NConsole Menu System

Documentation Guide

Last Updated: 7-13-2022
By: Mark Alicz - mark@ivolt.io - https://github.com/InspiredVoltage-IVolt

Author: Copyright (c) 2015 Sebastian Heuchler

Author Info: https://github.com/nerai

Source Location: https://github.com/nerai/NConsoleMenu/

License Location: https://github.com/nerai/NConsoleMenu/blob/master/LICENSE

Table of Contents

Y 1 Yo o= =3 3
2 1 o~ 3
Creating and USINg Dbasic COMMANAS ..ttt ittt ittt ittt eneeneeneneeneeneneeneeneseenesseneenenssenessensencnasneencnas 3
Command abbreviations and integrated Nlttt ittt ettt teeeteeneeenesonasosssosasssnsssnssssasssnssonssonssosnsssnsss 3
(oo 4 To b o e o = T A 11 = T o o 4
Example Project DoCUMENTatdon . vttt ittt ittt ittt teeenneonaessnesenasosassenssonssosnsosnsosnsssnssssnssssssssssosssonnssss 5
1= o] o T TP 5

L T I o T ol PP 5
P 6

L T I o T o PP 6
= 11 1 < 6
PECONA, PP LAY t ittt ittt ittt ittt eneeenneenneeeneeenseenseeeseeenseenseenseeesesesseesseesseesseeenssenseenseesnssenneenneenns 6
T oo o« 6
=T - 6
D 11T 2 6
ProC, CaAll, PEtUNN, SO0 vttt ittt ettt et e eaeeeneeeneesnasesasssassssssssasssassssssosssosasosnsossssssssssnsssnssosssosnsonnsoss 6
L5 2 7
DU ot ettt it ittt ettt ettt e oo oo oaannneeeeeeaaassseesesasassssesssaaassssssssssassssssssssssssssssssssssssssssssssssnsssssssssnnnnss 7
B =T o T o =P 7
MOdifying the INpUL QUEUE ittt ittt ettt ienetonseonaeesnesenesensesnaessasssnssosasssnesonssonssonnssnnssansss 7

Lo T AV T o =P 8
=3 e - 8
00 0 1= ol of o 11 =T T 8
Nested menus and default COMMANAS ...ttt ittt ittt ittt eneeenaeenaesenesenseenseennesenesenseensesnnesonssenssennesns 9
Sharing code between Nested TtemMS ...ttt it it ittt it ittt eeneeenneensessnesenseenseensesonesenssenneennesnnens 9
Initialization syntax for MENU trEES vttt it it ittt ittt eeeneeeneseneeenseesnesenesenseennesnnesenssenssennens 10
[T o 10
D 11T 2 10
AP P EN D I X & vt ittt ettt ettt ettt eee oo eaannneeeeeeaaassseeeeeaaassseeeeeeaasnsseeeeessannoeeeeeetaanttteteteeattttttteetaatttteeeeeaannnn 12
EXaMPLe OO — PrOgIram.CS u v v vt ettt eneeenaeenneenneeenseenseenseeesseenseenseenseeesseenseesseessseenseenssenseeesssenseenssennaas 13
ot 11T o J NI o o [U oo o - 1 P o~ 16

Vo Lo I o o T 1= 8 =5 € (o B =S 18

Advantages

. Simple, short syntax

o Simple commands are created in a single line

o Complex commands can be created or modified in steps or in their own, short class
. Powerful and extensible

o Inner commands effortlessly parse parameters to commands

o Nested menus allow fully or partially independent submenus

o Own commands as well as subclassing existing commands are fully supported
. Low maintenance

o Adaptive, automatically configures itself for optimal usage. For instance, command abbreviations are created and

updated automatically when new commands (with potentially similar name) are added or removed.

o Very tolerant about its input, allowing partial matches and being (by default) case insensitive.

