Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
QR-Code-generator/rust/src/lib.rs
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1303 lines (1091 sloc)
45 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* QR Code generator library (Rust) | |
* | |
* Copyright (c) Project Nayuki. (MIT License) | |
* https://www.nayuki.io/page/qr-code-generator-library | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy of | |
* this software and associated documentation files (the "Software"), to deal in | |
* the Software without restriction, including without limitation the rights to | |
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
* the Software, and to permit persons to whom the Software is furnished to do so, | |
* subject to the following conditions: | |
* - The above copyright notice and this permission notice shall be included in | |
* all copies or substantial portions of the Software. | |
* - The Software is provided "as is", without warranty of any kind, express or | |
* implied, including but not limited to the warranties of merchantability, | |
* fitness for a particular purpose and noninfringement. In no event shall the | |
* authors or copyright holders be liable for any claim, damages or other | |
* liability, whether in an action of contract, tort or otherwise, arising from, | |
* out of or in connection with the Software or the use or other dealings in the | |
* Software. | |
*/ | |
//! Generates QR Codes from text strings and byte arrays. | |
//! | |
//! This project aims to be the best, clearest QR Code generator library. | |
//! The primary goals are flexible options and absolute correctness. | |
//! Secondary goals are compact implementation size and good documentation comments. | |
//! | |
//! Home page with live JavaScript demo, extensive descriptions, and competitor comparisons: | |
//! [https://www.nayuki.io/page/qr-code-generator-library](https://www.nayuki.io/page/qr-code-generator-library) | |
//! | |
//! # Features | |
//! | |
//! Core features: | |
//! | |
//! - Significantly shorter code but more documentation comments compared to competing libraries | |
//! - Supports encoding all 40 versions (sizes) and all 4 error correction levels, as per the QR Code Model 2 standard | |
//! - Output format: Raw modules/pixels of the QR symbol | |
//! - Detects finder-like penalty patterns more accurately than other implementations | |
//! - Encodes numeric and special-alphanumeric text in less space than general text | |
//! - Open-source code under the permissive MIT License | |
//! | |
//! Manual parameters: | |
//! | |
//! - User can specify minimum and maximum version numbers allowed, then library will automatically choose smallest version in the range that fits the data | |
//! - User can specify mask pattern manually, otherwise library will automatically evaluate all 8 masks and select the optimal one | |
//! - User can specify absolute error correction level, or allow the library to boost it if it doesn't increase the version number | |
//! - User can create a list of data segments manually and add ECI segments | |
//! | |
//! More information about QR Code technology and this library's design can be found on the project home page. | |
//! | |
//! # Examples | |
//! | |
//! ``` | |
//! extern crate qrcodegen; | |
//! use qrcodegen::Mask; | |
//! use qrcodegen::QrCode; | |
//! use qrcodegen::QrCodeEcc; | |
//! use qrcodegen::QrSegment; | |
//! use qrcodegen::Version; | |
//! ``` | |
//! | |
//! Simple operation: | |
//! | |
//! ``` | |
//! let qr = QrCode::encode_text("Hello, world!", | |
//! QrCodeEcc::Medium).unwrap(); | |
//! let svg = to_svg_string(&qr, 4); // See qrcodegen-demo | |
//! ``` | |
//! | |
//! Manual operation: | |
//! | |
//! ``` | |
//! let text: &str = "3141592653589793238462643383"; | |
//! let segs = QrSegment::make_segments(text); | |
//! let qr = QrCode::encode_segments_advanced(&segs, QrCodeEcc::High, | |
//! Version::new(5), Version::new(5), Some(Mask::new(2)), false).unwrap(); | |
//! for y in 0 .. qr.size() { | |
//! for x in 0 .. qr.size() { | |
//! (... paint qr.get_module(x, y) ...) | |
//! } | |
//! } | |
//! ``` | |
#![forbid(unsafe_code)] | |
use std::convert::TryFrom; | |
/*---- QrCode functionality ----*/ | |
/// A QR Code symbol, which is a type of two-dimension barcode. | |
/// | |
/// Invented by Denso Wave and described in the ISO/IEC 18004 standard. | |
/// | |
/// Instances of this struct represent an immutable square grid of dark and light cells. | |
/// The impl provides static factory functions to create a QR Code from text or binary data. | |
/// The struct and impl cover the QR Code Model 2 specification, supporting all versions | |
/// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes. | |
/// | |
/// Ways to create a QR Code object: | |
/// | |
/// - High level: Take the payload data and call `QrCode::encode_text()` or `QrCode::encode_binary()`. | |
/// - Mid level: Custom-make the list of segments and call | |
/// `QrCode::encode_segments()` or `QrCode::encode_segments_advanced()`. | |
/// - Low level: Custom-make the array of data codeword bytes (including segment | |
/// headers and final padding, excluding error correction codewords), supply the | |
/// appropriate version number, and call the `QrCode::encode_codewords()` constructor. | |
/// | |
/// (Note that all ways require supplying the desired error correction level.) | |
#[derive(Clone, PartialEq, Eq)] | |
pub struct QrCode { | |
// Scalar parameters: | |
// The version number of this QR Code, which is between 1 and 40 (inclusive). | |
// This determines the size of this barcode. | |
version: Version, | |
