Skip to content
Permalink
master
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
"""
terub_stn - Terman Rubin neuron model
#####################################
Description
+++++++++++
terub_stn is an implementation of a spiking neuron using the Terman Rubin model
based on the Hodgkin-Huxley formalism.
(1) **Post-syaptic currents:** Incoming spike events induce a post-synaptic change of current modelled
by an alpha function. The alpha function is normalised such that an event of
weight 1.0 results in a peak current of 1 pA.
(2) **Spike Detection:** Spike detection is done by a combined threshold-and-local-maximum search: if there
is a local maximum above a certain threshold of the membrane potential, it is considered a spike.
References
++++++++++
.. [1] Terman, D. and Rubin, J.E. and Yew, A.C. and Wilson, C.J. Activity Patterns in a Model for the Subthalamopallidal Network
of the Basal Ganglia. The Journal of Neuroscience, 22(7), 2963-2976 (2002)
.. [2] Rubin, J.E. and Terman, D. High Frequency Stimulation of the Subthalamic Nucleus Eliminates
Pathological Thalamic Rhythmicity in a Computational Model Journal of Computational Neuroscience, 16, 211-235 (2004)
Author
++++++
Martin Ebert
"""
neuron terub_stn:
state:
r integer = 0 # counts number of tick during the refractory period
V_m mV = E_L # Membrane potential
gate_h real = 0.0 # gating variable h
gate_n real = 0.0 # gating variable n
gate_r real = 0.0 # gating variable r
Ca_con real = 0.0 # gating variable r
end
equations:
#Parameters for Terman Rubin STN Neuron
#time constants for slow gating variables
inline tau_n_0 ms = 1.0 ms
inline tau_n_1 ms = 100.0 ms
inline theta_n_tau mV = -80.0 mV
inline sigma_n_tau mV = -26.0 mV
inline tau_h_0 ms = 1.0 ms
inline tau_h_1 ms = 500.0 ms
inline theta_h_tau mV = -57.0 mV
inline sigma_h_tau mV = -3.0 mV
inline tau_r_0 ms = 7.1 ms # Guo 7.1 Terman02 40.0
inline tau_r_1 ms = 17.5 ms
inline theta_r_tau mV = 68.0 mV
inline sigma_r_tau mV = -2.2 mV
#steady state values for gating variables
inline theta_a mV = -63.0 mV
inline sigma_a mV = 7.8 mV
inline theta_h mV = -39.0 mV
inline sigma_h mV = -3.1 mV
inline theta_m mV = -30.0 mV
inline sigma_m mV = 15.0 mV
inline theta_n mV = -32.0 mV
inline sigma_n mV = 8.0 mV
inline theta_r mV = -67.0 mV
inline sigma_r mV = -2.0 mV
inline theta_s mV = -39.0 mV
inline sigma_s mV = 8.0 mV
inline theta_b real = 0.25 # Guo 0.25 Terman02 0.4
inline sigma_b real = 0.07 # Guo 0.07 Terman02 -0.1
#time evolvement of gating variables
inline phi_h real = 0.75
inline phi_n real = 0.75
inline phi_r real = 0.5 # Guo 0.5 Terman02 0.2
# Calcium concentration and afterhyperpolarization current
inline epsilon 1/ms = 0.00005 / ms # 1/ms Guo 0.00005 Terman02 0.0000375
inline k_Ca real = 22.5
inline k1 real = 15.0
inline I_ex_mod pA = -convolve(g_ex, spikeExc) * V_m
inline I_in_mod pA = convolve(g_in, spikeInh) * (V_m - E_gs)
