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Abstract

Motion capture data is used in the gaming and film industry for a variety of purposes. This data
is obtained by attaching markers to a human and recording his movements which is a task that
requires time and equipment. There are applications that can benefit from long streams of periodic
data. The freely available streams are usually short lasting only a couple of steps. They can be
extended by repeating the motion several times but that might be too homogeneous. This paper
proposes the usage of Echo State Networks (ESNs) to learn motion patterns and repeat them in a
way that evolves as a non-linear dynamical system. Echo State Networks are a machine learning
tool for working with discrete and continuous time series. They have achieved good results in a
variety of tasks without requiring many parameters to be adjusted. This paper shows how Echo
State Networks can be used to learn periodic human movements encoded as motion capture data.
The main challenge is dealing with short data sets since the motion must be learned from very few
samples. There are many important parameters that should be adjusted in order to achieve good
quality and this paper explains how these parameters were tuned.
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1 Introduction

The human being is capable of performing many types of movements. A subset of these movements
involves periodic motions which can be seen as a periodic signal evolving over time. This signal,
although it looks regular when viewed from the broad perspective, has small irregularities all over
its repetitions. The system should be able to generalize the regular patterns and discard the irrel-
evant irregularities to reproduce human movement.

This research addresses the challenge of learning human movements using small training data
sets. The challenge is learning how values of many degrees of freedom, consisting of the rotations
from many of the human bones, influence each other with very few samples. The inspiration behind
this goal is figuring out whether human motion can be quickly learned by a computer since common
intuition suggests that movements should be learnable in an efficient manner because humans can
usually learn a movement after very few (even one) repetitions. It should be noted that this paper
does not intend to study learning from a biological perspective since the tools employed do not
model biological structures.

The tool that will be used to learn movements is Echo State Networks. Echo State Networks
are a type of Recurrent Neural Networks which consist of connected nodes in such a way such that
cyclic connections between nodes are permitted. Learning is done by optimizing the strength of the
weights that connect the nodes in order to approximate a teacher signal as close as possible. As it
was stated in [2], Echo State Networks are a robust tool to learn continuous non-linear signals in a
computationally efficient way [1]; an indication that they could be suitable to learn human motions.

There have been previous attempts to teach human movements to computers. The most notable
is [11] where Echo State Networks were used as the learning tool. In that paper, the network
successfully learned walking and running and could even generate smooth transitions between the
movements without them being present in the training data. The success of that research is a
good indicator that ESNs are suitable for the job. Although in that case only running and walking
motions were learned since there is a rich amount of training data for those motions. Also the
networks used were much larger than the ones used in this research. We contribute to the work
by investigating whether more motions can be learned with simpler networks and less training data.

An extrapolation approach using a database of motions is presented in [9]. A parameter of inter-
est, such as speed of the walk, is chosen and different executions of the same motion are recorded
such that the parameter is incrementally changed for each instance. The process is repeated with
several subjects. Using the recorded motions, the system is capable of generating a realistic motion
setting the parameter of interest to any particular value (ie. a faster or slower walk for instance).
The system is practical and presented good results but the objective of this research is very dif-
ferent. My approach is generating movements by learning and understanding the dynamics of the
movement whereas the approach in [9] searches for similarities among different executions of a
motion and extrapolates over them.

An approach based on energy and probability using a modified Restricted Boltzmann Machine
is presented in [7]. This method was also successful in learning walking and running motions from
a rich set of examples. It was also capable to generate transitions between motions and proved to
be better than traditional methods to interpolate missing data in motion capture files. In contrast
to ESNs which are a tool for general purpose signal processing tasks, the method presented in [7]
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was specifically built to learn human motion (although the author argues it should work equally
well for other tasks).

