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1 Introduction

1.1 Background

Software engineering, compared to other engineering fields, such as mechanical or electrical
engineering, is much more abstract - while performing maintenance on a car engine or on
an electric panel, you can actually touch the components, they are physical. However, in
computer science and the engineering of software, you cannot see the whole picture. Of
course one can actually open up a laptop or PC and see and touch the components, but
the software, what is actually displayed to the user, is a multitude of layers on top of each
other: it starts with a number of characters in some file; then, that file gets compiled or
interpreted to machine code by other components which run on the operating system; then,
these components can communicate with the kernel (i.e. the component that sits exactly
between the OS and the hardware) and eventually perform the final step - send different 1s
and 0s encoded into electrical signals to the CPU and various other hardware components.

As previously mentioned, there are many levels of abstraction that computers expose to
their human operators, thus developing software that runs and performs as expected in
agreement with its requirements is not trivial. Therefore, developers have created software
called issue tracking systems that can manage and track tickets of various forms such as
bug reports, feature requests etc. The aforementioned tickets can vary greatly and issue
tracking systems usually allow developers to include many types of information, such as:

• stack traces;

• steps to reproduce a bug;

• summary and description;

• story points (e.g. how many units of time does it take one developer to mark the
ticket as resolved or completed).

In order to create such tickets, the end users or the developers themselves notice certain
flaws in the software or propose new features to be implemented. Then, they head to the
issue tracking system and create tickets containing the necessary information. However,
we are facing a main issue here, and that is understanding the key elements the developers
look for when fixing a bug or implementing a new feature.

Therefore, a software engineering issue still not completely resolved is how can one create
valuable, high quality tickets.

1.2 Problem Statement

This research is investigating the features of a high quality ticket. More specifically, it is
looking into the various components of a ticket (e.g. summary, description, comments) and
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their characteristics in order to infer what combination of such components or what specific
attributes help developers close the ticket quicker (i.e. time between ticket creation and
marked as CLOSED or RESOLVED).

We believe that this study is valuable to the software engineering community because solv-
ing the issue/ticket quality problem will help reduce both cost and effort in companies
worldwide. Having a clear understanding of what attributes make for a high quality ticket
will lead the project maintainers to write specific guidelines in the ticket creation form
(maybe even create an automated system) that will help reporters include the most impor-
tant details and structure them accordingly (e.g. for a specific type of project it might be
essential to include stack traces so that developers can locate the bugs quicker), which will
in turn reduce overall costs and developers/triagers’ effort.

Furthermore, our study might also increase the likelihood of people reporting bugs or asking
for more specific features more often. Not having specific guidelines or an automated system
when creating a ticket many non-technical users might be put off and give up creating the
report. However, if the company would put up a form where all the information needed
can be very easily inserted, users might be more inclined to report bugs and create feature
requests, thus increasing the software’s overall quality on the long term.

1.3 Research Questions and Contributions

The main research question this study is trying to answer is what makes for a valuable,
high quality ticket?

However, as this is a broad research question, we have divided it into three sub-research
questions which, when combined, would yield the answer to our main research question:

• are there components which singularly affect the quality of a ticket (e.g. well written
summary) or only combinations of them (e.g. stack traces together with steps to
reproduce)?

• how much do specific components or combinations of them affect the quality of a
ticket?

• can quality be inferred solely from the ticket or do we also need to consider the
surrounding context (e.g. details related to the version control system)?

Even though there have been many studies related to issue/ticket quality, most of them have
looked at it qualitatively, not quantitatively (e.g. Bettenburg et al. [2008a], Bettenburg
et al. [2007]). This is the first contribution of our study - we will explore the area of ticket
quality from a statistical point of view, not through interviews or other human-centered
data gathering (i.e. we want to inspect several open source repositories and collect tickets
through the issue tracking system’s APIs).
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Moreover, another contribution is that, even though most studies so far have looked solely
at ticket features/components, we want to inspect both tickets and other components of
the software project, such as version control system and how various attributes affect the
time-to-close for a particular ticket.

The third contribution is a proposed model for bug reports and/or feature requests. After
collecting data and finding which components together with their afferent attributes make
for a high quality ticket, we will propose a model for best practices in terms of creating
tickets.

1.4 Proposal Structure

The rest of this project proposal is structured as follows:

• Section 2 presents both the study design and the background survey, which in turn
is divided into three subsection:

– subsection 2.2 describes the literature review on data quality and metrics;

– subsection 2.3 describes the background survey on issue/ticket quality;

– subsection 2.4 elicits literature on waste in software projects;

• Section 3 describes how we would like to conduct the research;

• Section 4 shows how we broke down the work so that we keep a consistent pace
throughout the lifecycle of the research.