// The width and height of this QR Code, measured in modules, between | |
// 21 and 177 (inclusive). This is equal to version * 4 + 17. | |
size: i32, | |
// The error correction level used in this QR Code. | |
errorcorrectionlevel: QrCodeEcc, | |
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). | |
// Even if a QR Code is created with automatic masking requested (mask = None), | |
// the resulting object still has a mask value between 0 and 7. | |
mask: Mask, | |
// Grids of modules/pixels, with dimensions of size*size: | |
// The modules of this QR Code (false = light, true = dark). | |
// Immutable after constructor finishes. Accessed through get_module(). | |
modules: Vec<bool>, | |
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes. | |
isfunction: Vec<bool>, | |
} | |
impl QrCode { | |
/*---- Static factory functions (high level) ----*/ | |
/// Returns a QR Code representing the given Unicode text string at the given error correction level. | |
/// | |
/// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode | |
/// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible | |
/// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than | |
/// the ecl argument if it can be done without increasing the version. | |
/// | |
/// Returns a wrapped `QrCode` if successful, or `Err` if the | |
/// data is too long to fit in any version at the given ECC level. | |
pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Result<Self,DataTooLong> { | |
let segs: Vec<QrSegment> = QrSegment::make_segments(text); | |
QrCode::encode_segments(&segs, ecl) | |
} | |
/// Returns a QR Code representing the given binary data at the given error correction level. | |
/// | |
/// This function always encodes using the binary segment mode, not any text mode. The maximum number of | |
/// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. | |
/// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. | |
/// | |
/// Returns a wrapped `QrCode` if successful, or `Err` if the | |
/// data is too long to fit in any version at the given ECC level. | |
pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Result<Self,DataTooLong> { | |
let segs: [QrSegment; 1] = [QrSegment::make_bytes(data)]; | |
QrCode::encode_segments(&segs, ecl) | |
} | |
/*---- Static factory functions (mid level) ----*/ | |
/// Returns a QR Code representing the given segments at the given error correction level. | |
/// | |
/// The smallest possible QR Code version is automatically chosen for the output. The ECC level | |
/// of the result may be higher than the ecl argument if it can be done without increasing the version. | |
/// | |
/// This function allows the user to create a custom sequence of segments that switches | |
/// between modes (such as alphanumeric and byte) to encode text in less space. | |
/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`. | |
/// | |
/// Returns a wrapped `QrCode` if successful, or `Err` if the | |
/// data is too long to fit in any version at the given ECC level. | |
pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Result<Self,DataTooLong> { | |
QrCode::encode_segments_advanced(segs, ecl, Version::MIN, Version::MAX, None, true) | |
} | |
/// Returns a QR Code representing the given segments with the given encoding parameters. | |
/// | |
/// The smallest possible QR Code version within the given range is automatically | |
/// chosen for the output. Iff boostecl is `true`, then the ECC level of the result | |
/// may be higher than the ecl argument if it can be done without increasing the | |
/// version. The mask number is either between 0 to 7 (inclusive) to force that | |
/// mask, or `None` to automatically choose an appropriate mask (which may be slow). | |
/// | |
/// This function allows the user to create a custom sequence of segments that switches | |
/// between modes (such as alphanumeric and byte) to encode text in less space. | |
/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`. | |
/// | |
/// Returns a wrapped `QrCode` if successful, or `Err` if the data is too | |
/// long to fit in any version in the given range at the given ECC level. | |
pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc, | |
minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool) | |
-> Result<Self,DataTooLong> { | |
assert!(minversion <= maxversion, "Invalid value"); | |
// Find the minimal version number to use | |
let mut version: Version = minversion; | |
let datausedbits: usize = loop { | |
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; // Number of data bits available | |
let dataused: Option<usize> = QrSegment::get_total_bits(segs, version); | |
if dataused.map_or(false, |n| n <= datacapacitybits) { | |
break dataused.unwrap(); // This version number is found to be suitable | |
} else if version >= maxversion { // All versions in the range could not fit the given data | |
return Err(match dataused { | |
None => DataTooLong::SegmentTooLong, | |
Some(n) => DataTooLong::DataOverCapacity(n, datacapacitybits), | |
}); | |
} else { | |
version = Version::new(version.value() + 1); | |
} | |
}; | |
// Increase the error correction level while the data still fits in the current version number | |
for &newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] { // From low to high | |
if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, newecl) * 8 { | |
ecl = newecl; | |
} | |
} | |
// Concatenate all segments to create the data bit string | |
let mut bb = BitBuffer(Vec::new()); | |
for seg in segs { | |
bb.append_bits(seg.mode.mode_bits(), 4); | |
bb.append_bits(u32::try_from(seg.numchars).unwrap(), seg.mode.num_char_count_bits(version)); | |