Finally a biologically inspired approach is presented in [4] where spiking neurons are used to
generate movements for a robotic arm after some training. The approach is significantly different
since spiking neurons are a tool based on how the neurons of the human brain work. In that case the
objective was to generate a signal to control an arm instead of learning and producing movements
from motion capture data. Much simpler movements were produced in that case and the network
had a more complicated structure and topology than Echo State Networks since it was built to
resemble biological nervous structures. The network was capable of learning and producing control
signals to move an arm. The simpler design of ESNs, the success from [11] suggests that ESNs
should also be effective for this task.

As it is discussed in [10], ESNs can be used for a wide variety of applications by tuning very few
parameters. Complemented with the fast training due to the efficiency of ESNs [1] and the small
size of the training set, it should be possible to quickly tune the parameters and produce reasonable
results since the output of many different networks can be inspected and compared. ESNs have
proven to be successful in various applications including learning human movements using rich
training data sets [11]. This research intends to explore whether ESNs can still be successful in
learning human movements without a rich training data-set.

2 Research Topic

2.1 Background

Motion Capture Data encodes human movements using a skeleton and specifying the rotation of
every possible degree of freedom for each of the bones. This leads to a signal which essentially boils
down to a vector with many dimensions (up to 37 in this work) where the values of each entry are a
function over time representing how the bone is positioned as the movement goes on. The data was
obtained by placing markers on humans and tracking the position of their body parts while they
were performing one of the movements. Since the movements were created in a ‘natural‘ way they
contain actions that might be irrelevant since they result from the natural movement of humans
which will never be repeated in the exact same way. It is also the case that some bones are more
relevant than others in a particular movement but this depends on the movement being performed.

The signal mentioned above has many components that interact with each other in a non-linear
fashion and time dependent way. This results in a very complex signal which is repeated very few
times. Even though learning a motion is something trivial for a human, the network must be capa-
ble of doing it without context. For a computer, the signal carries no meaning other than the fact
that future values of the signal can be predicted by observing the previous values. For this reason
it is challenging to learn these interactions with very few samples. The computer must be capable
of producing a model without any previous knowledge of what movement is. To overcome this
challenge, many parameters of the neural network must be adjusted. Adjusting these parameters
is the main challenge addressed in this research.

It is also worth noticing that so far there exists no underlying fundamental theory about Echo
State Networks which would allow to optimally tune these parameters according to a specific data-
set. This is an active field of research and guidelines exist which help achieve better results by
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observing the behavior of various components of the network as it evolves. This research focuses on
using these guidelines to allow Echo States Neural Networks to reproduce periodic human motions.
The concepts introduced in this section will be formally specified in the following sections.

2.2 General Objectives

The general objective of this research is determining whether periodic human movements can be
learned and reproduced by Echo State Networks using small training data-sets. This means data-
sets that contain less than five repetitions of a particular motion. In terms of motion capture data,
this usually means less than 400 time-steps.

2.3 Specific Objectives

To achieve the main objective, the following sub-goals are set for the three motions considered in
this paper:

• Determine a method to tune the leaky integrator

• Determine a method to tune the level of complexity of the model (the regularization param-
eter)

• Determine a method to select the appropriate output feedback weights for the movement

• Generate a stable repetition of the learnt periodic movement

• Achieve the objectives mentioned above with a network of 100 internal units.

• Provide guidelines to tune ESNs to learn motion capture data

3 Background Topics

During this research, various tools and methods were used. The following sections provide an
introduction to these topics. This should be enough information to understand the research but if
additional knowledge is required the reader can consult the referenced material, in particular [2].

3.1 Echo State Neural Networks

Neural networks are computational mechanisms originally inspired by the structure of the brain.
Ever since, they evolved to become a practical computational tool for signal processing. They
consist of input nodes, internal or hidden nodes and output nodes. Depending on the way the
nodes are connected to each other they are classified as recurrent neural networks or feed-forward
neural networks. Echo state neural networks (ESNs) are a type of recurrent neural networks whose
primary characteristic is that only connections from internal nodes to outputs are trained. Echo
state neural networks are a mechanism to reproduce time series as presented in [2]. The remainder
of this section will be used to formally present echo state neural networks as they will be used in
the research, which is based on [2, 10].