2 Background Survey

2.1 Study Design

In order to conduct a thorough background survey, several topics needed to be explored,
among which the most important were:

• data quality and metrics;

• issue/ticket quality;

• waste in software projects;

• sentiment analysis.
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Firstly, we will deal with a large volume of tickets and information extracted from software
projects and the tools that revolve around them, such as issue trackers and version control
systems. Thus, data quality is an important topic that needed to be explored in order to
infer appropriate conclusions.

We analyzed data quality mainly in software organizations and looked at what metrics are
most useful when performing measurements. We also found different methodologies that
either measure data quality or calculate the impact of poor data quality on the software
project.

Secondly, probably the topic of most interest to our research is issue quality. This field is
mainly concerned with software tickets and their characteristics: how important are issue
trackers to a software project, what makes for a good bug report, what impact does bad
triaging have etc. As we are interested in finding out what features are most important
in improving the quality of a ticket, the issue quality literature reviewed proved to be
beneficial and provided valuable insight into how other researchers tried to approach this
problem.

The third topic was waste and its impact on software projects. We needed to look into
various communication and tool-related waste in software projects because having a project
with a considerable amount of waste might affect our results and compromise the evaluation
process. We investigated researches that looked into what the main types of waste are and
how it can be avoided so that we could apply the findings into selecting the projects.

Last but not least, we did a literature review on sentiment analysis as well because we will
inspect, among other components of a ticket, comments - we want to analyze the textual
representation of comments and see if the overall sentiment influences the time it takes to
close a ticket (i.e. a conversation might unnecessarily delay solving the ticket).

The main sources of information when searching for papers were Google Scholar, ACM
digital library and IEEE Xplore digital library. The first step in the literature review
process was finding relevant papers that could aid us in our research and splitting them
into the categories mentioned above. The key search phrases used (with slight variations)
are as follows:

• software data quality;

• software data quality metrics;

• data quality in software projects;

• issue quality in software projects;

• ticket quality software;

• sentiment analysis;

• software project communication waste.

5

Tim
Inserted Text
communication

Tim
Comment on Text
Stylistically, it would be good to cite all the papers that you are going to discuss in each section here.  For example,Thus, data quality \cite{ref1,ref2,ref3...} is an important topic.



The snowballing research technique was also applied when retrieving papers for the back-
ground review. Citation count and publication journal were two important aspects when
selecting papers - the most cited papers, published in the top quality journals were reviewed.

2.2 Data Quality and Metrics

Several authors have investigated the meaning of data quality and what characteristics
define it.

Bachmann and Bernstein [2009] conducted a thorough investigation of several software
projects, both open source (5 projects) as well as closed source (1 project), in order to infer
what determines their quality. They selected various sources of information, among which
bug tracking databases and version control systems logs, and examined SVN logs, CVS
logs and the content of the bug tracker databases, in the end trying to link the logs with
the bug tracker contents as they are not integrated by default. A different approach was
taken by Strong et al. [1997] who conducted a qualitative analysis instead of quantitative
by collecting data from 42 data quality projects by interviewing custodians, customers
and managers. They analyzed each project using the data quality dimensions as content
analysis codes.

The first study came to several conclusions, among which:

• closed source software projects usually exhibit better data quality (i.e. better average
number of attachments, better average status changes, better average number of
commits per bug report);

• reduced traceability between bug reports and version control logs due to scarce linkage
between the two;

• open source projects exhibit reduced quality in change logs as, for example, the
Eclipse project has over 20% empty commit messages.

However, the second study reached the conclusion that representational data quality di-
mensions are underlying causes of accessibility data quality problem patterns. The authors
also found out that three underlying causes for users’ complaints regarding data not sup-
porting their tasks are incomplete data, inadequately defined or measured data and data
that could not be appropriately aggregated.

The work of Kitchenham and Pfleeger [1996] looks specifically at defining quality in a
software project, as well as finding who the people in charge of this are and how they
should approach achieving it. They tried to define quality in software projects and analyze
techniques that measure such metrics by looking at other models proposed in different re-
searches, such as McCall’s quality model or ISO 9126. However, they learned that quality
is very hard to define and there are various factors which need to be taken into consider-
ation, such as the business model of the company, the type of the software project (e.g.
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safety critical, financial sector) or the actors who are involved and how they coordinate the
software activities.

