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Abstract

This note presents the main tools currently available in JDemetra+ for the
evaluation of forecasting errors. We explain the main statistical concepts and their
implementation.
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Evaluating Forecasting Accuracy: Concepts

The prediction errors are defined with a reference i to the information set available at

the time the forecast was made: et|i = yt − ŷt|Fi
, where Fi may include lags of yt and

many other variables that do not necessarily refer to the same period. In practice, the

information that will be actually used may be a small subset of Fi.

The properties of these forecast errors can be assessed in isolation or relative to a

benchmark, which we will define as ĕt|i = yt − y̆t|Fi
. The benchmark may be a naive

forecast, e.g. random walk, in which case y̆t|Fi
would be equal to y̆t|yt−1 = yt−1. However,

the benchmark could also be a prediction that is regularly published by a forecasting

institute or market analysts, which is not necessarily model-based. In that case, y̆t|Fi

would be given by methods and a subset of Fi which is unknown to us.

For model-based forecasts, we use the following notation: ŷt|Fi
= Eθ[yt|Fi] to highlight

the fact that they are based on model-consistent expectations given by the parameter

vector θ.

In forecasting comparisons involving competing forecasts that result from the same

information set, the subindex i will be removed because it does not play a role. We will

first test the following null hypotheses involving forecast errors:

Unbiasedness : E[et] = 0 (1)

Autocorrelation : E[etet−1] = 0 (2)

Equality in squared errors : E[e2
t − ĕ2

t ] = 0 (3)

Equality in absolute errors : E[|et| − |ĕt|] = 0 (4)

Forecast ŷt encompasses y̆t : E[(et − ĕt)et] = 0 (5)

Forecast y̆t encompasses ŷt : E[(ĕt − et)ĕt] = 0 (6)

The null hypothesis may be rejected in favour of either one or two-sided alternatives.

For example, the hypothesis of equality in forecast errors originally proposed by Diebold

and Mariano (see below) was tested against the two-sided alternative1 (i.e. 6= 0).

An overview of the tests can also be found in Table A.1.

1In turn, one may decide to define a rejection only when the loss differential e2t − ĕ2t is negative, i.e.
our squared forecast errors are smaller than those coming from the benchmark.
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Diebold-Mariano Test

The test originally proposed by Diebold and Mariano (1995) considers a sample path of

loss differentials {dt}Tt=1. In the case of a squared loss function, we have dt = e2
t − ĕ2

t .

Under the assumption that the loss differential is a covariance stationary series, the sample

average, d̄, converges asymptotically to a normal distribution:

√
T d̄ d−→ N(µ, 2πfd(0)) (7)

In particular, they proposed to test the null hypothesis that the forecast errors coming

from the two forecasts bring about the same loss: E[e2
t − ĕ2

t ] = 0 against the two-sided

alternative. Thus, the resulting p-values represent the probability of obtaining the realized

forecast error differential or a more extreme one in a new experiment if the null hypothesis

was actually true. The test-statistic that will be used to calculate our p-values is computed

as follows:

DM =
d̄√

2πf̂d(0)

T

(8)

where 2πf̂d(0) is a consistent estimate of the variance of d̄. Consider 2πf̂d(0) =
∑(T−1)

τ=−(T−1) wτγd(τ),

where γd(τ) =
1

T

∑T
t=|τ |+1(dt − d̄)(dt−|τ | − d̄). Under the assumption that γd(τ) = 0 for

τ ≥ h, we can use a rectangular lag window estimator by setting wτ = 0 for τ ≥ h.

Another option is to use the Heteroscedasticity and Autocorrelation Consistent (HAC)

estimator proposed by Newey and West (1987). In this case, the weights could be given

by a triangular window, wτ = 1 − τ

h
for τ < h. In this case, however, the consistency

property only remains valid when the truncation lag h or bandwidth is a function of the

sample size T .

The idea is to test the statistical significance of the regression of e2
t−ĕ2

t on an intercept.

In order to determine the statistical significance of the intercept, its associated standard

errors need to take into account the autocorrelation patterns of the regression error, which

are considered in the denominator of equation (8). JDemetra+ exploits the same unified

framework to conduct all tests listed in Table A.1. But given the small sample sizes that

are typical in real-time forecasting applications, which leads to an over-rejection of the
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null hypothesis, we follow the fixed-smoothing (FS) asympotics proposed by Coroneo and

Iacone (2015) exploiting the finite sample distributions of Kiefer and Vogelsang (2005).

