Skip to content
Rust implementation of the Simple(x) Global Optimization algorithm
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

Simple(x) Global Optimization

A simplex based variation of the LIPO algorithm from Global optimization of Lipschitz functions.

Potential improvements

Following the dlib implementation, we could add :

  • a Lipschitz constant per dimension
  • a noise term per point
  • a local optimizer

But those require some additional solving in order to estimate the parameters.


There are two ways to use the algorithm, either use one of the Optimizer::minimize / Optimizer::maximize functions :

let f = |v| v[0] + v[1] * v[2];
let input_interval = vec![(-10., 10.), (-20., 20.), (0, 5.)];
let nb_iterations = 100;

let (max_value, coordinates) = Optimizer::maximize(f, input_interval, nb_iterations);
println!("max value: {} found in [{}, {}, {}]", max_value, coordinates[0], coordinates[1], coordinates[2]);

Or use an iterator if you want to set exploration_depth to an exotic value or to have fine grained control on the stopping criteria :

let f = |v| v[0] * v[1];
let input_interval = vec![(-10., 10.), (-20., 20.)];
let should_minimize = true;

// sets `exploration_depth` to be greedy
// runs the search for 30 iterations
// then waits until we find a point good enough
// finally stores the best value so far
let (min_value, coordinates) = Optimizer::new(f, input_interval, should_minimize)
                                       .take_while(|(value,coordinates)| value > 1. )

println!("min value: {} found in [{}, {}]", min_value, coordinates[0], coordinates[1]);
You can’t perform that action at this time.