One other piece of data that is probably the most crucial in a software project is code,
and Stamelos et al. [2002] tried to discuss and examine the quality of the source code
delivered by open source projects. They used a set of tools that could automatically
inspect various aspects of source code, looking at the 6th release of the OpenSUSE project
and its components defined by C functions. The results show that Linux applications have
high quality code standards that one might expect in an open source repository, but the
quality is lower than the one implied by the standard. More than half of the components
were in a high state of quality, but on the other hand, most lower quality components
cannot be improved only by applying some corrective actions. Thus, even though not all
the source code was in an industrial standards shape, there is definitely room for further
improvement and open source repositories proved to be of good quality.

After defining what data quality is and its characteristics, the next step would be data
measurement or information quality in a project.

There are several research papers that try to find the answer, among which the work of
Lee et al. [2002]. The authors tried to define an overall model along with an accompa-
nying assessment instrument for quantifying information quality in an organization. The
methodology has 3 main steps that need to be followed in order to apply it successfully:

• 2 × 2 model of what information quality means to managers;

• questionnaire for measuring information quality along the dimensions found in first
step;

• two analysis techniques for interpreting the assessments captured by the question-
naire.

After developing the technique, they applied it in 5 different organizations and found that
the tool proved to be practical.

Compared to the methodology proposed by Lee et al. [2002], the solution found by Heinrich
et al. [2007] is quite different. Even though the main goals were the same, the authors used a
single metric, and that is the metric for timeliness (i.e. whether the values of attributes still
correspond to the current state of their real world counterparts and whether they are out of
date). Thus, they applied the metric at a major German mobile services provider. Due to
some Data Quality issues the company was having, they had lower mailing campaign success
rates, but after applying the metrics, the company was able to establish a direct connection
between the results of measuring data quality and the success rates of campaigns.

Nelson et al. [2005] proposed another technique for measuring data quality in an organiza-
tion by, firstly, setting 2 main research questions:
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• identify a set of antecedents that both drive information and system quality, as well
as define the nature of the IT artifact;

• explore data warehousing in general, especially analytical tools, predefined reports
and ad hoc queries.

Then, the authors set up a model to define a tree-structured representation of system
quality and data quality, as follows:

• data quality - defined by completeness, accuracy, format and currency;

• system quality - defined by reliability, flexibility, integration, response time and ac-
cessibility;

• then, data and systems available are evaluated to infer data satisfaction and system
satisfaction (coming from customers), which in turn will compute the final satisfaction
score of the product.

After conducting a cross-functional survey to test the model, they learned that the features
they selected were a good indicator of overall information/data and system quality. They
also found that accuracy is the dominant determinant across all three data warehouse
technologies, followed by completeness and format. Last but not least, another discovery
was that more attention needs to be given to differences across varying technologies.

Another important area of data quality is what methodologies or techniques can be applied
by organizations in order to improve it. There are several studies that tried to propose such
methodologies. A general overview of such techniques was presented by Pipino et al. [2002]
- they wanted to present ways of developing usable data quality methods that organiza-
tions can implement in their own internal processes. After reviewing various techniques of
assessing data quality in information systems, they reached the conclusion that there is no
universal approach to assess data quality as it heavily depends on the context where it is
analysed.

One such methodology examined by Pipino et al. [2002] is the technique proposed by
Wang [1998] called Total Data Quality Management (abbreviated TDQM). Through this
method, the authors wanted to help organizations deliver high quality information prod-
ucts to information consumers by following the TDQM cycle - define, measure, analyse
and improve information quality continuously. In order to do that, the research proposes
4 steps: clearly articulate the information product, establish several roles that would be in
charge of the information product management, teach information quality assessment and
management skills to all information products constituencies and, finally, institutionalize
continuous information product improvement. After developing the methodology, the au-
thors conclude on a confident note that their technique can fill a gap in the information
quality environment.

However, there are other aspects that can be investigated when trying to improve data
quality. For example, Prybutok et al. [2008] tested whether leadership and information
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quality can lead to positive outcomes in an e-government’s data quality. They conducted
a web survey to gather data and test their hypotheses. Afterwards, they assessed the
City of Denton’s e-government initiatives, including current plans and implementations.
They learned that the MBNQA leadership triad (leadership, strategic planning and cus-
tomer/market focus) had a positive impact on the IT quality triad (information, system and
service quality). Moreover, they found out that both leadership and IT quality improved
the benefits.

Finally, after defining, measuring and improving data quality, we also need to be able to
assess the impact poor DQ has on a company. In this area, there are several authors that
investigated various implications of low indices of data quality.

