i = 0; i < 10; i++) | |
rem = (rem << 1) ^ ((rem >> 9) * 0x537); | |
int bits = (data << 10 | rem) ^ 0x5412; // uint15 | |
assert(bits >> 15 == 0); | |
// Draw first copy | |
for (int i = 0; i <= 5; i++) | |
setModule(qrcode, 8, i, getBit(bits, i)); | |
setModule(qrcode, 8, 7, getBit(bits, 6)); | |
setModule(qrcode, 8, 8, getBit(bits, 7)); | |
setModule(qrcode, 7, 8, getBit(bits, 8)); | |
for (int i = 9; i < 15; i++) | |
setModule(qrcode, 14 - i, 8, getBit(bits, i)); | |
// Draw second copy | |
int qrsize = qrcodegen_getSize(qrcode); | |
for (int i = 0; i < 8; i++) | |
setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i)); | |
for (int i = 8; i < 15; i++) | |
setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i)); | |
setModule(qrcode, 8, qrsize - 8, true); // Always black | |
} | |
// Calculates and stores an ascending list of positions of alignment patterns | |
// for this version number, returning the length of the list (in the range [0,7]). | |
// Each position is in the range [0,177), and are used on both the x and y axes. | |
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. | |
testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { | |
if (version == 1) | |
return 0; | |
int numAlign = version / 7 + 2; | |
int step = (version == 32) ? 26 : | |
(version*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2; | |
for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) | |
result[i] = (uint8_t)pos; | |
result[0] = 6; | |
return numAlign; | |
} | |
// Sets every pixel in the range [left : left + width] * [top : top + height] to black. | |
static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) { | |
for (int dy = 0; dy < height; dy++) { | |
for (int dx = 0; dx < width; dx++) | |
setModule(qrcode, left + dx, top + dy, true); | |
} | |
} | |
/*---- Drawing data modules and masking ----*/ | |
// Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of | |
// the QR Code to be black at function modules and white at codeword modules (including unused remainder bits). | |
static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { | |
int qrsize = qrcodegen_getSize(qrcode); | |
int i = 0; // Bit index into the data | |
// Do the funny zigzag scan | |
for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair | |
if (right == 6) | |
right = 5; | |
for (int vert = 0; vert < qrsize; vert++) { // Vertical counter | |
for (int j = 0; j < 2; j++) { | |
int x = right - j; // Actual x coordinate | |
bool upward = ((right + 1) & 2) == 0; | |
int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate | |
if (!getModule(qrcode, x, y) && i < dataLen * 8) { | |
bool black = getBit(data[i >> 3], 7 - (i & 7)); | |
setModule(qrcode, x, y, black); | |
i++; | |
} | |
// If this QR Code has any remainder bits (0 to 7), they were assigned as | |
// 0/false/white by the constructor and are left unchanged by this method | |
} | |
} | |
} | |
assert(i == dataLen * 8); | |
} | |
// XORs the codeword modules in this QR Code with the given mask pattern. | |
// The function modules must be marked and the codeword bits must be drawn | |
// before masking. Due to the arithmetic of XOR, calling applyMask() with | |
// the same mask value a second time will undo the mask. A final well-formed | |
// QR Code needs exactly one (not zero, two, etc.) mask applied. | |
static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) { | |
assert(0 <= (int)mask && (int)mask <= 7); // Disallows qrcodegen_Mask_AUTO | |
int qrsize = qrcodegen_getSize(qrcode); | |
for (int y = 0; y < qrsize; y++) { | |
for (int x = 0; x < qrsize; x++) { | |
if (getModule(functionModules, x, y)) | |
continue; | |
bool invert; | |
switch ((int)mask) { | |
case 0: invert = (x + y) % 2 == 0; break; | |
case 1: invert = y % 2 == 0; break; | |
case 2: invert = x % 3 == 0; break; | |
case 3: invert = (x + y) % 3 == 0; break; | |
case 4: invert = (x / 3 + y / 2) % 2 == 0; break; | |
case 5: invert = x * y % 2 + x * y % 3 == 0; break; | |
case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; | |
case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; | |
default: assert(false); return; | |
} | |
bool val = getModule(qrcode, x, y); | |
setModule(qrcode, x, y, val ^ invert); | |
} | |
} | |
} | |
// Calculates and returns the penalty score based on state of the given QR Code's current modules. | |
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. | |
static long getPenaltyScore(const uint8_t qrcode[]) { | |