A time discrete network will be considered. The network has N internal network nodes and L
output nodes. Note that networks without input nodes will be used in this research. The state of
the network at a given time t is x(t) = (x1(t), x2(t), .., xN (t)) and the output of the network at time
t is y(t) = (y1(t), y2(t), .., yL(t)). The connection weights between units are collected in matrices.
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A N ×N matrix W for the internal nodes, a L×N matrix Wout for connections between internal
nodes and output nodes and a N × L matrix Wback output feedback matrix. A bias vector xbias

is sometimes used to destroy the sine symmetry of the network. This type of symmetry results
from signals with periodic oscillations which result in network states where multiple state updates
seem reasonable. A bias vector was also used in [11] to model human movement. The state entries,
weights, bias entries and outputs will all be real valued numbers.

The state of the network is updated according to the equation

x(t+ 1) = (λx(t)) + (1− λ)f(Wx(t) + Wbacky(t)) + xbias (1)

where,

• f = (f1, f2, ..., fN ) are the output functions of the internal units (usually sigmond functions).

• λ is the leaking rate (see the following sections).

• xbias is the bias vector.

The output of the network at time t is given by the equation

y(t+ 1) = fout(Woutx(t+ 1)) (2)

where,

• fout = (fout1 , fout2 , ..., foutL ) is the output units functions

The training procedure for ESNs goes as follows. Suppose we are given the output signal yteach(t)
for t = 0, .., tmax. We wish to have a ESN whose output signal y(t) is as close as possible to
yteach(t). This is done as follows.

Produce an ESN with N input units and L outputs where L is the dimension of the vector
y(t). Random sparse matrices are used to produce the W and Wout matrices. It is important
that the network has echo states [2]. The usual recommendation is to scale the internal weights W
such that |σi|max close to 1 where σi are the eigenvalues of W. The entries of the bias vector xbias

are obtained by sampling a normal distribution. Guidelines on how to produce such a network can
be found in [2].

Run the network by teacher forcing the yteach(t) signal into the network. Teacher forcing
consists of replacing the network output y(t) with the value of yteach(t). This means that the
update function of the network becomes:

x(t+ 1) = (λx(t)) + (1− λ)f(Wx(t) + Wbackyteach(t)) + xbias (3)

The network must be run in this way for some initial transient and the outputs during this transient
will be discarded. It is better to discard a big amount of initial states, but the amount of data
discarded also depends on the amount of training data available.
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Collect the ESN output for the remaining training data. We will denote with tmin the time
where the internal state began to be collected and tmax the time where the last internal state was
collected. Now to complete the training, our task is to minimize the following error function:

msetrain,j = 1/(tmax − tmin)

tmax∑
t=tmin

(g′j(t)−
N∑
i=1

wout
j,i xi(n))2

where,

• g′j(t) = ((foutj )−1)(yteach,j(t)) for j = 1, .., L is the inverse output function applied to the jth
component of the teacher signal.

New entries for the Wout matrix must be calculated such that they minimize the error function
above for all components. This is a linear optimization task and various methods exist to solve
this problem. The Ridge Regression was chosen in this work since it allows the complexity of the
model to be adjusted. Please refer to [2] for more information about training ESNs.

3.2 Ridge Regression

Suppose we are assigned the task to learn the following sequence of numbers:

1, 1, 2, 3, 5, 8, ...

Hopefully it should be easy to understand the rule that produced these numbers which is the
Fibonacci Sequence. There is a rather interesting reasoning behind the process that determined this
rule. There are many (in fact infinitely many) rules that could have produced this same sequence
of numbers. All of them could be equally chosen to be the underlying theory but the philosophical
question is: Why do most people tend to choose the Fibonacci numbers as an explanation (even if
they don’t know the rule beforehand).