. Integrated tutorial and examples

o Contains a library of example commands, including a conditional operator, a macro recorder, and a procedural call

structure
o Comprehensive, documented code in case you want to dig into the details
. Result: An easy-to-use menu structure
o Effortless command detection, including automatic abbreviations and partial matching
o Intelligent corrections for mistyped commands
o Integrated useful help which also works in command tree branches

Basics

Creating and using basic commands

A single command is comprised of a keyword (selector), an optional help text describing it, and, most importantly, its behavior. The
behavior can be defined as a simple lambda, and it is not unusual for a whole command to be defined in a single line.

// Create menu

var menu = new CMenu ();

// Add simple Hello World command

menu.Add ("hello", s => Console.WritelLine ("Hello world!"));
// Run menu. The menu will run until quit by the user.
menu.Run ();

While running, NConsoleMenu will continuously prompt the user for input, then feeds it to the respective command.

use the "hello" command defined above:
$ hello
Hello world!
If the command happens to be more complex, you can just put it in a separate method.
menu.Add ("len", s => PrintLen (s));
static void PrintLen (string s)

{

Console.WriteLine ("String \"" + s + "\" has length " + s.Length);
¥
$ len 54321

String "54321" has length 5

It is also possible to return an exit code to signal that processing should be stopped.
By default, the command "quit" exists for this purpose. Let's add an alternative way to stop processing input.

menu.Add ("exit", s => menu.Quit ());
To create a command with help text, simply add it during definition.
menu.Add ("time",

s => Console.WriteLine (DateTime.UtcNow),
"Help for \"time\": Writes the current time");

$ time
2015.10.01 17:54:38
$ help time

Help for "time": Writes the current time
You can also access individual commands to edit them later, though this is rarely required.
menu["time"].HelpText += " (UTC).";

$ help time
Help for "time": Writes the current time (UTC).

Command abbreviations and integrated help

Let's see how to

A menu keeps an index of all available commands and lists them upon user request via typing "help". Moreover, it also automatically
assigns abbreviations to all commands (if useful) and keeps them up to date when you later add new commands with similar keywords.

$ help
Available commands:

e | exit

hello
help
1 | len
q | quit
t | time

Type "help <command>" for individual command help.
The builtin command "help" also displays usage information of individual commands:

$ help q

quit

Quits menu processing.

$ help help

help [command]

Displays a help text for the specified command, or
Displays a list of all available commands.

Commands can by entered abbreviated if it is clear which one was intended. If it is not clear, then the possible options will be
displayed.

$ hel

Command <hel> not unique. Candidates: hello, help
$ hell

Hello world!

Commands are case *in*sensitive by default. This can be changed using the "~StringComparison’ property.
When in case sensitive mode, NConsoleMenu will helpfully point out similar commands with different caseing.

menu.StringComparison = StringComparison.InvariantCulture;
menu.Add ("Hello", s => Console.WritelLine ("Hi!"));

$ help
Available commands:
e | exit
H | Hello
hello
help
1 | len
q | quit
r | repeat
t | time
Type "help <command>" for individual command help.
$ H
Hi!
$ h
Command <h> not unique. Candidates: hello, help
$ hE

Unknown command: hE
Did you mean "hello", "Hello" or "help"?

Conditional Commands

Commands which cannot currently be used, but should still be available in the menu tree at other times, can disable themselves.
Disabled commands cannot be used and are not listed by "help’.

In this example, a global flag (" bool myEnabledProperty) is used to determine if a command is enabled. It is initially cleared, the
“enable” command sets it.

m.Add ("enable", s => myEnabledProperty = true);
Create a new inline command, then set its enabledness function so it returns the above flag.

var mi = m.Add ("inline", s => Console.WriteLine ("Disabled inline command was enabled!"));
mi.SetEnablednessCondition (() => myEnabledProperty);

$ inline

Unknown command: inline

$ enable

$ inline

Disabled inline command was enabled!