One such research is the one done by Gorla et al. [2010]. They wanted to examine the
influences of system quality, service quality and data quality on an organization, as well
as what effect does system quality have on data quality. After conducting a construct
measurement for the information systems quality dimensions [Swanson, 1997] and collecting
data through empirical testing, they learned that service quality has the greatest impact
of all three quality constructs. Moreover, they found out that there is a linkage between
system and information quality, fact that previous research did not reveal. Last but not
least, their results indicate that the above-mentioned quality dimensions have a significant
positive influence on organizational impact either directly or indirectly.

On the other hand, Redman [1998] had different findings. Even though they did not analyze
multiple types of quality, but only data quality, they learned that there are three main issues
across most enterprises: inaccurate data, inconsistencies across databases and unavailable
data necessary for certain operations. Furthermore, they presented a number of impacts
that poor data quality has on enterprises: lowered customer satisfaction, increased cost,
lowered employee satisfaction, it becomes more difficult to set strategy, as well as worse
decision making.

Another research, the one of Lee and Strong [2003], investigated another aspect: whether
knowing-why affects work performance and whether knowledge held by people in different
roles affect the overall work performance. After conducting various surveys with 6 compa-
nies that served as data collection points, they reached the conclusion that there is vast
complexity of knowledge at work in the data production process and if these gaps are not
bridged it might lead to decreased data quality.

2.3 Issue Quality

Issue quality is the main topic of this literature review as it revolves around software tickets
and the characteristics of a well-written and informative bug report, how efficient are bug
tracking systems, what defines an efficient bug triaging process etc.

The first and most important sub-topic of issue quality, which is the one we will address in
our own research as well, is the quality of bug reports. There are several authors that have
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tried to defined what makes for a good bug report and what components actually improve
the overall quality.

Bettenburg et al. [2008a] analyzed what makes for a good bug report through qualitative
analysis. They interviewed over 450 developers and asked them what are the most impor-
tant features for them in a bug report that help them solve the issue quicker. They reached
the conclusion that stack traces and steps to reproduce increased the quality of a bug report
the most, followed by well-written, grammar error free summaries and descriptions. Last
but not least, they also created a tool called CueZilla that could with an accuracy rate
between 31 and 48% predict the quality of a bug report.

Strengthening the argument that readability matters considerably in bug report quality is
the work of Hooimeijer and Weimer [2007]. They ran an analysis over 27000 bug reports
from the Mozilla Firefox project, looking at self-reported severity, readability, daily load,
submitter reputation and changes over time. After running the evaluation, they not only
found out about the importance of readability in bug reports, but also that attachment
and comment counts are valuable for faster triaging and that patch count, for example,
does not contribute in the same manner as the previous two.

Another research that agrees that stack traces are helpful in solving bug reports faster is
the one performed by Schroter et al. [2010]. They conducted the whole experiment on the
Eclipse project. They first extracted the stack traces using the infoZilla tool([Bettenburg
et al., 2008c]), followed by linking the stack traces to changes in the source code (change
logs) by mining the version repository of the Eclipse project. The results showed that
around 60% of the bugs that contained stack traces in their reports were fixed in one of
the methods in the frame, with 40% being fixed in exactly the first stack frame.

After examining the work of Bettenburg et al. [2007], we noticed that the authors found
very similar results to the ones presented in the research of Bettenburg et al. [2008a].
They performed the same type of evaluation method (i.e. interviews with developers) and
confirmed that steps to reproduce and stack traces are the most important features in a
bug report that help developers solve the issue quicker.

Other interesting findings regarding the quality of a software project’s tickets are the ones
elicited in Bettenburg et al. [2008b]. The authors examined whether duplicate bug reports
are actually harmful to a project or they add quality. They collected big amount of data
from the Eclipse project and ran various kind of textual and statistical analysis on the data
to find answers. They reached the conclusion that bug duplicates contain information that
is not present in the master reports. This additional data can be helpful for developers and
it can also aid automated triaging techniques.

However, in order to model the quality of a bug report, one needs to be able to successfully
extract various types of information from such a report and, if possible, link them to the
source code of the project (i.e. source code fragments in bug report discussions should be
linked to the corresponding sections in the actual code) or other software artifacts. There
are several researches that tried to analyze such techniques and one of them is the work of
Bettenburg et al. [2012]. The authors created a tool that could parse a bug report (using
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fuzzy code search) and extract source code that could then be matched with exact locations
in the source code, in the end producing a traceability link (i.e. tuple containing a clone
group ID and file paths corresponding to the source code files). Evaluation showed an
increase of roughly 20% in total traceability links between issue reports and source code
when compared to the current state-of-the-art technique, change log analysis.