bb.0.extend_from_slice(&seg.data); | |
} | |
debug_assert_eq!(bb.0.len(), datausedbits); | |
// Add terminator and pad up to a byte if applicable | |
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; | |
debug_assert!(bb.0.len() <= datacapacitybits); | |
let numzerobits: usize = std::cmp::min(4, datacapacitybits - bb.0.len()); | |
bb.append_bits(0, u8::try_from(numzerobits).unwrap()); | |
let numzerobits: usize = bb.0.len().wrapping_neg() & 7; | |
bb.append_bits(0, u8::try_from(numzerobits).unwrap()); | |
debug_assert_eq!(bb.0.len() % 8, 0); | |
// Pad with alternating bytes until data capacity is reached | |
for &padbyte in [0xEC, 0x11].iter().cycle() { | |
if bb.0.len() >= datacapacitybits { | |
break; | |
} | |
bb.append_bits(padbyte, 8); | |
} | |
// Pack bits into bytes in big endian | |
let mut datacodewords = vec![0u8; bb.0.len() / 8]; | |
for (i, &bit) in bb.0.iter().enumerate() { | |
datacodewords[i >> 3] |= u8::from(bit) << (7 - (i & 7)); | |
} | |
// Create the QR Code object | |
Ok(QrCode::encode_codewords(version, ecl, &datacodewords, mask)) | |
} | |
/*---- Constructor (low level) ----*/ | |
/// Creates a new QR Code with the given version number, | |
/// error correction level, data codeword bytes, and mask number. | |
/// | |
/// This is a low-level API that most users should not use directly. | |
/// A mid-level API is the `encode_segments()` function. | |
pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mut msk: Option<Mask>) -> Self { | |
// Initialize fields | |
let size = usize::from(ver.value()) * 4 + 17; | |
let mut result = Self { | |
version: ver, | |
size: size as i32, | |
mask: Mask::new(0), // Dummy value | |
errorcorrectionlevel: ecl, | |
modules : vec![false; size * size], // Initially all light | |
isfunction: vec![false; size * size], | |
}; | |
// Compute ECC, draw modules | |
result.draw_function_patterns(); | |
let allcodewords: Vec<u8> = result.add_ecc_and_interleave(datacodewords); | |
result.draw_codewords(&allcodewords); | |
// Do masking | |
if msk.is_none() { // Automatically choose best mask | |
let mut minpenalty = std::i32::MAX; | |
for i in 0u8 .. 8 { | |
let i = Mask::new(i); | |
result.apply_mask(i); | |
result.draw_format_bits(i); | |
let penalty: i32 = result.get_penalty_score(); | |
if penalty < minpenalty { | |
msk = Some(i); | |
minpenalty = penalty; | |
} | |
result.apply_mask(i); // Undoes the mask due to XOR | |
} | |
} | |
let msk: Mask = msk.unwrap(); | |
result.mask = msk; | |
result.apply_mask(msk); // Apply the final choice of mask | |
result.draw_format_bits(msk); // Overwrite old format bits | |
result.isfunction.clear(); | |
result.isfunction.shrink_to_fit(); | |
result | |
} | |
/*---- Public methods ----*/ | |
/// Returns this QR Code's version, in the range [1, 40]. | |
pub fn version(&self) -> Version { | |
self.version | |
} | |
/// Returns this QR Code's size, in the range [21, 177]. | |
pub fn size(&self) -> i32 { | |
self.size | |
} | |
/// Returns this QR Code's error correction level. | |
pub fn error_correction_level(&self) -> QrCodeEcc { | |
self.errorcorrectionlevel | |
} | |
/// Returns this QR Code's mask, in the range [0, 7]. | |
pub fn mask(&self) -> Mask { | |
self.mask | |
} | |
/// Returns the color of the module (pixel) at the given coordinates, | |
/// which is `false` for light or `true` for dark. | |
/// | |
/// The top left corner has the coordinates (x=0, y=0). If the given | |
/// coordinates are out of bounds, then `false` (light) is returned. | |
pub fn get_module(&self, x: i32, y: i32) -> bool { | |
(0 .. self.size).contains(&x) && (0 .. self.size).contains(&y) && self.module(x, y) | |
} | |
// Returns the color of the module at the given coordinates, which must be in bounds. | |
fn module(&self, x: i32, y: i32) -> bool { | |
self.modules[(y * self.size + x) as usize] | |
} | |
// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds. | |
fn module_mut(&mut self, x: i32, y: i32) -> &mut bool { | |
&mut self.modules[(y * self.size + x) as usize] | |
} | |
/*---- Private helper methods for constructor: Drawing function modules ----*/ | |
// Reads this object's version field, and draws and marks all function modules. | |
fn draw_function_patterns(&mut self) { | |
// Draw horizontal and vertical timing patterns | |
let size: i32 = self.size; | |
for i in 0 .. size { | |
self.set_function_module(6, i, i % 2 == 0); | |
self.set_function_module(i, 6, i % 2 == 0); | |
} | |
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) | |
self.draw_finder_pattern(3, 3); | |
self.draw_finder_pattern(size - 4, 3); | |
self.draw_finder_pattern(3, size - 4); | |
// Draw numerous alignment patterns | |
let alignpatpos: Vec<i32> = self.get_alignment_pattern_positions(); | |
let numalign: usize = alignpatpos.len(); | |
for i in 0 .. numalign { | |
for j in 0 .. numalign { | |
// Don't draw on the three finder corners | |
if !(i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0) { | |
self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]); | |
} | |
} | |
} | |
// Draw configuration data | |
self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor | |
self.draw_version(); | |
} | |
// Draws two copies of the format bits (with its own error correction code) | |
// based on the given mask and this object's error correction level field. | |
fn draw_format_bits(&mut self, mask: Mask) { | |
// Calculate error correction code and pack bits | |
let bits: u32 = { | |
// errcorrlvl is uint2, mask is uint3 | |
let data: u32 = u32::from(self.errorcorrectionlevel.format_bits() << 3 | mask.value()); | |
let mut rem: u32 = data; | |
for _ in 0 .. 10 { | |
rem = (rem << 1) ^ ((rem >> 9) * 0x537); | |