The distribution of the test statistic (8) will depend on kernel (triangular in our case) and

the bandwidth chosen, which is set by default equal to T 0.5, as suggested by Coroneo and

Iacone (2015). The results can be very different than those resulting from the traditional

asymptotic theory, where the test statistic would have the same distribution under the

null independently of the kernel and the bandwidth used.

Encompassing Test

Independently of whether the null hypothesis E[e2
t − ĕ2

t ] = 0 is rejected or not, it is

relevant to understand to what extent our model encompasses all the relevant information

of the benchmark, and the other way around. Because of the obvious symmetry of both

statements, we consider only the first one. If our forecast yt|Fi
encompasses a given

benchmark y̆t|Fi
, the difference between those benchmark forecasts and ours will not be

a relevant factor in explaining our own forecast error. In other words, the regression

coefficient λ will not be significantly different from zero in the following regression:

yt − yt|Fi︸ ︷︷ ︸
et

= λ (y̆t|Fi
− yt|Fi

)︸ ︷︷ ︸
et−ĕt

+ξt (9)

m

yt = λy̆t|Fi
+(1− λ)yt|Fi

+ ξt (10)

Following Harvey, Leybourne and Newbold (1997), the statistical significance of the λ

coefficient in regression 9 can be used to reject the null hypothesis that our model encom-

passes the benchmark. In this case of rejection, equation 10 suggests that a combination

of the two forecasts would yield a more informative forecast.

By construction, the value of the coefficient of a regression ĕt = α(ĕt− et) + ξt is equal

to 1− λ, but it is not necessarily true that the rejection of the null hypothesis in the first

case implies the acceptance of the symmetric statement.

The test-statistic is computed as follows. When the null hypothesis is that our model

encompasses the benchmark, we define the sequence {dt}Tt=1, where dt = et(et − ĕt), and
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we compute E1 =
d̄√

2πf̂d(0)

T

, exactly as in equation 8.

Efficiency: Bias Test

In order to assess whether our forecasts are unbiased, we will simply test the statistical

significance of the average error. In some cases, the time series of forecast errors {et}Tt=1

may be autocorrelated to some extent even when they are based on a model with IID

innovations. In such cases, the variance associated to the estimate of the average forecast

error may be large. The test statistic has exactly the same form as the previous tests

discussed so far.

Efficiency: Autocorrelation Test

We will test here a second necessary condition for our forecasts to be efficient: absence

of autocorrelation. In the same spirit as the tests described above, we will assess the

statistical significance of the forecast errors’ autocorrelation. Thus, our sequence {dt}Tt=1

will be defined with dt = etet−1.

Implementation in JDemetra+

Structure of the library

The code is structured as follows:

1. The class AccuracyTests contains all functions required to compute the statistic

defined in equation (8). It also incorporates instructions regarding how to calculate

the pvalues when depending on whether one wants to use standard asymptotics or

fixed-smoothing asymptotics (the input AsymptoticsType is required).

2. The class AccuracyTests is extended by each one of the classes containing the

tests listed in Table (A.1). The constructor of each one of these classes can generate

the tests when either the forecasts or the forecast errors are given as an input. These

classes also define the method to calculate the loss function dt, which is specific to

each test.
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3. The class GlobalForecastingEvaluation can also be used to generate all

the tests. It contains BiasTest, EfficiencyTest, DieboldMarianoTest

and EncompassingTest and the corresponding methods to get the test statistics

and p-values described in Table A.1.

4. The class ForecastEvaluation contains methods to quantify errors: Root Mean

Squared Errors (RMSE), relative RMSE, Mean Absolute Errors (MAE), etc...

A simple example

Suppose we want evaluate the forecast of a model (fmt ) and compare them with those of

a benchmark (f bt ). The following points explain all the steps followed in the code below

to run all the tests:

• First we need to initialize the two competing forecast (i.e. benchmark vs model), all

the statistics we are going to calculate (RMSE, bias, autocorrelation, and encom-

passing weights) and the p-values corresponding to each one of the tests.

• Second, we initialize the eval object of the class GlobalForecastingEvaluation,

which will contain all test results. The inputs needed to run the tests are three time

series (our model’s forecasts, those of the benchmark, and the actual data, which is

the target) and the kind of distribution of the various test statistics under the null,

which is given by a normal distribution when

AccuracyTests.AsymptoticsType.STANDARD_FIXED_B

is used.

• By choosing the option

AccuracyTests.AsymptoticsType.HAR_FIXED_B

the distribution tabulated by Kiefer and Vogelsang (2005) is used.