It is also possible to override the enabledness by subclassing.

private class DisabledItem : CMenuItem

{
public DisabledItem ()
: base ("subclassed")

{

HelpText = "This command, which is defined in its own class, is disabled by default.";
}
public override bool IsEnabled ()
{
return myEnabledProperty;
}
public override void Execute (string arg)
{
Console.WritelLine ("Disabled subclassed command was enabled!");
}

}

$ subclassed

Unknown command: subclassed

$ enable

$ subclassed

Disabled subclassed command was enabled!

Disabled commands are not displayed by “help".

$ help

Available commands:
e | enable

h | help

q | quit

$ enable

$ help

Available commands:
e | enable

| help

| inline
| quit

| subclassed

n a K- -

Command abbreviations do not change when disabled items become enabled, i.e. it is made sure they are already long enough to be
unique. This avoids confusion about abbreviations suddenly changing.

m.Add ("incollision", s => Console.WritelLine ("The abbreviation of 'incollision' is longer to account for the hidden 'inline'
command."));

$ help

Available commands:
e | enable

h | help

inc | incollision
q | quit

$ enable

$ help

Available commands:
e | enable

h | help

inc | incollision
inl | inline

q | quit

s | subclassed

Example Project Documentation

The source code contains an example project. It offers commands, which illustrate several (more or less advanced) use cases. It may
be useful to reference them in your own projects.

echo

Simply prints text to the console. This is probably most useful in batch processing.

Help text
echo [text]
Prints the specified text to stdout.

Example
$ echo 123
123

if
Simple conditional execution. By default only supports the “not’ operator and the constants “true’ and ~false’, but can be extended
with arbitrary additional conditions.

Condition combination is not currently supported, though it can in part be emulated via chaining ("if <c1> if <c2> ...")
It is allowed to specify multiple concurrent “not”, each of which invert the condition again.

Help text

if [not] <condition> <command>
Executes <command> if <condition> is met.
If the modifier <not> is given, the condition result is reversed.

Example
$ if true echo 1
1
$ if not true echo 1
$ if not false echo 1
1

pause

pause Stops further operation until the enter key is pressed.

record, replay

“record” and “replay’ allow persisting several commands to disk for later reading them as input. This can be used for basic batch
processing.

Replaying can be stopped via if “endreplay’ is encountered as a direct command in the file. It does not work as an indirect statement
(e.g. “if true endreplay’). For an example of how that functionality can be achieved, see “return’.

record

record name

Records all subsequent commands to the specified file name.
Recording can be stopped by the command endrecord

Stored records can be played via the "replay" command.

replay

replay [name]
Replays all commands stored in the specified file name, or
Displays a list of all records.

Replaying puts all stored commands in the same order on the stack as they were originally entered.
Replaying stops when the line "endreplay" is encountered.

Example

$ record ri

Recording started. Enter "endrecord" to finish.
record> echo 1

record> echo 2

record> endrecord

$ replay ri

1

2

proc, call, return, goto

These implement a basic procedural calling system. Early exiting, jumping within the local procedure and reentrant calls are
supported.

Example

$ proc pl
Recording started. Enter "endproc" to finish.
proc> echo In proc pl
proc> return
proc> echo This line will never be displayed.
proc> endproc
$ call p1
In proc pl

$ proc p2

Recording started. Enter "endproc" to finish.
proc> echo 1 - entered p2

proc> goto g

proc> echo 2 - this line will not be displayed.
proc> :g

proc> echo 3 - p2 completed

proc> endproc

$ call p2

1 - entered p2

3 - p2 completed

Input

Immediate mode

By default, the user has to type in commands (and possibly their arguments). Sometimes though, only selection of options is required,
similar to a classic 'menu’.

