
RADICAL SIMPLICITY

Radical Simplicity in Technology
Stephan Schmidt

As developers we love complexity. We create complexity with SPAs,

Vue/React, Transpiling, Typescript, Babel, Webpack, PureCSS,

GraphQL, JSON, and on the backend with microservices, protobuf,

Kafka, InfluxDB, or NoSQL databases. This complexity is accidental and

not in the problem domain. This complexity slows us down and makes

development tiresome. This complexity leads to shallow domains.

Radical Simplicity makes development fast and joyful again.

This complexity needs a solution to manage it - which is often

Kubernetes. And you need to run these things, and with many

microservices, you need many machines. Which leads to AWS. Which

brings its own complexity. Now we need frontend engineers that write

React apps, backend engineers who write REST and GraphQL

endpoints, and operation engineers that hand hold Kubernetes. This

leads to complex test setups with mocks and local databases, Docker

https://www.linkedin.com/in/stephanjschmidt/

images, and build pipelines that take tens of minutes to run. Rather

sooner than later development is tied down by a net of complexity.

We came from something simple that worked to a massive complex

thing in the last two decades.

Server Client

Complexity 2005

Dependencies

Views

Controllers

Models

Routing

Authorization

Server Client

Complexity 2021

Dependencies

Views

Controllers

Models

Routing

Authorization
API

Asset packing

Prerendering

Dependencies

Views

Controllers

Models/API client

Routing

Authorization
Virtual DOM

Based on charts by @ryanstout and @triksweline

Web applications got tremendously complex over the years

It takes a lot of time for doing a simple thing, like adding a field to a form -

for example a birthday field to a profile. Can’t take that long? It often

does. What should take minutes takes hours. And then things break, and

you spend the whole day making your house of cards run again -

delicately balancing every service and every version of every framework

and tool on top of others.

The result of this is that the last thing developers do is writing business

logic. If you look at what you are doing and count the lines, the smallest

amount of time is writing real business logic, the IFs in your code. But a

lot of serialization from databases with SQL into objects into JSON over

https://www.youtube.com/watch?v=y8OnoxKotPQ

the wire into a React store to a UI. Data definitions in GraphQL, SQL,

Javascript objects, and Python objects. This leads to shallow domains.

These technology departments act under constant pressure from

business. When you need to spend so much time on ceremonies around

frameworks, tech stacks, and serialization, there is not a lot of time left to

work on business logic. So domains are shallow with 90% being data

transformation and IO. Apps are shallow. But what we do want, is write

deep domains.

Conventional
App

Framework Code

Framework Code

Framework Code

Framework Code

Framework Code
Framework Code

Application Logic

Application Logic

Framework Code

Radical Simple
App

Radical simple applications have deep domains and a little code in

frameworks

Why do we build complex systems and architectures? Complex

architectures are a surrogate for real problems. Because we want to be

challenged and domains are shallow, developers build their own

challenges with new frameworks and systems. They want to experiment

with new things and more often than not want to scale technology to

customer numbers that only will be there in some years - if ever.

Premature scaling is one of the biggest reasons startups go bust.

The problems arising are manifold. As Rachel Kroll writes “Code runs on

people. Please keep it simple.” The same goes for components and

systems. Before code runs on a computer it needs to run in your head.

“If it takes an hour to figure out what’s going on, well, that’s an hour

that wasn’t spent doing something else more useful and interesting."

On top of that, tech deals a lot of time with itself instead of delivering

business value. Managing these many systems and components takes

knowledge, and because there are edge cases there are many bugs.

Combined these lead to low efficiency, to too many developers and to

high costs.

Here comes Radical Simplicity.

What is Radical Simplicity? Radical Simplicity means having as few

components and moving parts as possible. Reuse technology for

different purposes instead of having a new moving part for each

purpose. Instead of using Postgres as a database, Druid for an event

store, Redis for caching, Rabbit MQ as a message queue and Elastic for

fulltext search, use a hosted Postgres as a database, for fulltext search,

html caching, publish/subscribe, and an event store with TimescaleDB.

This enables us to have deeper knowledge, move faster, have faster

onboarding of new developers, have fewer things that can break, no

upgrade planning for dozens of frameworks and components, and more

developer happiness. Core to developing is getting into the flow.

https://rachelbythebay.com/w/2021/09/05/clever/

Developers are much more productive when inside the flow than outside

of flow. Breaking components, upgrades and edge cases of databases

you need to read about break that flow.

Basecamp, the creators of Rails, do Radical Simplicity. Basecamp wrote

their Hey email application with HTML and no React. Stack Overflow

does this by running their service with a small amount of real hardware.

It’s ironic that all the AWS questions are answered by a Microsoft SQL

Server running on real hardware. No GraphQL, no React, no Kafka, no

Webpack, and no Kubernetes.

You can use Radical Simplicity too. Radical Simplicity is radical. A

monolith that spills out HTML that is refreshed on the browser side with

Hotwire Turbo with minimal Javascript. Using only managed Postgres as

a database for data storage, for JSON, job handling, as a message

queue, and with a columnar store as your data lake and data warehouse.

If you can’t resist then add Redis for caching, because Redis never

breaks.

