
A few weeks ago, a group of researchers from Google’s arti�cial-
intelligence subsidiary, DeepMind, published a in the

journal Science that described an A.I. for playing games. While their
system is general-purpose enough to work for many two-person
games, the researchers had adapted it speci�cally for Go, chess, and

Annals of Technology

How the Artificial-Intelligence

Program AlphaZero Mastered

Its Games

By James Somers December 28, 2018

In 2016, a Google program soundly defeated Lee Sedol, the world’s best Go player, in a
match viewed by more than a hundred million people.
Photograph by Ahn Young-joon / AP

paperpaperpaperpaperpaperpaperpaperpaperpaperpaperpaper

shogi (“Japanese chess”); it was given no knowledge beyond the rules
of each game. At �rst it made random moves. Then it started learning
through self-play. Over the course of nine hours, the chess version of
the program played forty-four million games against itself on a
massive cluster of specialized Google hardware. After two hours, it
began performing better than human players; after four, it was
beating the best chess engine in the world.

The program, called AlphaZero, descends from AlphaGo, an A.I. that
became known for defeating Lee Sedol, the world’s best Go player, in
March of 2016. Sedol’s defeat was a stunning upset. In “AlphaGo,” a
documentary released earlier this year on Net�ix, the �lmmakers
follow both the team that developed the A.I. and its human
opponents, who have devoted their lives to the game. We watch as
these humans experience the stages of a new kind of grief. At �rst,
they don’t see how they can lose to a machine: “I believe that human
intuition is still too advanced for A.I. to have caught up,” Sedol says,
the day before his �ve-game match with AlphaGo. Then, when the
machine starts winning, a kind of panic sets in. In one particularly
poignant moment, Sedol, under pressure after having lost his �rst
game, gets up from the table and, leaving his clock running, walks
outside for a cigarette. He looks out over the rooftops of Seoul. (On
the Internet, more than �fty million people were watching the
match.) Meanwhile, the A.I., unaware that its opponent has gone
anywhere, plays a move that commentators called creative, surprising,
and beautiful. In the end, Sedol lost, 1-4. Before there could be
acceptance, there was depression. “I want to apologize for being so
powerless,” he said in a press conference. Eventually, Sedol, along with
the rest of the Go community, came to appreciate the machine. “I
think this will bring a new paradigm to Go,” he said. Fan Hui, the

A

European champion, agreed. “Maybe it can show humans something
we’ve never discovered. Maybe it’s beautiful.”

AlphaGo was a triumph for its creators, but still unsatisfying, because
it depended so much on human Go expertise. The A.I. learned which
moves it should make, in part, by trying to mimic world-class players.
It also used a set of hand-coded heuristics to avoid the worst blunders
when looking ahead in games. To the researchers building AlphaGo,
this knowledge felt like a crutch. They set out to build a new version
of the A.I. that learned on its own, as a “tabula rasa.”

The result, AlphaGo Zero, detailed in a published in October,
2017, was so called because it had zero knowledge of Go beyond the
rules. This new program was much less well-known; perhaps you can
ask for the world’s attention only so many times. But in a way it was
the more remarkable achievement, one that no longer had much to do
with Go at all. In fact, less than two months later, DeepMind
published a of a third paper, showing that the algorithm
behind AlphaGo Zero could be generalized to any two-person, zero-
sum game of (that is, a game in which there are
no hidden elements, such as face-down cards in poker). DeepMind
dropped the “Go” from the name and christened its new system
AlphaZero. At its core was an algorithm so powerful that you could
give it the rules of humanity’s richest and most studied games and,
later that day, it would become the best player there has ever been.
Perhaps more surprising, this iteration of the system was also by far
the simplest.

typical chess engine is a hodgepodge of tweaks and shims made
over decades of trial and error. The best engine in the world,

