Numerical Evaluation of the Siegert Formula

We want to determine the firing rate of an LIF neuron with exponentially decaying postsynaptic currents driven by a mean input μ and fluctuations of strength σ. For small synaptic time constant τ_{s} compared to the membrane time constant τ_{m}, it is given by the "Siegert" [1]

$$
\begin{align*}
\phi(\mu, \sigma) & =\left(\tau_{\text {ref }}+\tau_{\mathrm{m}} \sqrt{\pi} I\left(\tilde{V}_{\mathrm{th}}, \tilde{V}_{\mathrm{r}}\right)\right)^{-1} \tag{1}\\
I\left(\tilde{V}_{\text {th }}, \tilde{V}_{\mathrm{r}}\right) & =\int_{\tilde{V}_{\mathrm{r}}}^{\tilde{\mathrm{V}}_{\text {th }}} e^{s^{2}}(1+\operatorname{erf}(s)) d s \tag{2}
\end{align*}
$$

with the refractory period $\tau_{\text {ref }}$, the shifted and scaled threshold voltage $\tilde{V}_{\text {th }}=\frac{V_{\text {th }}-\mu}{\sigma}+\frac{\alpha}{2} \sqrt{\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{m}}}}$, the shifted and scaled reset voltage $\tilde{V}_{\mathrm{r}}=\frac{V_{\mathrm{r}}-\mu}{\sigma}+\frac{\alpha}{2} \sqrt{\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{m}}}}$, and the constant $\alpha=\sqrt{2}|\zeta(1 / 2)|$ where $\zeta(x)$ denotes the Riemann zeta function.

Numerically, the integral in Eq. (2) is problematic due to the interplay of $e^{s^{2}}$ and $\operatorname{erf}(s)$ in the integrand. The main trick here is to use the scaled complementary error function

$$
\begin{equation*}
\operatorname{erf}(s)=1-e^{-s^{2}} \operatorname{erfcx}(s) \tag{3}
\end{equation*}
$$

to extract the leading exponential contribution. For positive s, we have $0 \leq \operatorname{erfcx}(s) \leq 1$, i.e. the exponential contribution is in the prefactor $e^{-s^{2}}$ which nicely cancels with the $e^{s^{2}}$ in the integrand.

Strong Inhibition

We have to consider different cases; let us start with strong inhibitory input such that $0<$ $\tilde{V}_{\mathrm{r}}<\tilde{V}_{\text {th }}$ or equivalently $\mu<V_{\mathrm{r}}+\frac{\alpha}{2} \sigma \sqrt{\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{m}}}}$. In this regime, the error function in the integrand is positive. Expressing it in terms of $\operatorname{erfcx}(s)$, we get

$$
I\left(\tilde{V}_{\mathrm{th}}, \tilde{V}_{\mathrm{r}}\right)=2 \int_{\tilde{V}_{\mathrm{r}}}^{\tilde{V}_{\mathrm{th}}} e^{s^{2}}-\int_{\tilde{V}_{\mathrm{r}}}^{\tilde{V}_{\mathrm{th}}} \operatorname{erfcx}(s) d s .
$$

The first integral can be solved in terms of the Dawson function $D(s)$, which is bound between ± 1 and conveniently implemented in scipy; the second integral gives a small correction which can be evaluated using Gauss-Legendre quadrature [2]. We get

$$
I\left(\tilde{V}_{\mathrm{th}}, \tilde{V}_{\mathrm{r}}\right)=2 e^{\tilde{V}_{\mathrm{th}}^{2}} D\left(\tilde{V}_{\mathrm{th}}\right)-2 e^{\tilde{V}_{\mathrm{r}}^{2}} D\left(\tilde{V}_{\mathrm{r}}\right)-\int_{\tilde{V}_{\mathrm{r}}}^{\tilde{V}_{\mathrm{th}}} \operatorname{erfcx}(s) d s
$$

We extract the leading contribution $e^{\tilde{V}_{\text {th }}^{2}}$ from the denominator and arrive at

$$
\begin{equation*}
\phi(\mu, \sigma)=\frac{e^{-\tilde{V}_{\mathrm{th}}^{2}}}{e^{-\tilde{V}_{\mathrm{th}}^{2}} \tau_{\mathrm{ref}}+\tau_{\mathrm{m}} \sqrt{\pi}\left(2 D\left(\tilde{V}_{\mathrm{th}}\right)-2 e^{-\tilde{V}_{\mathrm{th}}^{2}+\tilde{V}_{\mathrm{r}}^{2}} D\left(\tilde{V}_{\mathrm{r}}\right)-e^{-\tilde{V}_{\mathrm{th}}^{2}} \int_{\tilde{V}_{\mathrm{r}}}^{\tilde{V}_{\mathrm{th}}} \operatorname{rrfcx}(s) d s\right)} \tag{4}
\end{equation*}
$$

as a numerically safe expression for $0<\tilde{V}_{\mathrm{r}}<\tilde{V}_{\text {th }}$.