} | |
(data << 10 | rem) ^ 0x5412 // uint15 | |
}; | |
debug_assert_eq!(bits >> 15, 0); | |
// Draw first copy | |
for i in 0 .. 6 { | |
self.set_function_module(8, i, get_bit(bits, i)); | |
} | |
self.set_function_module(8, 7, get_bit(bits, 6)); | |
self.set_function_module(8, 8, get_bit(bits, 7)); | |
self.set_function_module(7, 8, get_bit(bits, 8)); | |
for i in 9 .. 15 { | |
self.set_function_module(14 - i, 8, get_bit(bits, i)); | |
} | |
// Draw second copy | |
let size: i32 = self.size; | |
for i in 0 .. 8 { | |
self.set_function_module(size - 1 - i, 8, get_bit(bits, i)); | |
} | |
for i in 8 .. 15 { | |
self.set_function_module(8, size - 15 + i, get_bit(bits, i)); | |
} | |
self.set_function_module(8, size - 8, true); // Always dark | |
} | |
// Draws two copies of the version bits (with its own error correction code), | |
// based on this object's version field, iff 7 <= version <= 40. | |
fn draw_version(&mut self) { | |
if self.version.value() < 7 { | |
return; | |
} | |
// Calculate error correction code and pack bits | |
let bits: u32 = { | |
let data = u32::from(self.version.value()); // uint6, in the range [7, 40] | |
let mut rem: u32 = data; | |
for _ in 0 .. 12 { | |
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); | |
} | |
data << 12 | rem // uint18 | |
}; | |
debug_assert_eq!(bits >> 18, 0); | |
// Draw two copies | |
for i in 0 .. 18 { | |
let bit: bool = get_bit(bits, i); | |
let a: i32 = self.size - 11 + i % 3; | |
let b: i32 = i / 3; | |
self.set_function_module(a, b, bit); | |
self.set_function_module(b, a, bit); | |
} | |
} | |
// Draws a 9*9 finder pattern including the border separator, | |
// with the center module at (x, y). Modules can be out of bounds. | |
fn draw_finder_pattern(&mut self, x: i32, y: i32) { | |
for dy in -4 ..= 4 { | |
for dx in -4 ..= 4 { | |
let xx: i32 = x + dx; | |
let yy: i32 = y + dy; | |
if (0 .. self.size).contains(&xx) && (0 .. self.size).contains(&yy) { | |
let dist: i32 = std::cmp::max(dx.abs(), dy.abs()); // Chebyshev/infinity norm | |
self.set_function_module(xx, yy, dist != 2 && dist != 4); | |
} | |
} | |
} | |
} | |
// Draws a 5*5 alignment pattern, with the center module | |
// at (x, y). All modules must be in bounds. | |
fn draw_alignment_pattern(&mut self, x: i32, y: i32) { | |
for dy in -2 ..= 2 { | |
for dx in -2 ..= 2 { | |
self.set_function_module(x + dx, y + dy, std::cmp::max(dx.abs(), dy.abs()) != 1); | |
} | |
} | |
} | |
// Sets the color of a module and marks it as a function module. | |
// Only used by the constructor. Coordinates must be in bounds. | |
fn set_function_module(&mut self, x: i32, y: i32, isdark: bool) { | |
*self.module_mut(x, y) = isdark; | |
self.isfunction[(y * self.size + x) as usize] = true; | |
} | |
/*---- Private helper methods for constructor: Codewords and masking ----*/ | |
// Returns a new byte string representing the given data with the appropriate error correction | |
// codewords appended to it, based on this object's version and error correction level. | |
fn add_ecc_and_interleave(&self, data: &[u8]) -> Vec<u8> { | |
let ver: Version = self.version; | |
let ecl: QrCodeEcc = self.errorcorrectionlevel; | |
assert_eq!(data.len(), QrCode::get_num_data_codewords(ver, ecl), "Illegal argument"); | |
// Calculate parameter numbers | |
let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl); | |
let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl); | |
let rawcodewords: usize = QrCode::get_num_raw_data_modules(ver) / 8; | |
let numshortblocks: usize = numblocks - rawcodewords % numblocks; | |
let shortblocklen: usize = rawcodewords / numblocks; | |
// Split data into blocks and append ECC to each block | |
let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks); | |
let rsdiv: Vec<u8> = QrCode::reed_solomon_compute_divisor(blockecclen); | |
let mut k: usize = 0; | |
for i in 0 .. numblocks { | |
let datlen: usize = shortblocklen - blockecclen + usize::from(i >= numshortblocks); | |
let mut dat = data[k .. k+datlen].to_vec(); | |
k += datlen; | |
let ecc: Vec<u8> = QrCode::reed_solomon_compute_remainder(&dat, &rsdiv); | |
if i < numshortblocks { | |
dat.push(0); | |
} | |
dat.extend_from_slice(&ecc); | |
blocks.push(dat); | |
} | |
// Interleave (not concatenate) the bytes from every block into a single sequence | |
let mut result = Vec::<u8>::with_capacity(rawcodewords); | |
for i in 0 ..= shortblocklen { | |
for (j, block) in blocks.iter().enumerate() { | |
// Skip the padding byte in short blocks | |
if i != shortblocklen - blockecclen || j >= numshortblocks { | |
result.push(block[i]); | |
} | |
} | |
} | |
result | |
} | |
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire | |
// data area of this QR Code. Function modules need to be marked off before this is called. | |
fn draw_codewords(&mut self, data: &[u8]) { | |
assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument"); | |
let mut i: usize = 0; // Bit index into the data | |
// Do the funny zigzag scan | |
let mut right: i32 = self.size - 1; | |
while right >= 1 { // Index of right column in each column pair | |
if right == 6 { | |
right = 5; | |
} | |
for vert in 0 .. self.size { // Vertical counter | |
for j in 0 .. 2 { | |
let x: i32 = right - j; // Actual x coordinate | |
let upward: bool = (right + 1) & 2 == 0; | |
let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate | |
if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 { | |
*self.module_mut(x, y) = get_bit(u32::from(data[i >> 3]), 7 - ((i as i32) & 7)); | |
i += 1; | |
} | |
// If this QR Code has any remainder bits (0 to 7), they were assigned as | |
