Fetching contributors…
Cannot retrieve contributors at this time
943 lines (804 sloc) 26.7 KB
; Copyright 2010 Brian Taylor
; Licensed under the Apache License, Version 2.0 (the "License");
; you may not use this file except in compliance with the License.
; You may obtain a copy of the License at
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; See the License for the specific language governing permissions and
; limitations under the License.
; This is essentially a direct translation of the bytecode compiler
; presented in Peter Norvig's "Paradigms of Artificial Intelligence
; Programming." The bytecode should be identitcal to the bytecode
; produced in the book.
; The 'bytecodes' generated by this compiler can be executed on the
; virtual machine defined in vm.c. These bytecodes are also suitable
; for further translation and optimization. The eventual goal is
; to turn them into native assembly so user defined routines can
; execute with the same performance as interpreter primitives.
;; Comment out the second form for loads of function trace
;; information. I should really write a real trace macro at some
;; point.
(define (write-dbg1 . args)
"display the given forms"
(display "debug: ")
(display args)
(define (write-dbg . args)
"do nothing."
;(define write-dbg write-dbg1)
(define (write-passthrough arg)
(apply write-dbg arg)
(define (write-passthrough arg)
(define (comp-bound? sym)
"is the symbol defined in the compiled global environment?"
(let* ((sentinal (gensym))
(result (hashtab-ref *vm-global-environment* sym sentinal)))
(not (eq? result sentinal))))
(define (comp-global-ref sym)
"return the global from the compiled env. error if not defined."
(let* ((sentinal (gensym))
(result (cdr (hashtab-ref *vm-global-environment* sym sentinal))))
(if (eq? result sentinal)
(throw-error "symbol" sym "is not defined in compiled env")
(define (comp-macro? sym)
"is a given symbol a macro in the compiled environment?"
(and (comp-bound? sym)
(compiled-syntax-procedure? (comp-global-ref sym))))
(define (expression-expander exp)
"hook that's used by clos to define inliners"
(define (comp-macroexpand0 form)
"expand form using a macro found in the compiled environment"
(apply (comp-global-ref (car form)) (cdr form)))
(define (comp x env val? more?)
"compile an expression in the given environment optionally caring
about its value and optionally with more forms following"
(write-dbg 'comp x 'val? val? 'more? more?)
((variable-reference? x) (comp-var x env val? more?))
((atom? x) (comp-const x val? more?))
(record-case x
(if-compiling (then else)
(comp then env val? more?))
(quote (obj)
(comp-const obj val? more?))
(begin exps
(comp-begin exps env val? more?))
(set! (sym val)
(seq (comp val env #t #t)
(gen-set sym env)
(when (not val?) (gen 'pop))
(unless more? (seq (gen 'endframe 1)
(gen 'return)))))
(if (test then . else)
(let ((else (car-else else nil)))
(comp-if test then else env val? more?)))
(lambda (args . body)
(when val?
(let ((f (comp-lambda args body env)))
(seq (gen 'fn f)
(unless more? (seq (gen 'endframe 1)
(gen 'return)))))))
(inlined-lambda (args body)
(comp-begin (cdr body) env val? more?))
;; generate an invocation
(comp-funcall (first x) (rest x)
env val? more?))))))
(define (%<=2 a b)
(or (%fixnum-less-than a b) (%fixnum-equal a b)))
(define (%<= . values)
(every-pair? %<=2 values))
(define (%arg-count form min max)
(let ((n-args (length (rest form))))
(unless (%<= min n-args max)
(throw-error "wrong number of args"
"expected between"
min "and" max))))
(define (comp-begin exps env val? more?)
(write-dbg 'comp-begin exps 'val? val? 'more? more?)
(cond ((null? exps) (comp-const nil val? more?))
((length=1 exps) (comp (first exps) env val? more?))
(else (seq (comp (first exps) env #f #t)
(comp-begin (rest exps) env val? more?)))))
(define (comp-list exps env)
(write-dbg 'comp-list exps)
(if (null? exps) nil
(seq (comp (first exps) env #t #t)
(comp-list (rest exps) env))))
(define (comp-const x val? more?)
(write-dbg 'comp-const x 'val? val? 'more? more?)
(when val? (seq (gen 'cconst x)
(unless more? (seq (gen 'endframe 1)
(gen 'return))))))
(define (comp-var x env val? more?)
(write-dbg 'comp-var x 'val? val? 'more? more?)