• For each type of test, the bandwidth used to estimate the variance needs to be

specified. Otherwise, the default value will be used (T 1/2). The relevant statistics

for each test as well as the pvalues are obtained with a simple get command. Notice
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that getPValue(twoSided) uses the logical argument true in order to get the

p-values of the two-sided test.

public void example() {

TsData[] series = {benchmark, model, target};

boolean twoSided = true;

double rmse = new double ;

double dmPval = new double ;

double bias = new double ;

double biasPval = new double ;

double arcorr = new double ;

double arPval = new double ;

double m_enc_bench = new double ;

double m_enc_bench_Pval = new double ;

double bench_enc_m = new double ;

double bench_enc_m_Pval = new double ;

// squared root of T

int bandwith = (int) Math.pow(series.getObsCount(), 1.0 / 2.0);

GlobalForecastingEvaluation eval = new GlobalForecastingEvaluation(model, benchmark,

target,

AccuracyTests.AsymptoticsType.HAR_FIXED_B);

eval.getDieboldMarianoTest().setBandwith(bandwith);

dmPval = eval.getDieboldMarianoTest().getPValue(twoSided);

ForecastEvaluation feval = new ForecastEvaluation(model, benchmark, target);

rmse = feval.calcRMSE();

eval.getBiasTest().setBandwith(bandwith);

bias = eval.getBiasTest().getAverageLoss();

biasPval = eval.getBiasTest().getPValue(twoSided);

eval.getEfficiencyTest().setBandwith(bandwith);

arcorr = eval.getEfficiencyTest().calcCorelation();

arPval = eval.getEfficiencyTest().getPValue(twoSided);

eval.getModelEncompassesBenchmarkTest().setBandwith(bandwith);

m_enc_bench = eval.getModelEncompassesBenchmarkTest().calcWeights();
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m_enc_bench_Pval = eval.getModelEncompassesBenchmarkTest().getPValue(twoSided);

bench_enc_m = eval.getBenchmarkEncompassesModelTest().calcWeights();

bench_enc_m_Pval = eval.getBenchmarkEncompassesModelTest().getPValue(twoSided);

}

Example in the context of nowcasting

Let’s use a more complex example taken from Basselier, de Antonio and Langenus (2017)

in the context of a model for nowcasting, where blocks of data releases are used to update

the predictions. The aim is to determine which blocks of releases lead to significant

improvements of the forecasting accuracy.

The code has been reproduced below. The first variable series is an array of time

series, which includes the forecasts of an ARIMA model followed by the nowcasts from a

dynamic factor model obtained at different points in time, ranging from 90 days before the

end of the quarter (DFMPRE90) to 44 days after the end of the quarter (DFMPOST44).

The variable FLASH corresponds to the GDP growth, which is the target, or the variable

the model aims to predict.

The following code uses a simple loop to produce the test results for the eleven DFM

updates. For each one, we not only test the bias and autocorrelation, but we also check

whether it adds any value with respect to the previous forecast by means of both the

Diebold-Mariano and Encompassing tests. For example, is DFMPRE90 better than

ARIMA? Is DFMPRE75 better than DFMPRE90? More precisely, as explained above,

the Diebold-Mariano test simply evaluates whether the difference in accuracy for each

pair is statistically significant, while the encompassing test checks whether the updated

forecast can be explained by its deviation with respect to the old one. Rejecting this

hypothesis implies that the new forecast encompasses the old one (i.e. the weight λ in

equation 10 above is not significantly different from zero).

public void testingUpdates() {

TsData[] series = {ARIMA, DFMPRE90, DFMPRE75, DFMPRE60, DFMPRE45, DFMPRE30, DFMPRE15,

DFM0, DFMPOST15, DFMPOST30, DFMPOST42, DFMPOST44, FLASH};

boolean twoSided = true;

9



double[] rmse = new double[11];

double[] dmPval = new double[11];

double[] bias = new double[11];

double[] biasPval = new double[11];

double[] arcorr = new double[11];

double[] arPval = new double[11];

double[] m_enc_bloom = new double[11];

double[] m_enc_bloom_Pval = new double[11];

double[] bloom_enc_m = new double[11];

double[] bloom_enc_m_Pval = new double[11];

for (int i = 1; i < series.length; i++) {

// squared root of T

int bandwith = (int) Math.pow(series[i].getObsCount(), 1.0 / 2.0);

GlobalForecastingEvaluation eval = new GlobalForecastingEvaluation(series[i], series[i -

1], FLASH, AccuracyTests.AsymptoticsType.HAR_FIXED_B);

eval.getDieboldMarianoTest().setBandwith(bandwith);

dmPval[i] = eval.getDieboldMarianoTest().getPValue(twoSided);