Bettenburg et al. [2012] also made use of a tool developed by Bettenburg et al. [2008c]
called infoZilla. This application can parse bug reports and correctly extract patches,
stack traces, source code and enumerations. When evaluating it on over 160.000 Eclipse
bug reports, it proved to have a very high rate of over 97% accuracy.

However, Kim et al. [2013] propose a rather different technique than the one exposed in
Bettenburg et al. [2012]. The authors employed a two-phase recommendation model that
would locate the necessary fixes based on information in bug reports. Firstly, they did a
feature extraction on the bug reports (e.g. extract description, summary, metadata). Then,
in order to successfully predict locations, this model was trained on collected bug reports
and then, when given a new bug report, it would try to localize the files that need to be
changed automatically. Finally, the actual implementation was put into place, and that is
the two phase recommendation model, composed of binary (filters out uninformative bug
reports before predicting the files to fix) and multiclass ( previously filtered bug reports are
used as training data and only after that new bug reports can be analyzed and files to be
changed recommended). The overall accuracy was above the one achieved by Bettenburg
et al. [2012], being able to rank over 70%, but only as long as it recommended any locations.

One other type of information that could be extracted and used for valuable purposes is the
summary of a bug report, as shown in the work of Rastkar et al. [2010]. The authors wanted
to determine if bug reports could be summarized effectively and automatically so that
developers would need only analyze summaries instead of full tickets. Firstly, they asked
university students to volunteer to annotate the bug reports collected from various open
sources projects (i.e. Eclipse, Mozilla, Gnome, KDE) by writing a summary of maximum
250 words in their own sentences. These human-produced annotations were then used by
algorithms to learn how to effectively summarize a bug report. Afterwards, the authors
asked the end users of these bug reports, the software developers, to rate the summaries
against the original bug reports. They eventually learned that existing conversation-based
extractive summary generators trained on bug reports produce the best results.

A third technique for linking source code files from the textual description of a bug report
is the one proposed by Zhou et al. [2012]. The authors first performed a textual analysis,
looking for similarities between the bug report description and the source code files. Then,
it analyzed previous bugs in the repository to find the most similar ones, thus being able to
find which files ought to be changed. Lastly, it assigned scores to similar files, the ones with
bigger sizes obtaining higher scores as they are more likely to contain bugs. They collected
the necessary data from Bugzilla projects and then performed the evaluation. The results
of the evaluation phase were positive: the bug locator can locate a large percentage of bugs
analyzing just a small set of source code files. Moreover, similar bugs can improve the
localization accuracy only to a certain extent, while the locator outperformed every other
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competitor on a multitude of projects.

Having discussed automated linkage between source code files and bug reports, Fischer
et al. [2003] presents a way to track certain features from the data residing in tickets.
The authors employed a method to track features by analyzing and relating bug report
data filtered from a release history database. Features are then instrumented and tracked,
relationships of modification and problem reports to these features are established, and
tracked features are visualized to illustrate their otherwise hidden dependencies. They
managed to successfully visualize the tracked features and illustrate their non apparent
dependencies which can prove very useful in projects with a large number of components.

Even though we have discussed about quality in bug reports, how it can be identified and
what state-of-the-art techniques can be used to extract and link various components from
tickets, we must also investigate if the platform where these bug reports reside (i.e. bug
trackers) are properly fitting the software environment. The work of Just et al. [2008] tries
to find the answer to this question. The authors launched a survey to developers from
Eclipse, Mozilla and Apache open source projects from which they received 175 comments
back. Then, they applied a card sort in order to organize the comments into hierarchies
to deduce a higher level of abstraction and identify common patterns. In the end, they
ranked the top suggestions as follows:

• provide tool support for users to collect and prepare information that developers need;

• find volunteers to translate bug reports filed in foreign languages;

• provide different user interfaces for each user level and give cues to inexperienced
reporters on what to report and best practices;

• reward reporters when they do a good job;

• integrate reputation into user profiles to mark experienced reporters;

• provide powerful and easy to use tools to search bug reports;

• encourage users to submit additional details (provide tools for merging bugs).

One other important aspect when analyzing the quality of a bug report is the time it
takes to triage it. Triaging is the process of analyzing issues and based on the information
available, determine their severity and assign them to the most qualified available developer
to fix them. If the ticket was valuable and had an increased index of quality, the triaging
process would be quicker and, thus, reduce the cost for the organization. There are several
researches that are concerned with this field and how gaps can be bridged.

One such example is the work of Anvik [2006]. The authors automated the process of bug
report assignment by employing a machine learning algorithm which, after receiving as
input various types of information (e.g. textual description of bug, bug component, OS,
hardware, software version, developer who owns the code, current workload of developers,
list of developers actively contributing), would recommend the best developers to work on
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the ticket. After the tool was evaluated, it was found that it could actually be deployed in
the software industry so that it could be used by organizations.