Stock�sh, is open source, and it gets better by a kind of Darwinian
selection: someone suggests an idea; tens of thousands of games are

paperpaperpaperpaperpaperpaperpaperpaperpaperpaperpaper

preprintpreprintpreprintpreprintpreprintpreprintpreprintpreprintpreprintpreprintpreprint

perfect informationperfect informationperfect informationperfect informationperfect informationperfect informationperfect informationperfect informationperfect informationperfect informationperfect information

played between the version with the idea and the version without it;
the best version wins. As a result, it is not a particularly elegant
program, and it can be hard for coders to understand. Many of the
changes programmers make to Stock�sh are best formulated in terms
of chess, not computer science, and concern how to evaluate a given
situation on the board: Should a knight be worth 2.1 points or 2.2?
What if it’s on the third rank, and the opponent has an opposite-
colored bishop? To illustrate this point, David Silver, the head of
research at DeepMind, once listed the moving parts in Stock�sh.
There are more than �fty of them, each requiring a signi�cant
amount of code, each a bit of hard-won chess arcana: the Counter
Move Heuristic; databases of known endgames; evaluation modules
for Doubled Pawns, Trapped Pieces, Rooks on (Semi) Open Files,
and so on; strategies for searching the tree of possible moves, like
“aspiration windows” and “iterative deepening.”

AlphaZero, by contrast, has only two parts: a neural network and an
algorithm called Monte Carlo Tree Search. (In a nod to the gaming
mecca, mathematicians refer to approaches that involve some
randomness as “Monte Carlo methods.”) The idea behind M.C.T.S.,
as it’s often known, is that a game like chess is really a tree of
possibilities. If I move my rook to d8, you could capture it or let it be,
at which point I could push a pawn or move my bishop or protect my
queen. . . . The trouble is that this tree gets incredibly large incredibly
quickly. No amount of computing power would be enough to search
it exhaustively. An expert human player is an expert precisely because
her mind automatically identi�es the essential parts of the tree and
focusses its attention there. Computers, if they are to compete, must
somehow do the same.

This is where the neural network comes in. AlphaZero’s neural
network receives, as input, the layout of the board for the last few
moves of the game. As output, it estimates how likely the current
player is to win and predicts which of the currently available moves
are likely to work best. The M.C.T.S. algorithm uses these predictions
to decide where to focus in the tree. If the network guesses that
‘knight-takes-bishop’ is likely to be a good move, for example, then

Chess commentators have praised AlphaZero, declaring that the engine “plays like a
human on �re.”
Photograph Courtesy DeepMind Technologies

the M.C.T.S. will devote more of its time to exploring the
consequences of that move. But it balances this “exploitation” of
promising moves with a little “exploration”: it sometimes picks moves
it thinks are unlikely to bear fruit, just in case they do.

At �rst, the neural network guiding this search is fairly stupid: it
makes its predictions more or less at random. As a result, the Monte
Carlo Tree Search starts out doing a pretty bad job of focussing on
the important parts of the tree. But the genius of AlphaZero is in
how it learns. It takes these two half-working parts and has them
hone each other. Even when a dumb neural network does a bad job of
predicting which moves will work, it’s still useful to look ahead in the
game tree: toward the end of the game, for instance, the M.C.T.S. can
still learn which positions actually lead to victory, at least some of the
time. This knowledge can then be used to improve the neural
network. When a game is done, and you know the outcome, you look
at what the neural network predicted for each position (say, that
there’s an 80.2 per cent chance that castling is the best move) and
compare that to what actually happened (say, that the percentage is
more like 60.5); you can then “correct” your neural network by tuning
its synaptic connections until it prefers winning moves. In essence, all
of the M.C.T.S.’s searching is distilled into new weights for the
neural network.

VIDEO FROM THE N� YORKER

Chess Grandmaster Garry Kasparov Replays His Four Most Memorable Games

W

With a slightly better network, of course, the search gets slightly less
misguided—and this allows it to search better, thereby extracting
better information for training the network. On and on it goes, in a
feedback loop that ratchets up, very quickly, toward the plateau of
known ability.

hen the AlphaGo Zero and AlphaZero papers were
published, a small army of enthusiasts began describing the

systems in and and building their own
. Most of this work was explanatory—it �owed from

the amateur urge to learn and share that gave rise to the Web in the
�rst place. But a couple of efforts also sprung up to replicate the work
at a large scale. The DeepMind papers, after all, had merely described
the greatest Go- and chess-playing programs in the world—they
hadn’t contained the source code, and the company hadn’t made the
programs themselves available to players. Having declared victory, its
engineers had departed the �eld.