// 0/false/light by the constructor and are left unchanged by this method | |
} | |
} | |
right -= 2; | |
} | |
debug_assert_eq!(i, data.len() * 8); | |
} | |
// XORs the codeword modules in this QR Code with the given mask pattern. | |
// The function modules must be marked and the codeword bits must be drawn | |
// before masking. Due to the arithmetic of XOR, calling apply_mask() with | |
// the same mask value a second time will undo the mask. A final well-formed | |
// QR Code needs exactly one (not zero, two, etc.) mask applied. | |
fn apply_mask(&mut self, mask: Mask) { | |
for y in 0 .. self.size { | |
for x in 0 .. self.size { | |
let invert: bool = match mask.value() { | |
0 => (x + y) % 2 == 0, | |
1 => y % 2 == 0, | |
2 => x % 3 == 0, | |
3 => (x + y) % 3 == 0, | |
4 => (x / 3 + y / 2) % 2 == 0, | |
5 => x * y % 2 + x * y % 3 == 0, | |
6 => (x * y % 2 + x * y % 3) % 2 == 0, | |
7 => ((x + y) % 2 + x * y % 3) % 2 == 0, | |
_ => unreachable!(), | |
}; | |
*self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize]; | |
} | |
} | |
} | |
// Calculates and returns the penalty score based on state of this QR Code's current modules. | |
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. | |
fn get_penalty_score(&self) -> i32 { | |
let mut result: i32 = 0; | |
let size: i32 = self.size; | |
// Adjacent modules in row having same color, and finder-like patterns | |
for y in 0 .. size { | |
let mut runcolor = false; | |
let mut runx: i32 = 0; | |
let mut runhistory = FinderPenalty::new(size); | |
for x in 0 .. size { | |
if self.module(x, y) == runcolor { | |
runx += 1; | |
if runx == 5 { | |
result += PENALTY_N1; | |
} else if runx > 5 { | |
result += 1; | |
} | |
} else { | |
runhistory.add_history(runx); | |
if !runcolor { | |
result += runhistory.count_patterns() * PENALTY_N3; | |
} | |
runcolor = self.module(x, y); | |
runx = 1; | |
} | |
} | |
result += runhistory.terminate_and_count(runcolor, runx) * PENALTY_N3; | |
} | |
// Adjacent modules in column having same color, and finder-like patterns | |
for x in 0 .. size { | |
let mut runcolor = false; | |
let mut runy: i32 = 0; | |
let mut runhistory = FinderPenalty::new(size); | |
for y in 0 .. size { | |
if self.module(x, y) == runcolor { | |
runy += 1; | |
if runy == 5 { | |
result += PENALTY_N1; | |
} else if runy > 5 { | |
result += 1; | |
} | |
} else { | |
runhistory.add_history(runy); | |
if !runcolor { | |
result += runhistory.count_patterns() * PENALTY_N3; | |
} | |
runcolor = self.module(x, y); | |
runy = 1; | |
} | |
} | |
result += runhistory.terminate_and_count(runcolor, runy) * PENALTY_N3; | |
} | |
// 2*2 blocks of modules having same color | |
for y in 0 .. size-1 { | |
for x in 0 .. size-1 { | |
let color: bool = self.module(x, y); | |
if color == self.module(x + 1, y) && | |
color == self.module(x, y + 1) && | |
color == self.module(x + 1, y + 1) { | |
result += PENALTY_N2; | |
} | |
} | |
} | |
// Balance of dark and light modules | |
let dark: i32 = self.modules.iter().copied().map(i32::from).sum(); | |
let total: i32 = size * size; // Note that size is odd, so dark/total != 1/2 | |
// Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)% | |
let k: i32 = ((dark * 20 - total * 10).abs() + total - 1) / total - 1; | |
debug_assert!(0 <= k && k <= 9); | |
result += k * PENALTY_N4; | |
debug_assert!(0 <= result && result <= 2568888); // Non-tight upper bound based on default values of PENALTY_N1, ..., N4 | |
result | |
} | |
/*---- Private helper functions ----*/ | |
// Returns an ascending list of positions of alignment patterns for this version number. | |
// Each position is in the range [0,177), and are used on both the x and y axes. | |
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. | |
fn get_alignment_pattern_positions(&self) -> Vec<i32> { | |
let ver: u8 = self.version.value(); | |
if ver == 1 { | |
vec![] | |
} else { | |
let numalign = i32::from(ver) / 7 + 2; | |
let step: i32 = if ver == 32 { 26 } else | |
{(i32::from(ver) * 4 + numalign * 2 + 1) / (numalign * 2 - 2) * 2}; | |
let mut result: Vec<i32> = (0 .. numalign-1).map( | |
|i| self.size - 7 - i * step).collect(); | |
result.push(6); | |
result.reverse(); | |
result | |
} | |
} | |
// Returns the number of data bits that can be stored in a QR Code of the given version number, after | |
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. | |
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. | |
fn get_num_raw_data_modules(ver: Version) -> usize { | |
let ver = usize::from(ver.value()); | |
let mut result: usize = (16 * ver + 128) * ver + 64; | |
if ver >= 2 { | |
let numalign: usize = ver / 7 + 2; | |
result -= (25 * numalign - 10) * numalign - 55; | |
if ver >= 7 { | |
result -= 36; | |
} | |
} | |
debug_assert!((208 ..= 29648).contains(&result)); | |
result | |
} | |
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any | |
// QR Code of the given version number and error correction level, with remainder bits discarded. | |
// This stateless pure function could be implemented as a (40*4)-cell lookup table. | |
fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize { | |
QrCode::get_num_raw_data_modules(ver) / 8 | |
- QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl) | |
* QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl) | |
} | |
// Returns an entry from the given table based on the given values. | |
fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize { | |
table[ecl.ordinal()][usize::from(ver.value())] as usize | |
} | |
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be | |
// implemented as a lookup table over all possible parameter values, instead of as an algorithm. | |