ForecastEvaluation feval = new ForecastEvaluation(series[i], ARIMA, FLASH);

rmse[i] = feval.calcRMSE();

eval.getBiasTest().setBandwith(bandwith);

bias[i] = eval.getBiasTest().getAverageLoss();

biasPval[i] = eval.getBiasTest().getPValue(twoSided);

eval.getEfficiencyTest().setBandwith(bandwith);

arcorr[i] = eval.getEfficiencyTest().calcCorelation();

arPval[i] = eval.getEfficiencyTest().getPValue(twoSided);

eval.getModelEncompassesBenchmarkTest().setBandwith(bandwith);

m_enc_bloom[i] = eval.getModelEncompassesBenchmarkTest().calcWeights();

m_enc_bloom_Pval[i] = eval.getModelEncompassesBenchmarkTest().getPValue(twoSided);

bloom_enc_m[i] = eval.getBenchmarkEncompassesModelTest().calcWeights();

bloom_enc_m_Pval[i] = eval.getBenchmarkEncompassesModelTest().getPValue(twoSided);

System.out.println("RMSE" + "\t" + rmse[i] + "\t" + dmPval[i] + "\t" + "Bias" + "\t" +

bias[i] + "\t" + biasPval[i] + "\t" + "CORR" + "\t" + arcorr[i] + "\t" + arPval[i] +

"\t" + "Weight on Update" + "\t" + (1 - m_enc_bloom[i]) + "\t" + "M_enc_bench Pval" +

"\t" + "Bench_enc_M Pval" + "\t" + bloom_enc_m_Pval[i]);

}

}
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The outcome of theses tests has been organized in Table A.2. It includes bias, au-

tocorrelation, RMSE and the λ coefficient defined above, which is the weight given to

a benchmark forecasts that competes with their model’s. Statistical significance is high-

lighted with shades. Grey shaded areas in column FS-DM demonstrate which news blocks

have induced a significant change in the RMSE of the model, i.e. the null of equal accu-

racy between old (O) and updated (U) forecasts is rejected. The outcome of the DM test

may be considered jointly with the results of the encompassing tests. For a certain news

block to be considered relevant, the corresponding nowcasting update (U) should hold a

larger amount of information than the older nowcast (O) based on the previous informa-

tion set, while the old nowcast does not incorporate any useful information absent in the

new update. The last two colums of the table show that this is generally the case, with

some exceptions. That is, the null U encompases O is not rejected while O encompasses

U is rejected.
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Table A.2: Statistical significance of each update based on fixed-smoothing (FS) asymp-
totics

Evaluation period: 2007.Q1 - 2015.Q1, T=25

FS-Efficiency FS-DM FS-Encompassing
(U)pdate vs (O)ld

Real-Time Updates bias corr RMSE U enc O O enc U

ARIMA -0.27 0.50 - - -
DFM -90 (d)ays -0.22 0.41 0.68 0.60 0.39
DFM -75 d -0.19 0.47 0.55 -0.60 1.59
DFM -60 d -0.12 0.55 0.52 0.26 0.51
DFM -45 d -0.14 0.54 0.54 1.48 -0.54
DFM -30 d -0.08 0.58 0.50 -0.20 1.07
DFM -15 d -0.13 0.46 0.41 -0.65 1.59
DFM 0 d (end of quarter) -0.06 0.45 0.38 -0.13 0.82
DFM +15 d -0.09 -0.11 0.27 -0.02 1.01
DFM +30 d -0.07 -0.08 0.26 -0.39 1.23
DFM +42 d -0.10 -0.06 0.26 0.27 0.66
DFM +44 d -0.06 -0.18 0.23 -0.17 1.03

Note: The FS-Efficiency multicolumn of his table reports bias and autocorrelation for the
forecast errors obtained at different horizons. The FS-DM and FS-Encompassing blocks
should be considered simultaneously. They aim to determine for each forecasting update (U)
whether there is any added value with respect to the old/last available forecast (O). The null
hypothesis of the Diebold-Mariano (DM) test is rejected when the difference in the squared
errors of U and O is significantly different from zero. For the two encompassing tests, the null
hypothesis states that the updated forecast (U) encompasses all the relevant information from
the old forecast (O) (or vice versa). When the null hypothesis can be rejected, this implies
that U can be improved by combining it with O. The combination weight associated to O (or
U ) is therefore reported below the “U enc O” test. In order to assess the added value of the
updated forecast, the DM null of equal forecast accuracy should be rejected and at the same
time the null “U enc O” and “O enc U” should be, respectively, not rejected and rejected.
Given the small size of our evaluation sample and the time-series correlation patterns, we
determine significance at the 5% , 10% and 20% level using the fixed-smoothing (FS)
asymptotics, as proposed by Coroneo and Iacone (2015).
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