blog postsblog postsblog postsblog postsblog postsblog postsblog postsblog postsblog postsblog postsblog posts YouTube videosYouTube videosYouTube videosYouTube videosYouTube videosYouTube videosYouTube videosYouTube videosYouTube videosYouTube videosYouTube videos
copycat versionscopycat versionscopycat versionscopycat versionscopycat versionscopycat versionscopycat versionscopycat versionscopycat versionscopycat versionscopycat versions

Gian-Carlo Pascutto, a computer programmer who works at the
Mozilla Corporation, had a track record of building competitive game
engines, �rst in chess, then in Go. He followed the latest research. As
the combination of Monte Carlo Tree Search and a neural network
became the state of the art in Go A.I.s, Pascutto built the world’s
most successful open-source Go engines—�rst , then
—which mirrored the advances made by DeepMind. The trouble was
that DeepMind had access to Google’s vast cloud and Pascutto didn’t.
To train its Go engine, DeepMind used �ve thousand of Google’s
“Tensor Processing Units”—chips speci�cally designed for neural-
network calculations—for thirteen days. To do the same work on his
desktop system, Pascutto would have to run it for seventeen hundred
years.

To compensate for his lack of computing power, Pascutto distributed
the effort. LeelaZero is a federated system: anyone who wants to
participate can download the latest version, donate whatever
computing power he has to it, and upload the data he generates so
that the system can be slightly improved. The distributed LeelaZero
community has had their system play more than ten million games
against itself—a little more than AlphaGo Zero. It is now one of the
strongest existing Go engines.

MORE FROM

Annals of Technology

LeelaLeelaLeelaLeelaLeelaLeelaLeelaLeelaLeelaLeelaLeela LeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZeroLeelaZero

The Woolly Mammoth
Lumbers Back into
View

Chasing the World’s
Rarest Turtle

By Brent Crane

The Search for A
Conservative Bia
Google

It wasn’t long before the idea was extended to chess. In December of
last year, when the AlphaZero preprint was published, “it was like a
bomb hit the community,” Gary Linscott said. Linscott, a computer
scientist who had worked on Stock�sh, used the existing LeelaZero
code base, and the new ideas in the AlphaZero paper, to create

. (For Stock�sh, he had developed a testing framework so
that new ideas for the engine could be distributed to a �eet of
volunteers, and thus vetted more quickly; distributing the training for
a neural network was a natural next step.) There were kinks to sort
out, and educated guesses to make about details that the DeepMind
team had left out of their papers, but within a few months the neural
network began improving. The chess world was already obsessed with
AlphaZero: chess.com celebrated the engine; commentators
and grandmasters the handful of AlphaZero games that
DeepMind had released with their paper, declaring that this was
“how chess ought to be played,” that the engine “plays like a human
on �re.” Quickly, Lc0, as Leela Chess Zero became known, attracted
hundreds of volunteers. As they contributed their computer power
and improvements to the source code, the engine got even better.
Today, one core contributor suspects that it is just a few months away
from overtaking Stock�sh. Not long after, it may become better than
AlphaZero itself.

When we spoke over the phone, Linscott marvelled that a project like
his, which would once have taken a talented doctoral student several

By Rachel Riederer By Sue Halpern

LeelaLeelaLeelaLeelaLeelaLeelaLeelaLeelaLeelaLeelaLeela
Chess ZeroChess ZeroChess ZeroChess ZeroChess ZeroChess ZeroChess ZeroChess ZeroChess ZeroChess ZeroChess Zero

posts onposts onposts onposts onposts onposts onposts onposts onposts onposts onposts on
pored overpored overpored overpored overpored overpored overpored overpored overpored overpored overpored over

D

years, could now be done by an interested amateur in a couple of
months. Software libraries for neural networks allow for the
replication of a world-beating design using only a few dozen lines of
code; the tools already exist for distributing computation among a set
of volunteers, and chipmakers such as Nvidia have put cheap and
powerful G.P.U.s—graphics-processing chips, which are perfect for
training neural networks—into the hands of millions of ordinary
computer users. An algorithm like M.C.T.S. is simple enough to be
implemented in an afternoon or two. You don’t even need to be an
expert in the game for which you’re building an engine. When he
built LeelaZero, Pascutto hadn’t played Go for about twenty years.

avid Silver, the head of research at DeepMind, has pointed out
a seeming paradox at the heart of his company’s recent work

with games: the simpler its programs got—from AlphaGo to
AlphaGo Zero to AlphaZero—the better they performed. “Maybe
one of the principles that we’re after,” he said, in a talk in December
of 2017, “is this idea that by doing less, by removing complexity from
the algorithm, it enables us to become more general.” By removing
the Go knowledge from their Go engine, they made a better Go
engine—and, at the same time, an engine that could play shogi and
chess.