For this purpose, set the “ImmediateMode™ flag in your menu. When run, it will display all available options by default (no need to
type “help’). Each option will be preceded by a selection number, and simply entering that number will activate the corresponding
menu item - no need to even press the Enter key.

var m = new CMenu ();

m.ImmediateMenuMode = true;

.Add ("foo", s => Console.WritelLine ("foo"));
.Add ("bar", s => Console.WritelLine ("bar"));
.Run ();

3 3 =

1 quit

2 help

3 foo

4 bar

[presses 3 key]
foo

1 quit

2 help

3 foo

4 bar

Modifying the input queue

It is also possible to modify the input queue. The IO class provides flexible means to add input either directly or via an
“IEnumerable<string>’ . The latter allows you to stay in control over the input even after you added it, for instance by changing its
content or canceling it.

Check out how the "repeat" command adds its argument to the input queue two times.

// Add a command which repeats another command
menu.Add ("repeat",
s => {
I0.ImmediateInput (s);
I0.ImmediateInput (s);
s

"Repeats a command two times.");

$ repeat hello

Hello world!

Hello world!

$r 1l 123

String "123" has length 3
String "123" has length 3

Passive mode

By default, input is handled in prompting mode, i.e. a menu will actively prompt the user for required input and read their console
input.

This behavior may be undesirable if you want closer control, for instance:

* In a GUI environment, creating input in the GUI instead of the console as usual
* In a batch or shell environment, feeding stored input instead of prompting the user for it

To suppress active prompting, enable promptless mode by clearing the “PromptUserForInput® flag. The menu will then wait for
programmatic input, e.g. via “CQ.AddInput”.

IO is currently in active mode - you will be prompted for input.

The 'promptless' command will turn on promptless mode, which disables interactive input.
The 'active' command will turn active mode back on.

Please enter 'promptless' (or 'p').

$p

Promptless mode selected. Input will be ignored.

A timer will be set which will input 'active' in 5 seconds.
5...

PN WA

0...
Sending input 'active' to the command queue.
Prompting mode selected again.

$

Side note: Switching from prompting to promptless mode during a prompting input query (i.e. while the user is being prompted for
input) will cause the prompt to still wait for input after switching. This is due to limitations in the underlying system.

Nesting

Inner commands

If a command needs further choices, you may want to select those in a similar manner as in the menu. To do that, simply add sub-items
to the main item. If no other behavior is specified, the main item will continue selection within those embedded items.

var mi = menu.Add ("convert", "convert upper|lower [text]\nConverts the text to upper or lower case");
mi.Add ("upper", s => Console.WritelLine (s.ToUpperInvariant ()), "Converts to upper case");
mi.Add ("lower", s => Console.WritelLine (s.ToLowerInvariant ()), "Converts to lower case");

$ convert upper aBcD
ABCD
$ convert lower aBcD
abcd

The integrated help is able to "peek" into commands.

$ help convert

convert upper|lower [text]

Converts the text to upper or lower case
$ help c u

Converts to upper case

If only a single inner item exists, users do not have to type it. Automatic fall-through forwards to the inner item directly.

var mi = menu.Add ("fall");
mi.Add ("through", s => Console.WriteLine ("Fell through to the innermost item."));

$ fall through

Fell through to the innermost item.
$ fall t

Fell through to the innermost item.
$ fall

Fell through to the innermost item.
$ fall

Fell through to the innermost item.
$ fall xy

Unknown command: xy

Nested menus and default commands

Usually, all commands are processed by the same CMenu, which itself consists of several CMenultems each responsible for a different
command type. However, sometimes a command opens up a new submenu, often with commands different from its parent menu.

To achieve this functionality, just append a new child CMenu to its parent. When the user enters the submenu, all typing will be
routed through it instead of the parent menu. The user can at any time return to the parent menu by quitting the child menu, for
instace by providing a "quit" command.

Embedding a CMenu instead of a CMenultem is advantageous if you do not want to keep track of state manually, possible including a
menu stack (which parent menu to return to when a submenu is quit). You may opt for a custom prompt character to distinguish the
submenu from its parent menu.

Especially in this context, it may be useful to capture all input which lacks a corresponding command in a "default" command. The
default command has the unique selector null.