fn reed_solomon_compute_divisor(degree: usize) -> Vec<u8> { | |
assert!((1 ..= 255).contains(°ree), "Degree out of range"); | |
// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. | |
// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93]. | |
let mut result = vec![0u8; degree - 1]; | |
result.push(1); // Start off with the monomial x^0 | |
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), | |
// and drop the highest monomial term which is always 1x^degree. | |
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). | |
let mut root: u8 = 1; | |
for _ in 0 .. degree { // Unused variable i | |
// Multiply the current product by (x - r^i) | |
for j in 0 .. degree { | |
result[j] = QrCode::reed_solomon_multiply(result[j], root); | |
if j + 1 < result.len() { | |
result[j] ^= result[j + 1]; | |
} | |
} | |
root = QrCode::reed_solomon_multiply(root, 0x02); | |
} | |
result | |
} | |
// Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials. | |
fn reed_solomon_compute_remainder(data: &[u8], divisor: &[u8]) -> Vec<u8> { | |
let mut result = vec![0u8; divisor.len()]; | |
for b in data { // Polynomial division | |
let factor: u8 = b ^ result.remove(0); | |
result.push(0); | |
for (x, &y) in result.iter_mut().zip(divisor.iter()) { | |
*x ^= QrCode::reed_solomon_multiply(y, factor); | |
} | |
} | |
result | |
} | |
// Returns the product of the two given field elements modulo GF(2^8/0x11D). | |
// All inputs are valid. This could be implemented as a 256*256 lookup table. | |
fn reed_solomon_multiply(x: u8, y: u8) -> u8 { | |
// Russian peasant multiplication | |
let mut z: u8 = 0; | |
for i in (0 .. 8).rev() { | |
z = (z << 1) ^ ((z >> 7) * 0x1D); | |
z ^= ((y >> i) & 1) * x; | |
} | |
z | |
} | |
} | |
/*---- Helper struct for get_penalty_score() ----*/ | |
struct FinderPenalty { | |
qr_size: i32, | |
run_history: [i32; 7], | |
} | |
impl FinderPenalty { | |
pub fn new(size: i32) -> Self { | |
Self { | |
qr_size: size, | |
run_history: [0i32; 7], | |
} | |
} | |
// Pushes the given value to the front and drops the last value. | |
pub fn add_history(&mut self, mut currentrunlength: i32) { | |
if self.run_history[0] == 0 { | |
currentrunlength += self.qr_size; // Add light border to initial run | |
} | |
let rh = &mut self.run_history; | |
for i in (0 .. rh.len()-1).rev() { | |
rh[i + 1] = rh[i]; | |
} | |
rh[0] = currentrunlength; | |
} | |
// Can only be called immediately after a light run is added, and returns either 0, 1, or 2. | |
pub fn count_patterns(&self) -> i32 { | |
let rh = &self.run_history; | |
let n = rh[1]; | |
debug_assert!(n <= self.qr_size * 3); | |
let core = n > 0 && rh[2] == n && rh[3] == n * 3 && rh[4] == n && rh[5] == n; | |
#[allow(unused_parens)] | |
( i32::from(core && rh[0] >= n * 4 && rh[6] >= n) | |
+ i32::from(core && rh[6] >= n * 4 && rh[0] >= n)) | |
} | |
// Must be called at the end of a line (row or column) of modules. | |
pub fn terminate_and_count(mut self, currentruncolor: bool, mut currentrunlength: i32) -> i32 { | |
if currentruncolor { // Terminate dark run | |
self.add_history(currentrunlength); | |
currentrunlength = 0; | |
} | |
currentrunlength += self.qr_size; // Add light border to final run | |
self.add_history(currentrunlength); | |
self.count_patterns() | |
} | |
} | |
/*---- Constants and tables ----*/ | |
// For use in get_penalty_score(), when evaluating which mask is best. | |
const PENALTY_N1: i32 = 3; | |
const PENALTY_N2: i32 = 3; | |
const PENALTY_N3: i32 = 40; | |
const PENALTY_N4: i32 = 10; | |
static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [ | |
// Version: (note that index 0 is for padding, and is set to an illegal value) | |
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level | |
[-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low | |
[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium | |
[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile | |
[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High | |
]; | |
static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [ | |
// Version: (note that index 0 is for padding, and is set to an illegal value) | |
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level | |
[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low | |
[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium | |
[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile | |
[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High | |
]; | |
/*---- QrCodeEcc functionality ----*/ | |
/// The error correction level in a QR Code symbol. | |
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)] | |
pub enum QrCodeEcc { | |
/// The QR Code can tolerate about 7% erroneous codewords. | |
Low , | |
/// The QR Code can tolerate about 15% erroneous codewords. | |
Medium , | |
/// The QR Code can tolerate about 25% erroneous codewords. | |
Quartile, | |
/// The QR Code can tolerate about 30% erroneous codewords. | |
High , | |
} | |
impl QrCodeEcc { | |
// Returns an unsigned 2-bit integer (in the range 0 to 3). | |
fn ordinal(self) -> usize { | |
use QrCodeEcc::*; | |
match self { | |
Low => 0, | |
Medium => 1, | |
Quartile => 2, | |
High => 3, | |
} | |
} | |
// Returns an unsigned 2-bit integer (in the range 0 to 3). | |
fn format_bits(self) -> u8 { | |
use QrCodeEcc::*; | |
match self { | |
Low => 1, | |
Medium => 0, | |
Quartile => 3, | |
High => 2, | |
} | |
} | |
} | |
/*---- QrSegment functionality ----*/ | |
/// A segment of character/binary/control data in a QR Code symbol. | |
/// | |
/// Instances of this struct are immutable. | |
/// | |
/// The mid-level way to create a segment is to take the payload data | |