The reason is the principle of Ockham’s razor. The idea behind Ockham’s razor is that whenever
multiple explanations for a phenomenon exist, the simplest one is preferred. This principle is backed
up by nothing more than common sense. In the example above, although multiple hypotheses exist,
people tend to choose simple ones and Fibonacci is on of the simplest hypotheses in this case.

There are various ways to control the complexity of the dynamical system that emerges from an
Echo State Network. The most straightforward approach is changing the number of internal units
that the network has. This approach has the inconvenience that the network size has to be selected
according to the task dealt with. A more convenient and flexible approach is the Ridge Regression.
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The idea behind the Ridge Regression is adding a regularization parameter that ‘penalizes‘ weight
matrices with big norms. The optimal weights are then determined by the following formula:

wopt = argmin
w
||Aw −B||2 + α ||w||2

where,

• A denotes the matrix with the collected network states

• B denotes the matrix with the collected outputs of the teacher signal

• ||.|| denotes the euclidean norm

• α is a positive value known as the regularization parameter

In this equation, α acts as a regularization parameter which penalizes weight matrices that have
large entries. Having a weight matrix with many values close to zero creates a simpler model
because the output values are less dependent on weights with small values. The output weights of
an Echo State Network can be calculated in a single step using Ridge Regression with the following
formula:

wopt = (ATA+ αI)−1ATB

where,

• A denotes the matrix with the collected network states

• B denotes the matrix with the collected outputs of the teacher signal

• I denotes the identity matrix

Models that are more complex than necessary are called over-fitted. These models usually
have excellent performance predicting the training data-set but perform poorly when exposed to
the testing data set. For further information about Ridge Regression and other regularization
methods, the reader is advised to consult [10].

3.3 Leaky Integration

In ordinary ESNs, the current state x(t+ 1) of the network functionally depends only on the previ-
ous state x(t). This property is excellent for learning discrete chaotic signals with strong oscillations
but imposes difficulties when dealing with continuous slow signals.

To overcome this problem, networks with continuous dynamics are used. Networks with contin-
uous dynamics can be approximated by updating the network with a leaky integrator. Consider
Equation 1, which indicates how the network state is updated. The leaking rate λ can be intuitively
seen as the value that regulates how much information about the previous state is preserved and
how much information is replaced by the network update function. When λ is close to 0 the net-
work state is changed very slowly since only a small ‘fraction‘ of the state is updated. On the other
hand, when λ is close to 1, the network state is updated very quickly. The leaking rate allows Echo
State Networks to remember previous states across multiple update cycles allowing the network to
learn continuous signals with long periods. For more details about Echo State Networks with leaky
integration the reader is advised to consult [2].
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3.4 Motion Capture Data

Human movements are recorded using different methods. The movements are then stored as motion
capture data. Motion capture data typically consists of two parts. The first is a skeleton which lists
all the bones that the human has with additional meta-data such as length, degrees of freedom and
rotation limits. The second part is a sequence containing the angular rotation for all the degrees
of freedom of all bones with respect to time.

The motion capture data used in this work was obtained from the Carnigie Mellon Motion
Capture Database [8]. The data was produced by placing markers on a human body and tracking
the position of those markers with a camera at a fast frame rate. In the case of walking, the signal
was sampled at 120Hz and in the case of rowing and swimming the sampling rate was 60Hz.

4 Strategy to Solve the Problem

There are many properties and limitations of Echo State Networks that will be taken into consid-
eration. This strategy intends to be a standardized process that will let an Echo State Network
learn a variety of periodic human movements and let it reproduce them in a way that looks natural
for long periods of time without falling into chaos.

The first limitation to consider is that the rotation limits of the bones cannot be enforced by the
Echo State Network. The reason is that according to [2], we require a sigmond function to set the
value of the internal states of the network. If any output that exceeds the rotation limits of a bone
is forcibly scaled down to fit the allowed range, then highly linear behavior is introduced into the
update function of the internal units which leaves the network no longer suitable to learn signals
with non-linear behavior. This leaves no other choice than letting the network learn the limits on
its own.