(when val? (seq (gen-var x env)
(unless more? (seq (gen 'endframe 1)
(gen 'return))))))
(define (false? exp)
(or (null? exp) (eq? exp #f) (eq? exp 'nil)))
(define (true? exp)
(eq? exp #t))
(define (comp-if pred then else env val? more?)
(write-dbg 'comp-if pred 'then then 'else else
'val? val? 'more? more?)
((false? pred)
(comp else env val? more?))
((true? pred)
(comp then env val? more?))
(else (let ((pcode (comp pred env #t #t))
(tcode (comp then env val? more?))
(ecode (comp else env val? more?)))
((equal? tcode ecode)
(seq (comp pred env #f #t)
((null? tcode)
(let ((l2 (gen-label)))
(seq pcode
(gen 'tjump l2) ecode (list l2)
(unless more? (seq (gen 'endframe 1)
(gen 'return))))))
((null? ecode)
(let ((l1 (gen-label)))
(seq pcode
(gen 'fjump l1) tcode (list l1)
(unless more? (seq (gen 'endframe 1)
(gen 'return))))))
(let ((l1 (gen-label))
(l2 (when more? (gen-label))))
(seq pcode (gen 'fjump l1) tcode
(when more? (gen 'jump l2))
(list l1) ecode
(when more? (list l2))))))))))
(define (gen opcode . args)
(write-dbg 'gen opcode 'args args)
(list (cons opcode args)))
(define (seq . code)
(append-all code))
(set! *bytecode-primitives*
`((cons 2 ,(gen 'cons))
(car 1 ,(gen 'car))
(first 1 ,(gen 'car))
(cdr 1 ,(gen 'cdr))
(rest 1 ,(gen 'cdr))
(set-car! 2 ,(gen 'setcar))
(set-cdr! 2 ,(gen 'setcdr))
(second 1 ,(seq (gen 'cdr)
(gen 'car)))
(third 1 ,(seq (gen 'cdr)
(gen 'cdr)
(gen 'car)))))
(define (bytecode-primitive? sym)
(find (lambda (op) (eq? (first op) sym)) *bytecode-primitives*))
(define (primitive-nargs sym)
(second (bytecode-primitive? sym)))
(define (primitive-bytecode sym)
(third (bytecode-primitive? sym)))
(define (ref-to-symbol fn)
"try to convert a variable reference to a symbol"
((variable-reference? fn)
(let ((var (variable-reference-variable-ref fn)))
((global-variable? var)
(global-variable-name-ref var))
(else fn))))
(else fn)))
(define (comp-funcall f args env val? more?)
(write-dbg 'comp-funcall f 'args args
'val? val? 'more? more?)
;; special case invocations that correspond to bytecode primitives
;(display f) (newline)
((bytecode-primitive? (ref-to-symbol f))
(let ((sym (ref-to-symbol f)))
;; NOTE: all primitive bytecodes are for value not effect so we
;; can skip them entirely if (not val?)
(unless (%fixnum-equal (length args) (primitive-nargs sym))
(throw-error "primitive" sym "requires exactly" (primitive-nargs sym)
"arguments. You supplied " (length args)))
(seq (comp-list args env)
(primitive-bytecode sym)
(unless val? (gen 'pop))
(unless more? (seq (gen 'endframe 1)
(gen 'return))))))
;; inline calls to no-arg lambda
((and (starts-with? f 'lambda eq?) (null? (second f)))
(unless (null? args) (throw-error "too many arguments"))
(comp-begin (cdr (cdr f)) env val? more?))