inline tau_n ms = tau_n_0 + tau_n_1 / (1. + exp(-(V_m-theta_n_tau)/sigma_n_tau))
inline tau_h ms = tau_h_0 + tau_h_1 / (1. + exp(-(V_m-theta_h_tau)/sigma_h_tau))
inline tau_r ms = tau_r_0 + tau_r_1 / (1. + exp(-(V_m-theta_r_tau)/sigma_r_tau))
inline a_inf real = 1. / (1. +exp(-(V_m-theta_a)/sigma_a))
inline h_inf real = 1. / (1. + exp(-(V_m-theta_h)/sigma_h));
inline m_inf real = 1. / (1. + exp(-(V_m-theta_m)/sigma_m))
inline n_inf real = 1. / (1. + exp(-(V_m-theta_n)/sigma_n))
inline r_inf real = 1. / (1. + exp(-(V_m-theta_r)/sigma_r))
inline s_inf real = 1. / (1. + exp(-(V_m-theta_s)/sigma_s))
inline b_inf real = 1. / (1. + exp((gate_r-theta_b)/sigma_b)) - 1. / (1. + exp(-theta_b/sigma_b))
inline I_Na pA = g_Na * m_inf * m_inf * m_inf * gate_h * (V_m - E_Na)
inline I_K pA = g_K * gate_n * gate_n * gate_n * gate_n * (V_m - E_K )
inline I_L pA = g_L * (V_m - E_L )
inline I_T pA = g_T *a_inf*a_inf*a_inf*b_inf*b_inf* (V_m - E_Ca)
inline I_Ca pA = g_Ca * s_inf * s_inf * (V_m - E_Ca)
inline I_ahp pA = g_ahp * (Ca_con / (Ca_con + k1)) * (V_m - E_K )
# V dot -- synaptic input are currents, inhib current is negative
V_m' = ( -(I_Na + I_K + I_L + I_T + I_Ca + I_ahp) + I_e + I_stim + I_ex_mod + I_in_mod) / C_m
#channel dynamics
gate_h' = phi_h *((h_inf-gate_h) / tau_h) # h-variable
gate_n' = phi_n *((n_inf-gate_n) / tau_n) # n-variable
gate_r' = phi_r *((r_inf-gate_r) / tau_r) # r-variable
#Calcium concentration
Ca_con' = epsilon*( (-I_Ca - I_T ) / pA - k_Ca * Ca_con)
# synapses: alpha functions
## alpha function for the g_in
kernel g_in = (e/tau_syn_in) * t * exp(-t/tau_syn_in)
## alpha function for the g_ex
kernel g_ex = (e/tau_syn_ex) * t * exp(-t/tau_syn_ex)
end
parameters:
E_L mV = -60 mV # Resting membrane potential.
g_L nS = 2.25 nS # Leak conductance.
C_m pF = 1.0 pF # Capacity of the membrane.
E_Na mV = 55 mV # Sodium reversal potential.
g_Na nS = 37.5 nS # Sodium peak conductance.
E_K mV = -80.0 mV# Potassium reversal potential.
g_K nS = 45.0 nS # Potassium peak conductance.
E_Ca mV = 140 mV # Calcium reversal potential.
g_Ca nS = 0.5 nS # Calcium peak conductance.
g_T nS = 0.5 nS # T-type Calcium channel peak conductance.
g_ahp nS = 9 nS # afterpolarization current peak conductance.
tau_syn_ex ms = 1.0 ms # Rise time of the excitatory synaptic alpha function.
tau_syn_in ms = 0.08 ms # Rise time of the inhibitory synaptic alpha function.
E_gs mV = -85.0 mV# reversal potential for inhibitory input (from GPe)
t_ref ms = 2 ms # refractory time
# constant external input current
I_e pA = 0 pA
end
internals:
refractory_counts integer = steps(t_ref)
end
input:
spikeInh pA <- inhibitory spike
spikeExc pA <- excitatory spike
I_stim pA <- continuous
end
output: spike
update:
U_old mV = V_m
integrate_odes()
# sending spikes: crossing 0 mV, pseudo-refractoriness and local maximum...
if r > 0:
r -= 1
elif V_m > 0 mV and U_old > V_m:
r = refractory_counts
emit_spike()
end
end
end