Working on the previous tool, the same authors proposed a new solution to automatic bug
report assignment through the work presented in Anvik and Murphy [2011]. They increased
the precision and recall of the algorithm and then, in order to test it, they implemented a
proxy to the actual web service that’s providing the issue repository. Eventually, they also
found out that the impact of poor software project management, including bug triaging,
on software projects can reach alarming levels.

A similar research, but which looks at the free form of the ticket only, is the technique pre-
sented in Anvik et al. [2006]. The authors applied a supervised machine learning algorithm
on the repositories to learn which developers were best suited for specific tasks, thus when
a new bug report would come in, a small set of people would be selected. In order to train
the algorithm, they looked at Bugzilla repositories and selected the free text form of tickets,
trying to label similar ones based on textual similarities. Once the tickets were labeled and
grouped for specific developers, the algorithm would then be able to present the triager the
set of developers suitable to fix the bug. Even though this approach, compared to Anvik
[2006] or Anvik and Murphy [2011], does not reach the same levels of accuracy, it is much
simpler to implement and evaluate.

However, a completely different approach is the one presented by Jeong et al. [2009] that
looks at both bug report assignment as well as bug tossing (i.e. re-assign tickets from one
developer to another). They wanted, through their tossing graph approach based on the
Markov property, to both discover developer networks and team structures, as well as help
to better assign developers to bug reports. They analyzed 145,000 bug reports from Eclipse
and 300,000 from Mozilla and then, using statistical analysis on the bug reports in order
to find evolution histories and changes throughout the lifetime of the reports, they created
the bug tossing graph. The research shows that it takes a long time to assign and toss bugs
and, additionally, they learned that their model reduces tossing steps by up to 72% and
improved the automatic bug assignment by up to 23%.

Another approach to bug report assignee recommendation is the one based on activity
profiles, proposed by Naguib et al. [2013]. The authors employed an algorithm using
activity profiles (i.e. assign, review, resolve activity of the developer) such that, after
detecting the prior experience, developer’s role, and involvement in the project, it could
recommend who should fix a specific bug. The average accuracy was around 88%, much
higher than other techniques, including the ones mentioned previously.

However, bug report assignment is not the only part of bug triaging that needs investigation.
Lamkanfi et al. [2010] show a method through which one can predict the severity of a
reported bug (i.e. assign story points to the ticket) automatically. The authors conducted
their research on the Mozilla, Eclipse and GNOME projects and divided their method into
four steps:

• extract and organize bug reports;
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• pre-process bug reports - tokenization, stop word removal and stemming;

• train the classifier on multiple datasets of bug reports - 70% training and 30% eval-
uation;

• apply the trained classifier on the evaluation set.

The conclusions they drew from running the evaluation process were rather interesting:

• terms such as deadlock, hand, crash, memory or segfault usually indicate a severe
bug; however, there are other terms that can indicate the opposite, such as typos;

• when analyzing the textual description they found that using simple one line sum-
maries resulted in less false positives and increased precision levels;

• the classifier needs a large dataset in order to predict correctly;

• depending on how well a software project is componentized, one can use a predictor
per component rather than an universal one.

2.4 Measuring Cost and Waste in Software Projects

Having talked about data and ticket quality and its characteristics, we have another issue
that inevitably arises in every software project: software waste. There are different re-
searches that try to define what waste in software development is as well as its main types.
One such paper is the one of Sedano et al. [2017]. The authors conducted a participant-
observation study over a long period of time at Pivotal, a consultancy software development
company. They also interviewed multiple engineering and balanced theoretical sampling
with analysis to elicit the following main types of waste in software project:

• building the wrong feature or product;

• mismanaging backlog;

• extraneous cognitive load;

• rework;

• ineffective communication;

• waiting/multitasking;

• solutions too complex;

• psychological distress.

• Relevance to our work: this paper complements the previous one on waste iden-
tificationKorkala and Maurer [2014].
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Even though Sedano et al. [2017] look at waste generally in software development, Ikonen
et al. [2010] try to specifically investigate waste in kanban-based projects. They controlled a
case study research at a company called Software factory using semi-structured interviews.
The authors reached two main conclusions:

• they couldn’t explain the success of the project even though waste was found;

• they identified 7 main types of waste throughout various development stages: par-
tially done work, extra processes, extra features, task switching, waiting, motion and
defects.

Apart from building the wrong feature/product, the 2 works differ in what types of waste
they identified.