Strong Excitation

Now let us consider the case of strong excitatory input such that $\tilde{V}_{\mathrm{r}}<\tilde{V}_{\text {th }}<0$ or $\mu>$ $V_{\text {th }}+\frac{\alpha}{2} \sigma \sqrt{\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{m}}}}$. In this regime, we can change variables $s \rightarrow-s$ to make the domain of integration positive again. Using $\operatorname{erf}(-s)=-\operatorname{erf}(s)$ as well as $\operatorname{erfcx}(s)$, we get

$$
I\left(\tilde{V}_{\mathrm{th}}, \tilde{V}_{\mathrm{r}}\right)=\int_{\left|\tilde{t}_{\mathrm{th}}\right|}^{\left|\tilde{V}_{\mathrm{r}}\right|} \operatorname{erfcx}(s) d s
$$

In particular, there is no exponential contribution involved in this regime. Thus, we get

$$
\begin{equation*}
\phi(\mu, \sigma)=\frac{1}{\tau_{\text {ref }}+\tau_{\mathrm{m}} \sqrt{\pi} \int_{\left|\tilde{V}_{\mathrm{th}}\right|}^{\left|\tilde{V}_{\mathrm{r}}\right|} \operatorname{erfcx}(s) d s} \tag{5}
\end{equation*}
$$

as a numerically safe expression for $\tilde{V}_{\mathrm{r}}<\tilde{V}_{\mathrm{th}}<0$.

Intermediate Regime

In the intermediate regime, we have $\tilde{V}_{\mathrm{r}} \leq 0 \leq \tilde{V}_{\mathrm{th}}$ or $V_{\mathrm{r}}+\frac{\alpha}{2} \sigma \sqrt{\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{m}}}} \leq \mu \leq V_{\mathrm{th}}+\frac{\alpha}{2} \sigma \sqrt{\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{m}}}}$. Thus, we split the integral at zero and use the previous steps for the respective parts to get

$$
I\left(\tilde{V}_{\mathrm{th}}, \tilde{V}_{\mathrm{r}}\right)=2 e^{\tilde{V}_{\mathrm{th}}^{2}} D\left(\tilde{V}_{\mathrm{th}}\right)+\int_{\tilde{V}_{\mathrm{th}}}^{\left|\tilde{V}_{\mathrm{r}}\right|} \operatorname{erfcx}(s) d s
$$

Note that the sign of the second integral depends whether $\left|\tilde{V}_{\mathrm{r}}\right|>\tilde{V}_{\mathrm{th}}(+)$ or not (-). Again, we extract the leading contribution $e^{\tilde{V}_{\text {th }}^{2}}$ from the denominator and arrive at

$$
\begin{equation*}
\phi(\mu, \sigma)=\frac{e^{-\tilde{V}_{\mathrm{th}}^{2}}}{e^{-\tilde{V}_{\mathrm{th}}^{2}} \tau_{\mathrm{ref}}+\tau_{\mathrm{m}} \sqrt{\pi}\left(2 D\left(\tilde{V}_{\mathrm{th}}\right)+e^{-\tilde{V}_{\mathrm{th}}^{2}} \int_{\tilde{V}_{\mathrm{th}}}^{\left|\tilde{V}_{\mathrm{r}}\right|} \operatorname{erfcx}(s) d s\right)} \tag{6}
\end{equation*}
$$

as a numerically safe expressions for $\tilde{V}_{\mathrm{r}} \leq 0 \leq \tilde{V}_{\text {th }}$.

Gauss-Legendre Quadrature

To solve the remaining integral of $\operatorname{erfcx}(s)$ numerically, we use Gauss-Legendre quadrature [2]. By construction, Gauss-Legendre quadrature of order k solves integrals over polynomials of order k on the interval $[-1,1]$ exactly. Thus, it gives very good results if the integrand is well approximated by a polynomial. To apply it, one simply transforms the domain of integration

$$
\int_{b}^{b} f(s) d s=\frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2} u+\frac{b+a}{2}\right) d u \approx \frac{b-a}{2} \sum_{i=1}^{k} w_{i} f\left(\frac{b-a}{2} u_{i}+\frac{b+a}{2}\right)
$$

where the u_{i} are the roots of the Legendre polynomial of order k and the w_{i} appropriate weights such that a polynomial integrand is integrated exactly.

Figure 1: Comparison of the new implementation based on Eq. (4)-Eq. (6) against the implementation used for the tn_corr lecture for $\sigma=10 \mathrm{mV}$. Order of Gauss-Legendre quadrature: 100. Further parameters: $\tau_{\mathrm{m}}=10 \mathrm{~ms}, \tau_{\mathrm{s}}=0 \mathrm{~ms}, \tau_{\text {ref }}=2 \mathrm{~ms}, V_{\mathrm{th}}=20 \mathrm{mV}, V_{\mathrm{r}}=0 \mathrm{mV}$.

Results

This procedure, i.e. Eq. (4)-Eq. (6), seems to work quite nicely, see Fig. 1. Also beyond the case shown, there were no differences visible in the numerical results. Even the case $\sigma \ll 1$, where the old implementation eventaully breaks, works flawlessly. Conveniently, the new implementation is more than two orders of magnitude faster because it is fully vectorised.

References

[1] N. Fourcaud and N. Brunel, Neural Comput. 14, 2057 (2002).
[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007), 3rd ed., ISBN 0-521-88068-8.