/// and call a static factory function such as `QrSegment::make_numeric()`. | |
/// The low-level way to create a segment is to custom-make the bit buffer | |
/// and call the `QrSegment::new()` constructor with appropriate values. | |
/// | |
/// This segment struct imposes no length restrictions, but QR Codes have restrictions. | |
/// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. | |
/// Any segment longer than this is meaningless for the purpose of generating QR Codes. | |
#[derive(Clone, PartialEq, Eq)] | |
pub struct QrSegment { | |
// The mode indicator of this segment. Accessed through mode(). | |
mode: QrSegmentMode, | |
// The length of this segment's unencoded data. Measured in characters for | |
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. | |
// Not the same as the data's bit length. Accessed through num_chars(). | |
numchars: usize, | |
// The data bits of this segment. Accessed through data(). | |
data: Vec<bool>, | |
} | |
impl QrSegment { | |
/*---- Static factory functions (mid level) ----*/ | |
/// Returns a segment representing the given binary data encoded in byte mode. | |
/// | |
/// All input byte slices are acceptable. | |
/// | |
/// Any text string can be converted to UTF-8 bytes and encoded as a byte mode segment. | |
pub fn make_bytes(data: &[u8]) -> Self { | |
let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8)); | |
for &b in data { | |
bb.append_bits(u32::from(b), 8); | |
} | |
QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0) | |
} | |
/// Returns a segment representing the given string of decimal digits encoded in numeric mode. | |
/// | |
/// Panics if the string contains non-digit characters. | |
pub fn make_numeric(text: &str) -> Self { | |
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3)); | |
let mut accumdata: u32 = 0; | |
let mut accumcount: u8 = 0; | |
for b in text.bytes() { | |
assert!((b'0' ..= b'9').contains(&b), "String contains non-numeric characters"); | |
accumdata = accumdata * 10 + u32::from(b - b'0'); | |
accumcount += 1; | |
if accumcount == 3 { | |
bb.append_bits(accumdata, 10); | |
accumdata = 0; | |
accumcount = 0; | |
} | |
} | |
if accumcount > 0 { // 1 or 2 digits remaining | |
bb.append_bits(accumdata, accumcount * 3 + 1); | |
} | |
QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0) | |
} | |
/// Returns a segment representing the given text string encoded in alphanumeric mode. | |
/// | |
/// The characters allowed are: 0 to 9, A to Z (uppercase only), space, | |
/// dollar, percent, asterisk, plus, hyphen, period, slash, colon. | |
/// | |
/// Panics if the string contains non-encodable characters. | |
pub fn make_alphanumeric(text: &str) -> Self { | |
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2)); | |
let mut accumdata: u32 = 0; | |
let mut accumcount: u32 = 0; | |
for c in text.chars() { | |
let i: usize = ALPHANUMERIC_CHARSET.find(c) | |
.expect("String contains unencodable characters in alphanumeric mode"); | |
accumdata = accumdata * 45 + u32::try_from(i).unwrap(); | |
accumcount += 1; | |
if accumcount == 2 { | |
bb.append_bits(accumdata, 11); | |
accumdata = 0; | |
accumcount = 0; | |
} | |
} | |
if accumcount > 0 { // 1 character remaining | |
bb.append_bits(accumdata, 6); | |
} | |
QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0) | |
} | |
/// Returns a list of zero or more segments to represent the given Unicode text string. | |
/// | |
/// The result may use various segment modes and switch | |
/// modes to optimize the length of the bit stream. | |
pub fn make_segments(text: &str) -> Vec<Self> { | |
if text.is_empty() { | |
vec![] | |
} else { | |
vec![ | |
if QrSegment::is_numeric(text) { | |
QrSegment::make_numeric(text) | |
} else if QrSegment::is_alphanumeric(text) { | |
QrSegment::make_alphanumeric(text) | |
} else { | |
QrSegment::make_bytes(text.as_bytes()) | |
} | |
] | |
} | |
} | |
/// Returns a segment representing an Extended Channel Interpretation | |
/// (ECI) designator with the given assignment value. | |
pub fn make_eci(assignval: u32) -> Self { | |
let mut bb = BitBuffer(Vec::with_capacity(24)); | |
if assignval < (1 << 7) { | |
bb.append_bits(assignval, 8); | |
} else if assignval < (1 << 14) { | |
bb.append_bits(0b10, 2); | |
bb.append_bits(assignval, 14); | |
} else if assignval < 1_000_000 { | |
bb.append_bits(0b110, 3); | |
bb.append_bits(assignval, 21); | |
} else { | |
panic!("ECI assignment value out of range"); | |
} | |
QrSegment::new(QrSegmentMode::Eci, 0, bb.0) | |
} | |
/*---- Constructor (low level) ----*/ | |
/// Creates a new QR Code segment with the given attributes and data. | |
/// | |
/// The character count (numchars) must agree with the mode and | |
/// the bit buffer length, but the constraint isn't checked. | |
pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> Self { | |
Self { mode, numchars, data } | |
} | |
/*---- Instance field getters ----*/ | |
/// Returns the mode indicator of this segment. | |
pub fn mode(&self) -> QrSegmentMode { | |
self.mode | |
} | |
/// Returns the character count field of this segment. | |
pub fn num_chars(&self) -> usize { | |
self.numchars | |
} | |
/// Returns the data bits of this segment. | |
pub fn data(&self) -> &Vec<bool> { | |
&self.data | |
} | |
/*---- Other static functions ----*/ | |
// Calculates and returns the number of bits needed to encode the given | |
// segments at the given version. The result is None if a segment has too many | |
// characters to fit its length field, or the total bits exceeds usize::MAX. | |
fn get_total_bits(segs: &[Self], version: Version) -> Option<usize> { | |
let mut result: usize = 0; | |
for seg in segs { | |