(let ((k (gen-label 'k)))
(seq (gen 'save k)
(comp-list args env)
(comp f env #t #t)
(gen 'callj (length args) #t)
(list k)
(unless val? (gen 'pop)))))
(seq (comp-list args env)
(comp f env #t #t)
(gen 'endframe (%fixnum-add (length args) 1))
(gen 'callj (length args))))))
(define-struct fn
"a structure representing a compiled function"
(define (comp-lambda args body env)
"generate code for BODY with ARGS in ENV. Only generates a new
chainframe if ARGS is non-nil"
(write-dbg 'comp-lambda args 'body body)
;; compute the set of free variables and the set of stack variables
(let* ((inline-args (reduce (lambda (found form)
(find-inlined-vars form found))
body nil))
(free-inline (filter variable-is-free-ref inline-args))
(unfree-inline (filter (lambda (f) (not (variable-is-free-ref f))) inline-args))
(free-args (filter variable-is-free-ref (append (make-true-list args) free-inline)))
(stack-idx 0)
(frame-idx 0))
;; assign frame positions to the free variables
(dolist (arg free-args)
(variable-idx-set! arg frame-idx)
(%inc! frame-idx))
;; assign stack positions to each of the remaining arguments
(dolist (arg (append (make-true-list args) unfree-inline))
(unless (variable-is-free-ref arg)
(variable-idx-set! arg stack-idx))
(%inc! stack-idx))
(let ((new-env (if free-args
(cons free-args env)
(new-fun (seq (%gen-args args free-inline)
;; make room on stack for unfree
(apply seq
(map (lambda (v)
(gen 'cconst '()))
(comp-begin body
#t #f))
env "unknown" args))))
(define (%count-free-args args)
(reduce (lambda (count arg)
(if (variable-is-free-ref arg)
(%fixnum-add count 1)
(make-true-list args)
(define (%gen-chainframe args free-inline)
"generate a chainframe instruction if there are any free variables"
(let ((n-free-args (%fixnum-add (%count-free-args args)
(%count-free-args free-inline))))
(when (%fixnum-greater-than n-free-args 0)
(gen 'chainframe n-free-args))))
(define (%gen-args args free-inline)
(%gen-args-iter args args free-inline 0))
(define (%gen-args-iter args full-args free-inline n-so-far)
(write-dbg '%gen-args-iter args n-so-far)
((null? args)
(seq (gen 'argcheck n-so-far 0) ; should have exactly n-so-far args
(%gen-chainframe full-args free-inline)))
((variable? args)
(seq (gen 'argcheck n-so-far 1) ; should have at least n-so-far args
(%gen-chainframe full-args free-inline)
(gen 'pushvarargs n-so-far)
(when (variable-is-free-ref args)
(gen 'lset 0 (variable-idx-ref args)))))
((and (pair? args)
(variable? (first args)))
(let ((arg (first args)))
(if (variable-is-free-ref arg)
(seq (%gen-args-iter (rest args) full-args
(%fixnum-add n-so-far 1))
(gen 'spush n-so-far)
(gen 'lset 0 (variable-idx-ref arg))
(gen 'pop))
(%gen-args-iter (rest args) full-args
(%fixnum-add n-so-far 1)))))
(else (throw-error "illegal argument list" args))))
;; this doesn't do error checking like the method before
(define (num-args args)
(letrec ((iter (lambda (lst count)
((null? lst) count)
((symbol? lst) (%fixnum-add count 1))
(else (iter (rest lst) (%fixnum-add count 1)))))))
(iter args 0)))
(define (make-true-list dotted-list)
((null? dotted-list) nil)
((atom? dotted-list) (list dotted-list))
(else (cons (first dotted-list)
(make-true-list (rest dotted-list))))))
(define (new-fun code env name args)
(assemble (make-fn 'code (optimize code)
'env env
'name name
'args args)))
(let ((label-num 0))
(define (compiler x)
(set! label-num 0)
(comp-lambda nil (list (variable-usages (alpha-convert x nil nil) nil)) nil))
(define (gen-label . opt)
(let ((prefix (if (pair? opt)
(comp-stringify (car opt))
(write-dbg 'gen-label prefix)
(set! label-num (%fixnum-add label-num 1))
(prim-concat prefix (number->string label-num))))))
(define (comp-stringify obj)
((string? obj) obj)
((symbol? obj) (symbol->string obj))
(else (throw-error "can't make" obj "a string"))))
(define (update-var-ref ref env)
(let ((real-var (variable-reference-variable-ref ref)))
(write-dbg 'update-var-ref 'ref ref 'real real-var 'env env)
(if (global-variable? real-var)
(let ((new-ref (var-in-env? (variable-name-ref real-var) env)))
(if (not (null? new-ref))