However, defining waste and its main types is not enough - one needs also ways to identify
such waste. Korkala and Maurer [2014] propose a technique to identify communication
waste in agile software projects environments. The authors collaborated with a medium-
sized American software company and conducted a series of observations, informal dis-
cussions, documents provided by the organization, as well as semi-structured interviews.
Moreover, the data collection for waste identification was split into 2 parts:

• pre-development: occurred before the actual implementation begun (e.g. backlog
creation);

• development: happened throughout the implementation process (e.g. throughout
sprints, retrospectives, sprint reviews, communication media).

Eventually they reached two main conclusions:

• this proposed approach was efficient and the authors recommend it to companies if
they’d like to conduct such processes internally;

• the research elicits 5 main categories for communication waste: lack of involvement,
lack of shared understanding, outdated information, restricted access to information,
scattered information.

Another work that is trying to analyze the waste around software coordination activities is
the one of Aranda and Venolia [2009]. They are trying to understand common bug fixing
coordination activities in terms of software projects coordination and propose different
directions on how to implement proper tools. They conducted a field study which was split
into two parts:

• led an exploratory case study of bug repositories histories;

• then, they conducted a survey with professionals (e.g. testers, developers).
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After they finished the 2 phases, they learned that there are multiple factors which influence
the coordination activities that revolve around bug fixing, such as organizational, social and
technical knowledge, thus one cannot infer any conclusions only by automatic analysis of
the bug repositories. Also, through surveying the professionals, they reached the conclusion
that there are eight main goals which can be used for better tools and practices: summit,
probing for ownership, probing for expertise, code review, triaging, rapid-fire emailing,
shotgun emails and infrequent/direct email.

However, having discussed about software and communication waste, what work has been
done around another major software activity, i.e. software cost estimation? The paper
from Grimstad and Jørgensen [2006] showed that poor estimation analysis techniques in
software projects will lead to wrong conclusions regarding cost estimation accuracy. More-
over, they also propose a framework for better analysis of software cost estimation error.
They approached a real-world company where they conducted analysis on their cost esti-
mation techniques. Eventually, they learned that regular, straight-forward types of cost
estimation analysis techniques errors lead to wrong conclusions, thus increasing the risk of
poor coordination activities.

But what happens when a project gains maturity? A work that investigates the effects of
process maturity on quality, cycle time and effort is the one undergone by Harter et al.
[2000]. The research proves and rejects several hypotheses, such as higher levels of process
maturity lead to higher product quality, higher levels of process maturity are associated
with increased cycle time, higher product quality is associated with lower cycle time, higher
levels of process maturity lead to increased development efforts in the project and higher
product quality is associated with lower development effort. The authors examined data
coming from 30 projects belonging to the systems integration division from a large IT com-
pany and analyzed a couple of key variables and see how they interact (i.e. process maturity,
product quality, cycle time, development effort, product size, domain/data/decision com-
plexity and requirements ambiguity). They learned that the main features they inspected
are additively separable and linear. Moreover, they found out that higher levels of process
maturity are associated with significantly higher quality, but also with increased cycle times
and development efforts. On the other hand, the reductions in cycle time and effort result-
ing from improved quality outweigh the marginal increases from achieving more process
maturity.

As we want to analyze comments as well and how they influence the quality of a ticket, we
need to investigate what state-of-the-art tools are available to perform sentiment analysis.
One paper that tried to detect the overall sentiment transmitted through reviews of various
types is the research performed by Turney [2002]. The author created an unsupervised
machine learning algorithm that was evaluated on more than 400 reviews on Epinions on
various kins of markets. The algorithm implementation was divided into three steps:

• extract phrases containing adjectives or adverbs;

• estimate the semantic orientation of the phrases;
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• classify the review as recommended or not recommended based on the semantic ori-
entation calculated at previous step.

The author learned that different categories will yield different results, such as the auto-
mobile section on Epinions ranked much higher, 84%, compared to movie reviews, which
had an accuracy of 65.83%. Moreover, most pitfalls of the algorithm could be attributed to
multiple factors, such as not using a supervised learning system or limitations of PMI-IR.

However, the work of Turney [2002] looks only at sentiment analysis without examining the
context. The research from Wilson et al. [2005] found efficient ways to distinguish between
contextual and prior polarity. They used a two step method that used machine learning
and a variety of features. The first step classified each phrase which had a clue as either
neutral or polar, followed by taking all phrases marked in the previous step and giving
them a contextual polarity (e.g. positive, negative, both, neutral). Through the method
the authors employed, they managed to automatically identify the contextual polarity. As
most papers were only looking at the sentiment extracted from the overall document, they
managed to get valuable results from looking at specific words and phrases.