let ccbits: u8 = seg.mode.num_char_count_bits(version); | |
// ccbits can be as large as 16, but usize can be as small as 16 | |
if let Some(limit) = 1usize.checked_shl(ccbits.into()) { | |
if seg.numchars >= limit { | |
return None; // The segment's length doesn't fit the field's bit width | |
} | |
} | |
result = result.checked_add(4 + usize::from(ccbits))?; | |
result = result.checked_add(seg.data.len())?; | |
} | |
Some(result) | |
} | |
/// Tests whether the given string can be encoded as a segment in numeric mode. | |
/// | |
/// A string is encodable iff each character is in the range 0 to 9. | |
pub fn is_numeric(text: &str) -> bool { | |
text.chars().all(|c| ('0' ..= '9').contains(&c)) | |
} | |
/// Tests whether the given string can be encoded as a segment in alphanumeric mode. | |
/// | |
/// A string is encodable iff each character is in the following set: 0 to 9, A to Z | |
/// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. | |
pub fn is_alphanumeric(text: &str) -> bool { | |
text.chars().all(|c| ALPHANUMERIC_CHARSET.contains(c)) | |
} | |
} | |
// The set of all legal characters in alphanumeric mode, | |
// where each character value maps to the index in the string. | |
static ALPHANUMERIC_CHARSET: &str = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; | |
/*---- QrSegmentMode functionality ----*/ | |
/// Describes how a segment's data bits are interpreted. | |
#[derive(Clone, Copy, PartialEq, Eq, Debug)] | |
pub enum QrSegmentMode { | |
Numeric, | |
Alphanumeric, | |
Byte, | |
Kanji, | |
Eci, | |
} | |
impl QrSegmentMode { | |
// Returns an unsigned 4-bit integer value (range 0 to 15) | |
// representing the mode indicator bits for this mode object. | |
fn mode_bits(self) -> u32 { | |
use QrSegmentMode::*; | |
match self { | |
Numeric => 0x1, | |
Alphanumeric => 0x2, | |
Byte => 0x4, | |
Kanji => 0x8, | |
Eci => 0x7, | |
} | |
} | |
// Returns the bit width of the character count field for a segment in this mode | |
// in a QR Code at the given version number. The result is in the range [0, 16]. | |
fn num_char_count_bits(self, ver: Version) -> u8 { | |
use QrSegmentMode::*; | |
(match self { | |
Numeric => [10, 12, 14], | |
Alphanumeric => [ 9, 11, 13], | |
Byte => [ 8, 16, 16], | |
Kanji => [ 8, 10, 12], | |
Eci => [ 0, 0, 0], | |
})[usize::from((ver.value() + 7) / 17)] | |
} | |
} | |
/*---- Bit buffer functionality ----*/ | |
/// An appendable sequence of bits (0s and 1s). | |
/// | |
/// Mainly used by QrSegment. | |
pub struct BitBuffer(pub Vec<bool>); | |
impl BitBuffer { | |
/// Appends the given number of low-order bits of the given value to this buffer. | |
/// | |
/// Requires len ≤ 31 and val < 2<sup>len</sup>. | |
pub fn append_bits(&mut self, val: u32, len: u8) { | |
assert!(len <= 31 && val >> len == 0, "Value out of range"); | |
self.0.extend((0 .. i32::from(len)).rev().map(|i| get_bit(val, i))); // Append bit by bit | |
} | |
} | |
/*---- Miscellaneous values ----*/ | |
/// The error type when the supplied data does not fit any QR Code version. | |
/// | |
/// Ways to handle this exception include: | |
/// | |
/// - Decrease the error correction level if it was greater than `QrCodeEcc::Low`. | |
/// - If the `encode_segments_advanced()` function was called, then increase the maxversion | |
/// argument if it was less than `Version::MAX`. (This advice does not apply to the | |
/// other factory functions because they search all versions up to `Version::MAX`.) | |
/// - Split the text data into better or optimal segments in order to reduce the number of bits required. | |
/// - Change the text or binary data to be shorter. | |
/// - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric). | |
/// - Propagate the error upward to the caller/user. | |
#[derive(Debug, Clone)] | |
pub enum DataTooLong { | |
SegmentTooLong, | |
DataOverCapacity(usize, usize), | |
} | |
impl std::error::Error for DataTooLong {} | |
impl std::fmt::Display for DataTooLong { | |
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { | |
match *self { | |
Self::SegmentTooLong => write!(f, "Segment too long"), | |
Self::DataOverCapacity(datalen, maxcapacity) => | |
write!(f, "Data length = {} bits, Max capacity = {} bits", datalen, maxcapacity), | |
} | |
} | |
} | |
/// A number between 1 and 40 (inclusive). | |
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] | |
pub struct Version(u8); | |
impl Version { | |
/// The minimum version number supported in the QR Code Model 2 standard. | |
pub const MIN: Version = Version( 1); | |
/// The maximum version number supported in the QR Code Model 2 standard. | |
pub const MAX: Version = Version(40); | |
/// Creates a version object from the given number. | |
/// | |
/// Panics if the number is outside the range [1, 40]. | |
pub const fn new(ver: u8) -> Self { | |
assert!(Version::MIN.value() <= ver && ver <= Version::MAX.value(), "Version number out of range"); | |
Self(ver) | |
} | |
/// Returns the value, which is in the range [1, 40]. | |
pub const fn value(self) -> u8 { | |
self.0 | |
} | |
} | |
/// A number between 0 and 7 (inclusive). | |
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] | |
pub struct Mask(u8); | |
impl Mask { | |
/// Creates a mask object from the given number. | |
/// | |
/// Panics if the number is outside the range [0, 7]. | |
pub const fn new(mask: u8) -> Self { | |
assert!(mask <= 7, "Mask value out of range"); | |
Self(mask) | |
} | |
/// Returns the value, which is in the range [0, 7]. | |
pub const fn value(self) -> u8 { | |
self.0 | |
} | |
} | |
// Returns true iff the i'th bit of x is set to 1. | |
fn get_bit(x: u32, i: i32) -> bool { | |
(x >> i) & 1 != 0 | |
} |