Let's see an example for a command which calculactes the sum of integers entered by the user. The sum is calculated and output once
the user enters "=", which will be implemented as a subcommand. Capturing the integers is done with a default command. To clarify to

the user that this is a different menu, we also replace the prompt character with a "+".

public class MI_Add : CMenu

{
public MI_Add ()
: base ("add")
{
HelpText = ""
+ "add\n"
+ "Adds numbers until \"=\" is entered.";
PromptCharacter = "+";
Add ("=", s => Quit (), "Prints the sum and quits the add submenu");
Add (null, s => Add (s));
}
private int _Sum = 0;
private void Add (string s)
{
int i;
if (int.TryParse (s, out i)) {
_Sum += 1i;
¥
else {
Console.WritelLine (s + " is not a valid number.");
¥
¥
public override void Execute (string arg)
{
Console.WriteLine ("You're now in submenu <Add>.");
Console.WriteLine ("Enter numbers. To print their sum and exit the submenu, enter \"=\".");
_Sum = 0;
Run ();
Console.WriteLine ("Sum = " + _Sum);
¥
¥
$ add

You're now in submenu <Add>.

Enter numbers. To print their sum and exit the submenu, enter
+ 2

+ 3

+ =

Sum = 5

Sharing code between nested items

If your inner menu items should share code, you need to overwrite the menu's Execute method, then call ExecuteChild to resume
processing in child nodes.

This allows you to alter the command received by the children, or to omit their processing altogether (e.g. in case a common
verification failed).

var m = menu.Add ("shared");
m.SetAction (s => {
Console.Write ("You picked: ");
m.ExecuteChild (s);

1)

m.Add ("1", s => Console.WriteLine ("Option 1"));
m.Add ("2", s => Console.WriteLine ("Option 2"));
$ shared 1

You picked: Option 1

Initialization syntax for menu trees

It may be useful to create complex menu trees using collection initializers.

var m = new CMenu () {
new CMenuItem ("1") {
new CMenuItem ("1", s => Console.WriteLine (
new CMenuItem ("2", s => Console.WriteLine ("

"1-1
1-2
9
new CMenuItem ("2") {
new CMenuItem ("1", s => Console.WriteLine ("2-1")),
new CMenuItem ("2", s => Console.WritelLine ("2-2")),
9
¥

$2 1
2-1

You can also combine object and collection initializers

m = new CMenu () {
PromptCharacter = "combined>",
MenuItem = {
new CMenuItem ("1", s => Console.WriteLine ("1")),
new CMenuItem ("2", s => Console.WriteLine ("2")),

s

Output

Any output a menu item writes is, by default, printed to the console. Output hooks allow intercepting this output. This can be useful
to change of format it before printing, or to redirect or clone it to other locations (e.g. a logfile).

There are five kinds of output events that can be intercepted. They all refer to the equivalently named method or property of the
“Console” class.

Write

WritelLine
SetForegroundColor
SetBackgroundColor
ResetColor

* X ¥ X ¥

It is recommended to let all custom menu items opt in to this pattern. For this purpose, simply call “OnWrite instead of
“Console.Write™, etc.

If no hook is present in a particular menu item, the call is redirected to its parent item. If no hook is found while moving up the
chain, the regular method of the “Console’ class is invoked. If a hook is found in a child item, the parent's hooks are not invoked.

Hooks can be added or removed at any time and for any menu item individually.