int qrsize = qrcodegen_getSize(qrcode); | |
long result = 0; | |
// Adjacent modules in row having same color, and finder-like patterns | |
for (int y = 0; y < qrsize; y++) { | |
bool runColor = false; | |
int runX = 0; | |
int runHistory[7] = {0}; | |
for (int x = 0; x < qrsize; x++) { | |
if (getModule(qrcode, x, y) == runColor) { | |
runX++; | |
if (runX == 5) | |
result += PENALTY_N1; | |
else if (runX > 5) | |
result++; | |
} else { | |
finderPenaltyAddHistory(runX, runHistory, qrsize); | |
if (!runColor) | |
result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3; | |
runColor = getModule(qrcode, x, y); | |
runX = 1; | |
} | |
} | |
result += finderPenaltyTerminateAndCount(runColor, runX, runHistory, qrsize) * PENALTY_N3; | |
} | |
// Adjacent modules in column having same color, and finder-like patterns | |
for (int x = 0; x < qrsize; x++) { | |
bool runColor = false; | |
int runY = 0; | |
int runHistory[7] = {0}; | |
for (int y = 0; y < qrsize; y++) { | |
if (getModule(qrcode, x, y) == runColor) { | |
runY++; | |
if (runY == 5) | |
result += PENALTY_N1; | |
else if (runY > 5) | |
result++; | |
} else { | |
finderPenaltyAddHistory(runY, runHistory, qrsize); | |
if (!runColor) | |
result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3; | |
runColor = getModule(qrcode, x, y); | |
runY = 1; | |
} | |
} | |
result += finderPenaltyTerminateAndCount(runColor, runY, runHistory, qrsize) * PENALTY_N3; | |
} | |
// 2*2 blocks of modules having same color | |
for (int y = 0; y < qrsize - 1; y++) { | |
for (int x = 0; x < qrsize - 1; x++) { | |
bool color = getModule(qrcode, x, y); | |
if ( color == getModule(qrcode, x + 1, y) && | |
color == getModule(qrcode, x, y + 1) && | |
color == getModule(qrcode, x + 1, y + 1)) | |
result += PENALTY_N2; | |
} | |
} | |
// Balance of black and white modules | |
int black = 0; | |
for (int y = 0; y < qrsize; y++) { | |
for (int x = 0; x < qrsize; x++) { | |
if (getModule(qrcode, x, y)) | |
black++; | |
} | |
} | |
int total = qrsize * qrsize; // Note that size is odd, so black/total != 1/2 | |
// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)% | |
int k = (int)((labs(black * 20L - total * 10L) + total - 1) / total) - 1; | |
result += k * PENALTY_N4; | |
return result; | |
} | |
// Can only be called immediately after a white run is added, and | |
// returns either 0, 1, or 2. A helper function for getPenaltyScore(). | |
static int finderPenaltyCountPatterns(const int runHistory[7], int qrsize) { | |
int n = runHistory[1]; | |
assert(n <= qrsize * 3); | |
bool core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n; | |
// The maximum QR Code size is 177, hence the black run length n <= 177. | |
// Arithmetic is promoted to int, so n*4 will not overflow. | |
return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) | |
+ (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0); | |
} | |
// Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore(). | |
static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, int runHistory[7], int qrsize) { | |
if (currentRunColor) { // Terminate black run | |
finderPenaltyAddHistory(currentRunLength, runHistory, qrsize); | |
currentRunLength = 0; | |
} | |
currentRunLength += qrsize; // Add white border to final run | |
finderPenaltyAddHistory(currentRunLength, runHistory, qrsize); | |
return finderPenaltyCountPatterns(runHistory, qrsize); | |
} | |
// Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore(). | |
static void finderPenaltyAddHistory(int currentRunLength, int runHistory[7], int qrsize) { | |
if (runHistory[0] == 0) | |
currentRunLength += qrsize; // Add white border to initial run | |
memmove(&runHistory[1], &runHistory[0], 6 * sizeof(runHistory[0])); | |
runHistory[0] = currentRunLength; | |
} | |
/*---- Basic QR Code information ----*/ | |
// Public function - see documentation comment in header file. | |
int qrcodegen_getSize(const uint8_t qrcode[]) { | |
assert(qrcode != NULL); | |
int result = qrcode[0]; | |
assert((qrcodegen_VERSION_MIN * 4 + 17) <= result | |
&& result <= (qrcodegen_VERSION_MAX * 4 + 17)); | |
return result; | |
} | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) { | |
assert(qrcode != NULL); | |
int qrsize = qrcode[0]; | |
return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y); | |
} | |
// Gets the module at the given coordinates, which must be in bounds. | |
testable bool getModule(const uint8_t qrcode[], int x, int y) { | |