(when (variable-is-free-ref real-var)
"ENV: " env
new-ref "not in env and it's marked free")))))))
(define (gen-var var env)
"given VAR, a variable reference, generate the bytecode to access
that variable given that our environment looks like ENV"
(write-dbg 'gen-var var)
(let ((real-var (variable-reference-variable-ref var))
(new-ref (update-var-ref var env)))
((global-variable? real-var)
(gen 'gvar (global-variable-name-ref real-var)))
;; we did the lookup again to account for skipped frames
((variable-is-free-ref real-var)
(gen 'lvar
(variable-reference-frame-ref new-ref)
(variable-idx-ref real-var) ";" new-ref))
(gen 'spush (variable-idx-ref real-var) 0 ";" real-var)))))
(define (gen-set var env)
"given VAR, a variable reference, generate the bytecode to set that
variable given that our environment looks like ENV"
(write-dbg 'gen-set var)
(let ((real-var (variable-reference-variable-ref var))
(new-ref (update-var-ref var env)))
((global-variable? real-var)
(gen 'gset (global-variable-name-ref real-var)))
((variable-is-free-ref real-var)
(gen 'lset
(variable-reference-frame-ref new-ref)
(variable-idx-ref real-var) ";" var))
(gen 'sset (variable-idx-ref real-var) 0 ";" var)))))
(define (label? obj)
(symbol? obj))
(define (args instr)
(if (pair? instr) (rest instr)))
(define (arg1 instr)
(if (pair? instr) (second instr)))
(define (set-arg1! instr val)
(set-car! (cdr instr) val))
(define (arg2 instr)
(if (pair? instr) (third instr)))
(define (is instr op)
(if (pair? op)
(member? (opcode instr) op)
(eq? (opcode instr) op)))
(define (opcode instr)
(if (label? instr)
(first instr)))
(define (instrs-to-bytes instr-vector)
(let* ((len (vector-length instr-vector))
(result (make-bytecode-array (%fixnum-mul 2 len))))
(dotimes (idx len)
(let ((instr (vector-ref instr-vector idx))
(off (%fixnum-mul idx 2)))
(bytecode-set! result off (opcode instr))
(let ((arg1 (if (cdr instr)
(cadr instr)
(arg2 (if (and (cdr instr) (cddr instr))
(caddr instr)
(bytecode-operands-set! result (%fixnum-add off 1) arg1 arg2))))
(define (build-const-table instrs)
(let ((result nil)
(idx 0))
(dolist (inst instrs)
(when (is inst '(cconst fn gvar gset))
(push! (arg1 inst) result)
(set-car! (cdr inst) idx)
(%inc! idx)))
(apply vector (reverse result))))
(define (assemble fn)
(let* (;; determine the value of each symbolic label and remove
;; those labels from the instruction stream
(r1 (asm-first-pass (fn-code-ref fn)))
;; while everything is still symbolic we extract the consts
;; and mutate the arg of the old instruction to point into
;; the table
(consts (build-const-table (fn-code-ref fn)))
;; resolve all jumps and convert the instrs into characters
(instrs (asm-second-pass (fn-code-ref fn)
(first r1)
(second r1)))
;; remember the number of instructions in the stream since
;; the alien byte array doesn't store its length
(num-bytes (%fixnum-mul (vector-length instrs) 2))
;; pack the instructions into the final alien byte array
(bytes (instrs-to-bytes instrs)))
;; pack the final compiled proc
(make-compiled-proc (list num-bytes bytes consts)
(fn-env-ref fn))))
(define (asm-first-pass code)
(let ((length 0)
(labels nil))
(dolist (instr code)
(if (label? instr)
(push! (cons instr length) labels)
(%inc! length)))
(list length labels)))
(define (asm-second-pass code length labels)
(let ((addr 0)
(code-vector (make-vector length nil)))
(dolist (instr code)
(unless (label? instr)
(if (is instr '(jump tjump fjump save))
(set-arg1! instr
(cdr (assoc (arg1 instr) labels))))
;; if this has a bytecode, convert it
(let ((bytecode (symbol->bytecode (opcode instr))))
(if bytecode
(set-car! instr bytecode)))
(vector-set! code-vector addr instr)
(%inc! addr)))
(define (fn-opcode? instr)
(is instr 'fn))
(define (optimize code)
(define-struct variable
"maintain information about variable references"
(define-struct global-variable
"maintain information about a global variable reference"
(define-struct variable-reference
"a reference to a variable"
(define (var-in-env? var env)
(let loop ((frame-number 0)
(var-number 0)