Example

This class demonstrates using output hooks. It intercepts “Console.Write® commands and prints all lower-case letters with a red
background. It would just as well be possible to copy the printed text to a log file.

private class OutputHook : CMenuItem

{
public OutputHook () : base ("outputhook™)
{
HelpText = "Demonstrates using output hooks.";
Add ("add", s => Parent.Write += HookedWrite);
Add ("remove", s => Parent.Write -= HookedWrite);
¥

private static void HookedWrite (string s)

{

var fc = Console.ForegroundColor;

var bc = Console.BackgroundColor;

foreach (var c¢ in s) {
if (!char.IsLower (c)) {

}

else {

Console

Console
Console
Console
Console
Console

Write (c);

.ForegroundColor
.BackgroundColor
Write (c);

.ForegroundColor =

.BackgroundColor

ConsoleColor.Black;
ConsoleColor.Red;

fc;
bc;

APPENDIX

The appendix contains code that was copied from the example project include with the download. Please check that directory for a
full working example.

Example Code - Program.cs

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading;

using NConsoleMenu;

using NConsoleMenu.Sample.Examples;

namespace NConsoleMenu.Sample
{
/// <summary>
/// Test program for CMenu.
/// </summary>
class Program

{
static void Main (string[] args)
{
Console.WritelLine ("Simple CMenu demonstration");
var mainmenu = new CMenu ();
mainmenu.PromptCharacter = "main>";
mainmenu.Add ("tutorial”, s => new Tutorial ().Run ());
mainmenu.Add ("tree-init", s => TreeInitialization ());
mainmenu.Add ("disabled", s => DisabledCommands ());
mainmenu.Add ("promptless", s => PromptlessMode ());
mainmenu.Add ("immediate", s => ImmediateMode ());
mainmenu.Add (new ExamplesMenu ());
mainmenu.Add (new OutputHook ());
mainmenu.CQ.ImmediateInput ("help");
mainmenu.Run ();
}
static void TreeInitialization ()
{
/*
* It may be useful to create complex menu trees using collection initializers
*/
var m = new CMenu () {
new CMenuItem ("1") {
new CMenuItem ("1", s => Console.WriteLine ("1-1")),
new CMenuItem ("2", s => Console.WriteLine ("1-2")),
s
new CMenuItem ("2") {
new CMenuItem ("1", s => Console.WriteLine ("2-1")),
new CMenuItem ("2", s => Console.WriteLine ("2-2")),
s
s
m.PromptCharacter = "tree>";
m.Run ();
/*
* You can also combine object and collection initializers
*/
m = new CMenu () {
PromptCharacter = "combined>",
MenuItem = {
new CMenuItem ("1", s => Console.WriteLine ("1")),
new CMenuItem ("2", s => Console.WriteLine ("2")),
}
¥
m.Run ();
}

static bool myEnabledProperty = false;

/*

* Commands which cannot currently be used, but should still be available in the
* menu tree at other times, can disable themselves. Disabled commands cannot be
* used and are not listed by "help’.

*/

static void DisabledCommands ()

{

var m = new CMenu ();

/*
* In this example, a global flag (" bool myEnabledProperty’) is used to
* determine the visibility of disabled commands. It is initially cleared,

* the “enable’ command sets it.
*/
myEnabledProperty = false;
m.Add ("enable", s => myEnabledProperty = true);

/*

* Create a new inline command, then set its enabledness function so it

* returns the above flag.

*/
var mi = m.Add ("inline", s => Console.WriteLine ("Disabled inline command was enabled!"));
mi.SetEnablednessCondition (() => myEnabledProperty);

/*
* It is also possible to override the visibility by subclassing.
*/

m.Add (new DisabledItem ());

m.Run ();

/*
* Disabled commands are not displayed by “help™.
*/

/*
* Command abbreviations do not change when hidden items become visible,
* j.e. it is made sure they are already long enough. This avoids confusion
* about abbreviations suddenly changing.
*/
m.Add ("incollision", s => Console.WritelLine ("The abbreviation of 'incollision' is longer to account
for the hidden 'inline' command."));