int qrsize = qrcode[0]; | |
assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); | |
int index = y * qrsize + x; | |
return getBit(qrcode[(index >> 3) + 1], index & 7); | |
} | |
// Sets the module at the given coordinates, which must be in bounds. | |
testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack) { | |
int qrsize = qrcode[0]; | |
assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); | |
int index = y * qrsize + x; | |
int bitIndex = index & 7; | |
int byteIndex = (index >> 3) + 1; | |
if (isBlack) | |
qrcode[byteIndex] |= 1 << bitIndex; | |
else | |
qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF; | |
} | |
// Sets the module at the given coordinates, doing nothing if out of bounds. | |
testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack) { | |
int qrsize = qrcode[0]; | |
if (0 <= x && x < qrsize && 0 <= y && y < qrsize) | |
setModule(qrcode, x, y, isBlack); | |
} | |
// Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14. | |
static bool getBit(int x, int i) { | |
return ((x >> i) & 1) != 0; | |
} | |
/*---- Segment handling ----*/ | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_isAlphanumeric(const char *text) { | |
assert(text != NULL); | |
for (; *text != '\0'; text++) { | |
if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL) | |
return false; | |
} | |
return true; | |
} | |
// Public function - see documentation comment in header file. | |
bool qrcodegen_isNumeric(const char *text) { | |
assert(text != NULL); | |
for (; *text != '\0'; text++) { | |
if (*text < '0' || *text > '9') | |
return false; | |
} | |
return true; | |
} | |
// Public function - see documentation comment in header file. | |
size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) { | |
int temp = calcSegmentBitLength(mode, numChars); | |
if (temp == -1) | |
return SIZE_MAX; | |
assert(0 <= temp && temp <= INT16_MAX); | |
return ((size_t)temp + 7) / 8; | |
} | |
// Returns the number of data bits needed to represent a segment | |
// containing the given number of characters using the given mode. Notes: | |
// - Returns -1 on failure, i.e. numChars > INT16_MAX or | |
// the number of needed bits exceeds INT16_MAX (i.e. 32767). | |
// - Otherwise, all valid results are in the range [0, INT16_MAX]. | |
// - For byte mode, numChars measures the number of bytes, not Unicode code points. | |
// - For ECI mode, numChars must be 0, and the worst-case number of bits is returned. | |
// An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. | |
testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) { | |
// All calculations are designed to avoid overflow on all platforms | |
if (numChars > (unsigned int)INT16_MAX) | |
return -1; | |
long result = (long)numChars; | |
if (mode == qrcodegen_Mode_NUMERIC) | |
result = (result * 10 + 2) / 3; // ceil(10/3 * n) | |
else if (mode == qrcodegen_Mode_ALPHANUMERIC) | |
result = (result * 11 + 1) / 2; // ceil(11/2 * n) | |
else if (mode == qrcodegen_Mode_BYTE) | |
result *= 8; | |
else if (mode == qrcodegen_Mode_KANJI) | |
result *= 13; | |
else if (mode == qrcodegen_Mode_ECI && numChars == 0) | |
result = 3 * 8; | |
else { // Invalid argument | |
assert(false); | |
return -1; | |
} | |
assert(result >= 0); | |
if (result > INT16_MAX) | |
return -1; | |
return (int)result; | |
} | |
// Public function - see documentation comment in header file. | |
struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) { | |
assert(data != NULL || len == 0); | |
struct qrcodegen_Segment result; | |
result.mode = qrcodegen_Mode_BYTE; | |
result.bitLength = calcSegmentBitLength(result.mode, len); | |
assert(result.bitLength != -1); | |
result.numChars = (int)len; | |
if (len > 0) | |
memcpy(buf, data, len * sizeof(buf[0])); | |
result.data = buf; | |
return result; | |
} | |
// Public function - see documentation comment in header file. | |
struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) { | |
assert(digits != NULL); | |
struct qrcodegen_Segment result; | |
size_t len = strlen(digits); | |
result.mode = qrcodegen_Mode_NUMERIC; | |
int bitLen = calcSegmentBitLength(result.mode, len); | |
assert(bitLen != -1); | |
result.numChars = (int)len; | |
if (bitLen > 0) | |
memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); | |
result.bitLength = 0; | |
unsigned int accumData = 0; | |
int accumCount = 0; | |
for (; *digits != '\0'; digits++) { | |
char c = *digits; | |
assert('0' <= c && c <= '9'); | |