(frame (car env))
(frames (cdr env)))
((and (null? frame)
(null? frames))
nil) ;; variable not found in environment
((null? frame)
(loop (%fixnum-add frame-number 1)
(car frames)
(cdr frames))) ;; move to next frame
((eq? (variable-name-ref (car frame)) var)
'variable (car frame)
'frame frame-number
'number var-number)) ;; found what we're looking for
(loop frame-number
(%fixnum-add var-number 1)
(cdr frame)
(define (set-reference-free! ref)
(variable-is-free-set! (variable-reference-variable-ref ref) #t))
(define (set-reference-set! ref)
(variable-is-set-set! (variable-reference-variable-ref ref) #t))
(define (args-to-variables arg-list)
((null? arg-list) nil)
((atom? arg-list) (make-variable 'name arg-list))
(else (cons (make-variable 'name (car arg-list))
(args-to-variables (cdr arg-list))))))
(define (variable-usages exp env)
((symbol? exp)
;; if the veriable reference is against a frame other than this
;; one then mark the variable as free. If it's not found then
;; generate a global reference
(let ((var (var-in-env? exp env)))
((null? var)
(make-variable-reference 'variable (make-global-variable 'name exp)))
((%fixnum-greater-than (variable-reference-frame-ref var) 0)
(set-reference-free! var)
;; it's in our frame, no need to change its markings
(else var))))
((atom? exp) exp)
(record-case exp
(if-compiling (then else)
(list 'if-compiling
(variable-usages then env)
(variable-usages else env)))
(quote (obj) exp)
(begin exps
(list* 'begin
(map (lambda (exp)
(variable-usages exp env)) exps)))
(set! (sym val)
;; if the variable reference is against a frame other than
;; this one, then mark the variable free and set. if it's
;; against this frame, mark the variable set only. If the
;; variable isn't found generate a global set
(let* ((var (var-in-env? sym env))
(ref (cond
((null? var)
(make-variable-reference 'variable
(make-global-variable 'name sym)))
((%fixnum-greater-than (variable-reference-frame-ref var) 0)
(set-reference-free! var)
(set-reference-set! var)
(set-reference-set! var)
(list 'set! ref (variable-usages val env))))
(if (test then . else)
(list 'if
(variable-usages test env)
(variable-usages then env)
(variable-usages (car-else else nil) env)))
(lambda (args . body)
;; extend the environment with ARGS and then traverse BODY
(let* ((new-args (args-to-variables args))
(new-env (cons (make-true-list new-args) env)))
(list* 'lambda
(map (lambda (exp)
(variable-usages exp new-env)) body))))
(inlined-lambda (args body)
;; append ARGS to the current frame of ENV since they will be
;; pulled up in the final stage
(let* ((new-args (args-to-variables (map cdr args)))
(new-env (cons (append new-args (car env)) (cdr env))))
`(inlined-lambda ,new-args ,(variable-usages body new-env))))
(map (lambda (exp)
(variable-usages exp env)) exp))))))
(define (make-space spaces)
(make-string spaces #\space))
(define (%compiled->instructions fn)
"produce a stream of readable instructions from compiled bytecode"
(let ((len (/ (car (compiled-bytecode fn)) 2))
(bytes (cadr (compiled-bytecode fn)))
(consts (caddr (compiled-bytecode fn)))
(result nil))
(dotimes (idx len)
(let* ((off (* idx 2))
(instr (bytecode-ref bytes off))
(args (bytecode-operands-ref bytes (+ off 1)))
(arg1 (car args))
(arg2 (cdr args))
(instr* (bytecode->symbol instr))
(arg1* (if (member instr* '(fn cconst gvar gset))
(vector-ref consts arg1)
(push! (list instr* arg1* arg2)
(reverse result)))
(define (%show-fn fn indent)
(let ((line-num 0)
(fn (if (meta? fn) (meta-object fn) fn)))
(dolist (instr (%compiled->instructions fn))
(if (is instr 'fn)
(map display (list line-num ": " (make-space indent) "fn "))
(%show-fn (arg1 instr) (%fixnum-add indent 4)))
(map display (list line-num ": " (make-space indent) instr))
(inc! line-num))))
(define (comp-show fn)
(%show-fn (compiler fn) 0))
(define (comp-repl)
(display "comp-repl> ")
(let ((result ((compiler (read-port stdin)))))
(write-port result stdout)
(unless (eq? result 'quit)
(define (compile-file name)
"read and compile all forms in file"
(let ((file (find-library name)))
(if file