}
private class DisabledItem : CMenuItem
{
public DisabledItem ()
: base ("subclassed")
{
HelpText = "This command, which is defined in its own class, is disabled by default.";
}
public override bool IsEnabled ()
{
return myEnabledProperty;
}
public override void Execute (string arg)
{
Console.WriteLine ("Disabled subclassed command was enabled!");
}
}
static void PromptlessMode ()
{
var m = new CMenu ();
m.Add ("promptless", s => {
m.CQ.PromptUserForInput = false;
Console.WriteLine ("Promptless mode selected. Input will be ignored.");
Console.WriteLine ("A timer will be set which will input 'active' in 5 seconds.");
new Thread (() => {
for (int i = 5; i >=0; i--) {
Console.WriteLine (i + "...");
Thread.Sleep (1000);
}
Console.WriteLine ("Sending input 'active' to the command queue.");
m.CQ.ImmediateInput ("active");
}).Start ();
s
m.Add ("active", s => {
m.CQ.PromptUserForInput = true;
Console.WriteLine ("Prompting mode selected again.");
s
Console.WritelLine ("IO is currently in active mode - you will be prompted for input.");
Console.WriteLine ("The 'promptless' command will turn on promptless mode, which disables interactive
input.");
Console.WritelLine ("The 'active' command will turn active mode back on.");
Console.WritelLine ("Please enter 'promptless' (or 'p').");
m.Run ();
}

static void ImmediateMode ()

}

/17
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
11/
/17
/17
/17
/17

var m = new CMenu ();

m.ImmediateMenuMode = true;

m.Add ("foo", s => Console.WriteLine ("foo"));
m.Add ("bar", s => Console.WriteLine ("bar"));
m.Run ();

<summary>

<para>

This class demonstrates using output hooks. It intercepts Console.Write
commands and prints all lower-case letters with a red background. It would just
as well be possible to copy the printed text to a log file.

Any output a menu item writes is, by default, printed to the console. Output
hooks allow intercepting this output. This can be useful to change or redirect
it before printing, or to redirect or clone it to other locations (e.g. a
logfile).

There are five kinds of output events that can be intercepted. They all refer
to the equivalently named method or property of the Console class.

<list type="bullet">

<item>Write</item>

<item>WriteLine</item>

<item>SetForegroundColor</item>

<item>SetBackgroundColor</item>

<item>ResetColor</item>

</list>

</para>

<para>

It is recommended to let all custom menu items opt in to this pattern. For this
purpose, simply call OnWrite instead of Console.Write, etc.

If no hook is present in a particular menu item, the call is redirected to its
parent item. If no hook is found while moving up the chain, the regular method
of the Console class is invoked. If a hook is found in a child item, the
parent's hooks are not invoked.

Hooks can be added or removed at any time and for any menu item individually.
</para>
</summary>

private class OutputHook : CMenuItem

{

public OutputHook () : base ("outputhook™)

{
HelpText = "Demonstrates using output hooks.";
Add ("add", s => Parent.Write += HookedWrite);
Add ("remove", s => Parent.Write -= HookedWrite);
}
private static void HookedWrite (string s)
{
var fc = Console.ForegroundColor;
var bc = Console.BackgroundColor;
foreach (var c in s) {
if (!char.IsLower (c)) {
Console.Write (c);
}
else {
Console.ForegroundColor = ConsoleColor.Black;
Console.BackgroundColor = ConsoleColor.Red;
Console.Write (c);
Console.ForegroundColor = fc;
Console.BackgroundColor = bc;
}
}
}

using System;

Example Code - Tutorial.cs

using System.Collections.Generic;

using System.Linq;
using System.Text;
using NConsoleMenu;

using NConsoleMenu.Sample.Examples;

namespace NConsoleMenu.Sample

{

class Tutorial

{

processing input.

started).");

private CMenu menu;

public void Run ()

{

}

Basics ();

CaseSensitivity ();
InputModification ();
InnerCommands ();
InnerCommandFallThrough ();
NestedCommands ();
SharingInInners ();
menu.CQ.ImmediateInput ("help");

private void Basics ()

{

}

// Create menu
menu = new CMenu ();