accumData = accumData * 10 + (unsigned int)(c - '0'); | |
accumCount++; | |
if (accumCount == 3) { | |
appendBitsToBuffer(accumData, 10, buf, &result.bitLength); | |
accumData = 0; | |
accumCount = 0; | |
} | |
} | |
if (accumCount > 0) // 1 or 2 digits remaining | |
appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength); | |
assert(result.bitLength == bitLen); | |
result.data = buf; | |
return result; | |
} | |
// Public function - see documentation comment in header file. | |
struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) { | |
assert(text != NULL); | |
struct qrcodegen_Segment result; | |
size_t len = strlen(text); | |
result.mode = qrcodegen_Mode_ALPHANUMERIC; | |
int bitLen = calcSegmentBitLength(result.mode, len); | |
assert(bitLen != -1); | |
result.numChars = (int)len; | |
if (bitLen > 0) | |
memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); | |
result.bitLength = 0; | |
unsigned int accumData = 0; | |
int accumCount = 0; | |
for (; *text != '\0'; text++) { | |
const char *temp = strchr(ALPHANUMERIC_CHARSET, *text); | |
assert(temp != NULL); | |
accumData = accumData * 45 + (unsigned int)(temp - ALPHANUMERIC_CHARSET); | |
accumCount++; | |
if (accumCount == 2) { | |
appendBitsToBuffer(accumData, 11, buf, &result.bitLength); | |
accumData = 0; | |
accumCount = 0; | |
} | |
} | |
if (accumCount > 0) // 1 character remaining | |
appendBitsToBuffer(accumData, 6, buf, &result.bitLength); | |
assert(result.bitLength == bitLen); | |
result.data = buf; | |
return result; | |
} | |
// Public function - see documentation comment in header file. | |
struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) { | |
struct qrcodegen_Segment result; | |
result.mode = qrcodegen_Mode_ECI; | |
result.numChars = 0; | |
result.bitLength = 0; | |
if (assignVal < 0) | |
assert(false); | |
else if (assignVal < (1 << 7)) { | |
memset(buf, 0, 1 * sizeof(buf[0])); | |
appendBitsToBuffer((unsigned int)assignVal, 8, buf, &result.bitLength); | |
} else if (assignVal < (1 << 14)) { | |
memset(buf, 0, 2 * sizeof(buf[0])); | |
appendBitsToBuffer(2, 2, buf, &result.bitLength); | |
appendBitsToBuffer((unsigned int)assignVal, 14, buf, &result.bitLength); | |
} else if (assignVal < 1000000L) { | |
memset(buf, 0, 3 * sizeof(buf[0])); | |
appendBitsToBuffer(6, 3, buf, &result.bitLength); | |
appendBitsToBuffer((unsigned int)(assignVal >> 10), 11, buf, &result.bitLength); | |
appendBitsToBuffer((unsigned int)(assignVal & 0x3FF), 10, buf, &result.bitLength); | |
} else | |
assert(false); | |
result.data = buf; | |
return result; | |
} | |
// Calculates the number of bits needed to encode the given segments at the given version. | |
// Returns a non-negative number if successful. Otherwise returns -1 if a segment has too | |
// many characters to fit its length field, or the total bits exceeds INT16_MAX. | |
testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) { | |
assert(segs != NULL || len == 0); | |
long result = 0; | |
for (size_t i = 0; i < len; i++) { | |
int numChars = segs[i].numChars; | |
int bitLength = segs[i].bitLength; | |
assert(0 <= numChars && numChars <= INT16_MAX); | |
assert(0 <= bitLength && bitLength <= INT16_MAX); | |
int ccbits = numCharCountBits(segs[i].mode, version); | |
assert(0 <= ccbits && ccbits <= 16); | |
if (numChars >= (1L << ccbits)) | |
return -1; // The segment's length doesn't fit the field's bit width | |
result += 4L + ccbits + bitLength; | |
if (result > INT16_MAX) | |
return -1; // The sum might overflow an int type | |
} | |
assert(0 <= result && result <= INT16_MAX); | |
return (int)result; | |
} | |
// Returns the bit width of the character count field for a segment in the given mode | |
// in a QR Code at the given version number. The result is in the range [0, 16]. | |
static int numCharCountBits(enum qrcodegen_Mode mode, int version) { | |
assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); | |
int i = (version + 7) / 17; | |
switch (mode) { | |
case qrcodegen_Mode_NUMERIC : { static const int temp[] = {10, 12, 14}; return temp[i]; } | |
case qrcodegen_Mode_ALPHANUMERIC: { static const int temp[] = { 9, 11, 13}; return temp[i]; } | |
case qrcodegen_Mode_BYTE : { static const int temp[] = { 8, 16, 16}; return temp[i]; } | |
case qrcodegen_Mode_KANJI : { static const int temp[] = { 8, 10, 12}; return temp[i]; } | |
case qrcodegen_Mode_ECI : return 0; | |
default: assert(false); return -1; // Dummy value | |
} | |
} |