
Numerical Evaluation of the Siegert Formula

We want to determine the �ring rate of an LIF neuron with exponentially decaying post�
synaptic currents driven by a mean input µ and �uctuations of strength σ. For small synaptic
time constant τs compared to the membrane time constant τm, it is given by the �Siegert� [1]

φ(µ, σ) =
(
τref + τm

√
πI(Ṽth, Ṽr)

)−1
(1)

I(Ṽth, Ṽr) =

ˆ Ṽth

Ṽr

es
2

(1 + erf(s))ds (2)

with the refractory period τref , the shifted and scaled threshold voltage Ṽth = Vth−µ
σ

+ α
2

√
τs
τm
,

the shifted and scaled reset voltage Ṽr =
Vr−µ
σ

+ α
2

√
τs
τm
, and the constant α =

√
2|ζ(1/2)| where

ζ(x) denotes the Riemann zeta function.
Numerically, the integral in Eq. (2) is problematic due to the interplay of es

2
and erf(s) in

the integrand. The main trick here is to use the scaled complementary error function

erf(s) = 1− e−s2erfcx(s) (3)

to extract the leading exponential contribution. For positive s, we have 0 ≤ erfcx(s) ≤ 1,
i.e. the exponential contribution is in the prefactor e−s

2
which nicely cancels with the es

2
in the

integrand.

Strong Inhibition

We have to consider di�erent cases; let us start with strong inhibitory input such that 0 <
Ṽr < Ṽth or equivalently µ < Vr +

α
2
σ
√

τs
τm
. In this regime, the error function in the integrand is

positive. Expressing it in terms of erfcx(s), we get

I(Ṽth, Ṽr) = 2

ˆ Ṽth

Ṽr

es
2 −
ˆ Ṽth

Ṽr

erfcx(s)ds.

The �rst integral can be solved in terms of the Dawson function D(s), which is bound between
±1 and conveniently implemented in scipy; the second integral gives a small correction which
can be evaluated using Gauss�Legendre quadrature [2]. We get

I(Ṽth, Ṽr) = 2eṼ
2
thD(Ṽth)− 2eṼ

2
r D(Ṽr)−

ˆ Ṽth

Ṽr

erfcx(s)ds.

We extract the leading contribution eṼ
2
th from the denominator and arrive at

φ(µ, σ) =
e−Ṽ

2
th

e−Ṽ
2
thτref + τm

√
π
(
2D(Ṽth)− 2e−Ṽ

2
th+Ṽ

2
r D(Ṽr)− e−Ṽ

2
th

´ Ṽth
Ṽr

erfcx(s)ds
) (4)

as a numerically safe expression for 0 < Ṽr < Ṽth.

Strong Excitation

Now let us consider the case of strong excitatory input such that Ṽr < Ṽth < 0 or µ >
Vth+

α
2
σ
√

τs
τm
. In this regime, we can change variables s→ −s to make the domain of integration

positive again. Using erf(−s) = −erf(s) as well as erfcx(s), we get

I(Ṽth, Ṽr) =

ˆ |Ṽr|
|Ṽth|

erfcx(s)ds.

In particular, there is no exponential contribution involved in this regime. Thus, we get

φ(µ, σ) =
1

τref + τm
√
π
´ |Ṽr|
|Ṽth|

erfcx(s)ds
(5)

as a numerically safe expression for Ṽr < Ṽth < 0.

Intermediate Regime

In the intermediate regime, we have Ṽr ≤ 0 ≤ Ṽth or Vr +
α
2
σ
√

τs
τm
≤ µ ≤ Vth +

α
2
σ
√

τs
τm
.

Thus, we split the integral at zero and use the previous steps for the respective parts to get

I(Ṽth, Ṽr) = 2eṼ
2
thD(Ṽth) +

ˆ |Ṽr|
Ṽth

erfcx(s)ds.

Note that the sign of the second integral depends whether |Ṽr| > Ṽth (+) or not (−). Again, we
extract the leading contribution eṼ

2
th from the denominator and arrive at

φ(µ, σ) =
e−Ṽ

2
th

e−Ṽ
2
thτref + τm

√
π
(
2D(Ṽth) + e−Ṽ

2
th

´ |Ṽr|
Ṽth

erfcx(s)ds
) (6)

as a numerically safe expressions for Ṽr ≤ 0 ≤ Ṽth.

Gauss�Legendre Quadrature

To solve the remaining integral of erfcx(s) numerically, we use Gauss�Legendre quadrature
[2]. By construction, Gauss�Legendre quadrature of order k solves integrals over polynomials of
order k on the interval [−1, 1] exactly. Thus, it gives very good results if the integrand is well
approximated by a polynomial. To apply it, one simply transforms the domain of integration

ˆ b

b

f(s)ds =
b− a
2

ˆ 1

−1
f

(
b− a
2

u+
b+ a

2

)
du ≈ b− a

2

k∑
i=1

wif

(
b− a
2

ui +
b+ a

2

)
where the ui are the roots of the Legendre polynomial of order k and the wi appropriate weights
such that a polynomial integrand is integrated exactly.

2

Figure 1: Comparison of the new implementation based on Eq. (4)�Eq. (6) against the implementa-

tion used for the tn_corr lecture for σ = 10mV. Order of Gauss�Legendre quadrature: 100. Further

parameters: τm = 10ms, τs = 0ms, τref = 2ms, Vth = 20mV, Vr = 0mV.

Results

This procedure, i.e. Eq. (4)�Eq. (6), seems to work quite nicely, see Fig. 1. Also beyond the
case shown, there were no di�erences visible in the numerical results. Even the case σ � 1, where
the old implementation eventaully breaks, works �awlessly. Conveniently, the new implementation
is more than two orders of magnitude faster because it is fully vectorised.

References

[1] N. Fourcaud and N. Brunel, Neural Comput. 14, 2057 (2002).

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of

Scienti�c Computing (Cambridge University Press, 2007), 3rd ed., ISBN 0-521-88068-8.

3

	References