Application

Micro
Service 1

Micro
Service 2

Micro
Service 3

Message
Queue

APIs

Browser App

Standard System Radical Simplicity

Microservice architecture versus what is really needed

Many startups with only a few customers have several microservices,

Redis, Postgres, Elastic, Kubernetes, Webpack, a JavaScript SPA, REST

APIs, GraphQL with Apollo and Kafka or RabbitMQ for a message queue

or job server. Compare this to a radical simple setup that only uses a

hosted Postgres (instead of PG, Redis and Elastic), Unpoly to render

HTML on the server in a monolith and BigQuery for an analytical

warehouse. A much smaller setup that achieves the same but has much

fewer moving parts that need to be maintained, learned and debugged.

Many fewer components need to be monitored, added to a logging

server and alerts created. Do some companies need that complex setup

when they have 50+ developers and millions of users? Yes. Do most of

https://unpoly.com/

the companies, especially in their first years, need that complex setup?

No.

Standard Setup Radical simple setup

Many Microservices Monolith

Vue Unpoly

Nuxt

Webpack

Babbel

Javascript SPA

REST API

GraphQL

Postgres Postgres

Redis

Elastic

Kubernetes

When your needs grow, add more moving parts, but slowly. Challenge

yourself if you really need that new part. Radical Simplicity means

extending your existing technology first. For example if you need

REST/GraphQL for native mobile applications, use Hasura to

automatically create REST/GraphQL from a Postgres database.

Is Radical Simplicity the same as “Choose Boring Technology”? It goes in

the same direction, reducing risk and increasing efficiency. And while

“Choose Boring Technology” also addresses the number of pieces (“If

each tech is expensive, you should pick a few”) it mainly focuses on

choosing proven technology. And with proven technology you still can

create a complex architecture and setup. Combining Radical Simplicity

with “Choose Boring Technology” results in the best outcome. Radical

https://hasura.io/
http://boringtechnology.club/

Simplicity also works with exiting technology if you have enough money

to hire those few engineers proficient in it, but it’s much easier to go with

Postgres instead of a nifty new database and PHP instead of that funky

new functional language.

There are many more positive side effects of Radical Simplicity. Features

get delivered faster, founders need less developers to deliver more, the

company can move faster, can easier adapt and can easier pivot to

something else. Radical Simplicity gives your startup a much higher

chance of success instead of failure. If you are a founder, insist on

Radical Simplicity.

Can you love Radical Simplicity as a developer? Isn’t it all about new

technologies? Isn’t that what brought you into programming in the first

place? I think what brought you into programming is the challenge of

solving problems. And the challenge should not come from learning new

technologies, but from solving deep problems. With more time on your

hands it’s easier to solve challenging problems in the domain with new

algorithms and deep features that astonish users, and not shallow

features like storing data in a database from a form.

Can you do Radical Simplicity? Yes! As a founder you need to manage

your CTO otherwise he or she will build a dream castle of technology.

You already follow Lean Startup for maximum chances for your startup.

Radical Simplicity perfectly matches Lean Startups on the technology

side of things. Radical Simplicity forms a trinity together with Lean

Startup for business and Scrum for process. It enables to experiment

fast, deliver early and pivot if necessary. A bloated architecture ties you

down and sabotages your lean startup endeavour.

As a CTO you need to build an environment where people can grow and

experiment without relying on a growing tech zoo. Instead, find

http://theleanstartup.com/

challenges from business that can be solved with your inventions, your

cleverness, ingenuity and algorithms and not by more toys from the shelf.

My proudest coding moments were figuring out an algorithm for Towers

of Hanoi as a kid and writing my own fulltext search way before there

were frameworks like Lucene. Google Search has a simple UI but a deep

domain. when you enter 2+2 it doesn’t search for this term but prints a

calculator and shows 4. This is a deep feature that users enjoy. It can be

done, so do it!

Radical Simplicity takes away all the technology that doesn’t deliver

customer value.

Radical Simplicity leads to deep domains and deep tech.

Radical Simplicity leads to higher quality.

Radical Simplicity makes everyone happy.

Radical Simplicity makes it easy for new developers to understand a

system.

Radical Simplicity makes setting up and testing easy.

Radical Simplicity puts you back in control.

Radical Simplicity wins.

About Stephan

As a CTO, Interim CTO, CTO Coach - and developer - Stephan has

seen many technology departments in fast-growing startups. This is

where the idea of Radical Simplicity comes from, because he has seen

too many complex setups that costed money and had their problems.

He taught himself coding in a department store around 1981 with

VIC20 Basic and went on to write code - and was paid for many of

them - in C64 BASIC, 6502 machine code, CPC BASIC, Z80 machine

code, 68000 machine code, Amiga BASIC, GFA BASIC, Blitz Basic,

QBasic, Turbo Pascal, Modula-2, Oberon, Delphi, C, C++, Lisp, Prolog,

Perl, Python, Java, Javascript, Scala, Erlang, Haskell, TypeScript, Go

and Rust amongst others - using VIC20s, Sinclairs, C64s, Sharp

Pocketcomputers, CPCs, Amigas, Beboxes, Atari STs, MSDOS

machines, Windows machines, Linux - pre distro - machines, SUNs,

SGIs, NextCubes, and many

Quadras|iMacs|MacCubes|MacBooks|MacBookPros|iMacPros.

Stephan has founded several startups and worked in small and large

companies as CTO. After he sold his latest startup he took up CTO

coaching. You can find him on LinkedIn

https://www.linkedin.com/in/stephanjschmidt/