3 Proposed Approach

3.1 Experimental Design

We would like to begin the research by conducting a statistical analysis over popular open
source projects such as Mozilla or Apache and extract tickets most probably via REST
APIs, however the list of projects will be finalized once some tests will be run, and that is
because maybe some projects will have more valuable tickets for us to analyze and we want
to analyze multiple issue tracking systems (e.g. Apache uses Jira [Atlassian] while Mozilla
uses Bugzilla [Mozilla]).

Then, as most issue tracking systems respond with JSON payloads through their REST
APIs, we can easily extract components such as summary or description and analyze them.
We have defined that the initial list of components that we want to inspect into three main
categories:

• regular text - summary, description, story points, text in comments, status (e.g.
OPEN, WONTFIX, CLOSED);

• non-regular text (i.e. special structures) - stack traces, steps to reproduce;

• non-text - attachments in comments (e.g. images, screenshots when trying to show
steps to reproduce).

Extracting text from components is rather trivial, but extracting and analyzing non-text
data such as images or non-regular text will be more complex.
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For images, there are two very popular REST APIs that we can use for analysis: Google
Cloud Vision [Cloud] and AWS Rekognition [AWS]. When an image is sent via the API,
the servers respond with detailed information about what can be found in the image, thus
we can detect if the image was for example a simple screenshot or if it contained multiple
screenshots that were aimed at visually showing steps to reproduce a bug.

In terms of non-regular text, steps to reproduce are usually trivial to retrieve (if they are
not images, for which we have presented a solution in the above paragraph), they will most
probably be written as bullet lists or a sequence of lines starting with Step [number] ..., thus
a simple regex will probably suffice. However, for stack traces, as they are more complex,
there are no commercial or open source applications that could help them extract them
easily, thus we will compose a special regex depending on the language of the project (e.g.
Apache heavily uses Java, thus we can look for lines starting with java.*.*Exception ...).

Implementation wise, we would like to develop the application that will perform both
scraping, extraction and inspection in either Go or Java.

In order to detect what features make for a high quality ticket, we need to compare two
similar tickets and then analyze their components for differences. Thus, one of the biggest
issues we will be facing is comparing and contrasting tickets. We have two initial approaches
that we want to test to see which one is more efficient:

• look solely at the issue tracking system and use story points to detect similar tickets;
one limitation of this approach is that either the triager is not experienced and might
assign wrong story point values or the initial story point values are not properly
assigned and they will be corrected during the ticket’s lifecycle;

• look at the version control system and compare changesets for similar work effort;
however, this approach has one limitation - solely looking at source code changes
might not encapsulate the whole effort needed to solve the task (e.g. the developers
on the team might spend extra hours only on designing the fix).

However, this list is not final, so if we find some other method while running the experiment,
we shall switch to that.

Finally, grouping similar tickets together allows testing the variances in component features
they possess and see which features affected the time-to-close the most.

3.2 Variables Tested

The independent variables proposed for testing are:

• presence and number of stack traces in a ticket;

• steps to reproduce (as described above - images or text);
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• presence of screenshots in tickets;

• text components (e.g. summary, description) being either succinct or detailed;

• grammar-free textual description;

• overall sentiment drawn from comments (e.g. angry or calm);

• complex or light discussion in comments.

In terms of dependent variables, there is only one - the time it takes between when the
ticket was created and marked as OPEN until when it is finished and marked as CLOSED
or RESOLVED.

4 Work Plan

The work on the actual project in the second semester will start off with deciding and
analyzing which repositories to use for ticket data. There are several popular open source
options, such as Apache, Mozilla or Eclipse, so settling on a couple of options will be the
first step in our research. We believe that this step will be finished by the end of January.

The next step will be to create the scraping, extraction and inspection tool which will be
implemented in either Go or Java. This will be a vital component of the whole research so
we believe that it will be ready to run by the end of February.

Then, concomitantly with the previous work package, the method used to detect similar
tickets will be decided on. This step will be performed during the creation of the tool
because efficiency can only be evaluated once ideas have been validated via execution of
several mock tickets. Thus, the proposed deadline for this work package is the end of
February as well.

Following, tickets collected will be run in the tool created as per the previous steps. The
expected deadline is by 4th of March.

Then, the actual write-up of the paper will be structured as follows:

• write abstract, introduction, related work - this is expected to be completed by mid
March;

• write methodology (collecting data, running analysis) - expected to be finished by the
beginning of April ;

• write results, contributions and conclusion for the paper - we expect to complete it
by 18th of April.
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