It was never obvious that things would turn out this way. In 1953,
Alan Turing, who helped create modern computing, wrote a short
paper titled, “Digital Computers Applied to Games.” In it, he
developed a chess program “based on an introspective analysis of my
thought processes while playing.” The program was simple, but in its
case simplicity was no virtue: like Turing, who wasn’t a gifted chess
player, it missed much of the depth of the game and didn't play very
well. Even so, Turing conjectured that the idea that “one cannot

programme a machine to play a better game than one plays oneself ”
was a “rather glib view.” Although it sounds right to say that “no
animal can swallow an animal heavier than itself,” plenty of animals
can. Similarly, Turing suggested, there might be no contradiction in a
bad chess player making a chess program that plays brilliantly. One
tantalizing way to do it would be to have the program learn for itself.

The success of AlphaZero seems to bear this out. It has a simple
structure, but it’s capable of learning surprisingly deep features of the
games it plays. In one section of the AlphaGo Zero paper, the
DeepMind team illustrates how their A.I., after a certain number of
training cycles, discovers strategies well-known to master players, only
to discard them just a few cycles later. It is odd and a little unsettling
to see humanity’s best ideas trundled over on the way to something
better; it hits close to home in a way that seeing a physical machine
exceed us—a bulldozer shifting a load of earth, say—doesn’t. In a
recent editorial in Science, Garry Kasparov, the former chess champion
who lost to I.B.M.’s Deep Blue in 1997, argues that AlphaZero
doesn’t play chess in a way that re�ects the presumably systematic
“priorities and prejudices of programmers”; instead—even though it
searches far fewer positions per move than a traditional engine—it
plays in an open, aggressive style and seems to think in terms of
strategy rather than tactics, like a human with uncanny vision.
“Because AlphaZero programs itself,” Kasparov writes, “I would say
that its style re�ects the truth.”

Playing chess like a human, of course, isn't the same thing as thinking
about chess like a human, or learning like one. There is an old saying
that game-playing is the Drosophila of A.I.: as the fruit �y is to
biologists, so games like Go and chess are to computer scientists
studying the mechanisms of intelligence. It’s an evocative analogy.

And yet it could be that the task of playing chess, once it’s converted
into the task of searching tens of thousands of nodes per second in a
game tree, exercises a different kind of intelligence than the one we
care about most. Played in this way, chess might be more like earth-
moving than we thought: an activity that, in the end, isn’t our forté,
and so shouldn’t be all that dear to our souls. To learn, AlphaZero
needs to play millions more games than a human does— but, when
it’s done, it plays like a genius. It relies on churning faster than a
person ever could through a deep search tree, then uses a neural
network to process what it �nds into something that resembles
intuition. Surely the program teaches us something new about
intelligence. But its success also underscores just how much the
world’s best human players can see by means of a very different
process—one based on reading, talking, and feeling, in addition to
playing. What may be most surprising is that we humans have done
as well as we have in games that seem, now, to have been made for
machines.

James Somers is a writer and a programmer based in New
York. Read more »

Video

© 2018 Condé Nast. All rights reserved. Use of and/or registration on any portion of this site
constitutes acceptance of our User Agreement (updated 5/25/18) and Privacy Policy and Cookie
Statement (updated 5/25/18). Your California Privacy Rights. The material on this site may not be

reproduced, distributed, transmitted, cached or otherwise used, except with the prior written
permission of Condé Nast. The New Yorker may earn a portion of sales from products and services that

are purchased through links on our site as part of our a�iliate partnerships with retailers. Ad Choices

The Girls Who Slay at Chess
The girls of competitive chess are vastly outnumbered by boys, but these young players
won't be intimidated.