// Let's specify a custom prompt so we later clearly know we're in the tutorial menu.
menu.PromptCharacter = "tutorial>";

// Add simple Hello World command
menu.Add ("hello", s => Console.WritelLine ("Hello world!"));

/*
* If the command happens to be more complex, you can just put it in a separate method.
*/

menu.Add ("len", s => PrintLen (s));

/*
* It is also possible to return an exit code to signal that processing should be stopped.
* By default, the command "quit" exists for this purpose. Let's add an alternative way to stop

*/

menu.Add ("exit", s => menu.Quit ());

/*
* To create a command with help text, simply add it during definition.
*/

menu.Add ("time",
s => Console.WriteLine (DateTime.UtcNow),
"Help for \"time\": Writes the current time");

/*
* You can also access individual commands to edit them later, though this is rarely required.
*/

menu["time"].HelpText += " (UTC).";

// Run menu. The menu will run until quit by the user.
Console.WritelLine ("Enter \"help\" for help.");
Console.WritelLine ("Enter \"quit\" to quit (in this case, the next step of this demo will be

menu.Run ();

Console.WritelLine ("(First menu example completed, starting the next one...)");

private void PrintLen (string s)

{
}

Console.WriteLine ("String \"" + s + "\" has length " + s.Length);

private void CaseSensitivity ()

{

/*

* Commands are case *in*sensitive by default. This can be changed using the ~StringComparison’
property.
*/
menu.StringComparison = StringComparison.InvariantCulture;
menu.Add ("Hello", s => Console.WriteLine ("Hi!"));

Console.WritelLine ("The menu is now case sensitive.");
menu.Run ();

}

private void InputModification ()
{
/*
* It is also possible to modify the input queue.
* Check out how the "repeat" command adds its argument to the input queue two times.
*/
menu.Add ("repeat",
s => {
menu.CQ.ImmediateInput (s);
menu.CQ.ImmediateInput (s);
s

"Repeats a command two times.");

Console.WriteLine ("New command available: repeat");
menu.Run ();

}

private void InnerCommands ()

{
var mi = menu.Add ("convert", "convert upper|lower [text]\nConverts the text to upper or lower case");
mi.Add ("upper", s => Console.WriteLine (s.ToUpperInvariant ()), "Converts to upper case");
mi.Add ("lower", s => Console.WriteLine (s.ToLowerInvariant ()), "Converts to lower case");

Console.WriteLine ("New command <convert> available. It features the inner commands \"upper\" and
\"lower\".");
menu.Run ();

}

private void InnerCommandFallThrough ()
{
var mi = menu.Add ("fall");
mi.Add ("through", s => Console.WriteLine ("Fell through to the innermost item."));

Console.WritelLine ("The new inner command 'fall’' contains only a single inner item 'through'.");
Console.WriteLine ("Any of the following will directly invoke 'through':");

Console.WriteLine ("'fall through', 'fall t', 'fall ', 'fall'");

menu.Run ();

}

private void NestedCommands ()

{
menu.Add (new MI_Add ());

Console.WritelLine ("New command <add> available.");
menu.CQ.ImmediateInput ("help add");
menu.Run ();

}

private void SharingInInners ()
{
/*
If your inner menu items should share code, you need to overwrite the menu's Execute
method, then call ExecuteChild to resume processing in child nodes.

*
*
*
* This allows you to alter the command received by the children, or to omit their
* processing altogether (e.g. in case a common verification failed).
*/
var m = menu.Add ("shared");
m.SetAction (s => {
Console.Write ("You picked: ");
m.ExecuteChild (s);
1
m.Add ("1", s => Console.WriteLine ("Option 1"));
m.Add ("2", s => Console.WriteLine ("Option 2"));

Console.WriteLine ("New command <shared> available.");
menu.Run ();

Additional Examples

More examples can be found in the actual folder for this Example Menu. Look in the src\ExampleMenu directory of the downloaded
source code, which can be found at the URL on page 1.