(letrec ((in (open-input-port file))
(iter (lambda (form)
(unless (eof-object? form)
((compiler form))
(iter (read-port in))))))
(if (eof-object? in)
(throw-error "compiler failed to open" file)
(iter (read-port in)))
(throw-error "failed to find" name))))
(define (make-new-names vars)
(map (lambda (var) (cons var (gensym))) vars))
(define (make-notepad)
(cons nil nil))
(define (get-notes notepad)
(car notepad))
(define (push-note! notepad note)
(if (null? notepad)
(throw-error "notepad is null. can't save" note)
(set-car! notepad (cons note (get-notes notepad)))))
(define (remap-if-defined sym remapped)
(if-let ((new (assq sym remapped)))
(cdr new)
(define (find-inlined-vars exp found)
((atom? exp)
(record-case exp
(if-compiling (then else)
(find-inlined-vars then (find-inlined-vars else found)))
(quote (obj) found)
(begin exps
(reduce (lambda (found exp)
(find-inlined-vars exp found))
(set! (sym val)
(find-inlined-vars val found))
(if (test then . else)
(find-inlined-vars test
(find-inlined-vars then
(if else (find-inlined-vars (car else) found)))))
(lambda (args . body)
(reduce (lambda (found exp)
(find-inlined-vars exp found))
(inlined-lambda (args body)
;; inlinings always bubble up so no need to search body
(append args found))
(reduce (lambda (found exp)
(find-inlined-vars exp found))
(define (alpha-convert exp vars inline-notes)
;;(write-port (list 'alpha-convert exp vars inline-notes) stdout) (newline)
((symbol? exp)
(remap-if-defined exp vars))
((atom? exp) exp)
(record-case exp
(if-compiling (then else)
(list 'if-compiling
(alpha-convert then vars inline-notes)
(alpha-convert else vars inline-notes)))
(quote (obj) (list 'quote obj))
(begin exps
(cons 'begin
(map (lambda (exp)
(alpha-convert exp vars inline-notes))
(set! (sym val)
(list 'set!
(alpha-convert sym vars inline-notes)
(alpha-convert val vars inline-notes)))
(if (test then . else)
(list 'if
(alpha-convert test vars inline-notes)
(alpha-convert then vars inline-notes)
(if else
(alpha-convert (car else) vars inline-notes))))
(lambda (largs . body)
(let* ((args-list (make-true-list largs))
(free-args (filter (lambda (var)
(not (member? (car var) args-list)))
`(lambda ,largs
. ,(map (lambda (e)
(alpha-convert e free-args nil))
((expression-expander exp)
(alpha-convert ((expression-expander exp) exp) vars inline-notes))
((comp-macro? (first exp))
(alpha-convert (comp-macroexpand0 exp) vars inline-notes))
;; check for head lambdas
((and (pair? (first exp))
(eq? 'lambda (first (first exp))))
(record (rest (first exp))
(args . body)
(let ((remapped (make-new-names (make-true-list args)))
(parms (rest exp)))
(if inline-notes
;; we're already in an inline block, append to notepad
(push-note! inline-notes remapped)
(generate-inlined args vars (append remapped vars) parms body inline-notes))
;; we're starting an inline block, make a notepad
(let ((notepad (make-notepad)))
(push-note! notepad remapped)
(let ((inlined (generate-inlined args vars (append remapped vars) parms body notepad)))
`(inlined-lambda ,(append-all (get-notes notepad))
(map (lambda (e)
(alpha-convert e vars inline-notes))
(define (generate-sets args parms premapped remapped inline-notes)
;(printf "generate-sets args: %a parms: %a remapped: %a\n"
; args parms remapped)
((null? args) nil)
((symbol? args)
;; this is a dotted list
`(set! ,(remap-if-defined args remapped)
(list . ,(map (lambda (parm)
(alpha-convert parm premapped inline-notes))
((pair? args)
`(set! ,(remap-if-defined (car args) remapped)
,(alpha-convert (car parms) premapped inline-notes))
(generate-sets (cdr args) (cdr parms) premapped remapped inline-notes)))
(else (throw-error "unrecognized argument " args))))
(define (generate-inlined args premapped remapped parms body notepad)
;;(printf "generate-inlined args: %a body: %a premapped: %a remapped: %a\n" args body premapped remapped)
;; generate the sets
,@(generate-sets args parms premapped remapped notepad)
;; inline the body
,@(map (lambda (form)
;;(printf "converting form: %a\n" form)
(alpha-convert form remapped notepad))
(provide 'compiler)