4.1 Selecting the Warm-up Size

Before starting the training, the network must be driven for some initial transient to allow it to
forget the initial state. Given the small size of the training data, this transient must be as small as
possible to allow the network to be trained with more data. To have an indication about how long
this transient must be, the internal states can be plotted and the behavior can be inspected. The
following plot shows the behavior of a network driven by a signal:

Figure 1: Value of the internal sates of a network driven by a signal.
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It can be seen that the states quickly start oscillating smoothly. This indicates that the state
of the network is evolving into a state suitable for training and that the behavior of the network is
becoming less dependent on the starting state. For this research, fast networks with large leaking
rates (1/8 being the smallest considered) were used. Networks with large leaking rates forget the
internal state more quickly. Based on the plots and the leaking rates used, 20 update cycles were
discarded before training. This left enough data and enough transient for all experiments considered
in this research.

4.2 Regularization Parameter Tuning

The right complexity for the particular movement must be chosen. An automatic approach is
suggested. Select two similar sequences of motion capture data. This can be two different walks
for instance. An error measure can now be defined as follows: the network is trained with the
movements of the first data set and the performance is tested by comparing the single step prediction
of the network on the second data-set. Single step prediction is performed by running the network
teacher forcing a signal according to Equation 3 and comparing the network output with the value
of the signal. The following formulas illustrate the points:

y(t+ 1) = fout(Woutx(t+ 1))

MSEtest =
1

|test|

|test|∑
t=0

||ytest(t)− y(t)||2 (4)

where,

• ||.|| is the euclidean norm.

• |test| is the size of the testing set.

• y(t+ 1) is the output of the network driven by the signal ytest(t).

Many networks can be trained with different values for the regularization parameter and the
chosen regularization parameter should be the one that minimizes the Etest testing error.

Figure 2: The top line shows the error of a network with respect to the testing set and the bottom line shows the error
of the network on the training set. It can be observed that the testing error starts decreasing as the regularization
increases until it reaches the ‘right‘ complexity.

Choosing the regularization parameter this way usually was a good starting point, but never
resulted in a good model for producing motions. This parameter is usually tuned by optimizing
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an error function for the network output. In this case this was manually done by observing the
generated movements since establishing an error assessment to evaluate how ‘good‘ the produced
motion is goes beyond the scope of this research. An overfitted model usually results in ‘impossible‘
movements like an overfitted polynomial oscillating in ways that a polynomial of lower degree does
not. On the other hand, too simplistic models usually result in convergence to fixed points or
absence of detail in the movement.

Figure 3: This images show positions produced by an overfitted rowing motion. It is evident that the bending of the
back and arms goes beyond what is present in the training set.
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4.3 Leaky Integrator Tuning

The human movements considered during this research are continuous periodic signals. As it was
previously mentioned, the leaky integrator is very important to simulate a continuous signal with a
discrete network. The standard method to choose the leaking rate is minimizing an error function
for the output. In the case of human movements, minimizing the single step prediction error usually
resulted in big leaking rates which produced chaotic motions. Therefore, the plots of the internal
states during training and testing were observed to determine whether the leaky integrator is set
to an appropiate value. In the case of motion capture data, there should be smooth continuous
oscillating patterns. No sudden jumps or chaotic behavior should be present. This is not a black and
white assessment and, as mentioned in [10], the network should be as chaotic as possible without
falling into chaos.

Figure 4: This figure shows the internal states of the same network with different values for the leaky integrator. The
first network has a value close to one while the last has a value close to zero.

As it can be observed in Figure 4, when the leaking rate is too high, the network runs too fast
and the states no longer evolve in a smooth and continuous manner. On the other hand, when the
leaky integrator is too small, the network evolves so slow that the behavior of the internal states
no longer captures the behavior of the teacher signal. It can be observed that the states oscillate
less when the leaky integrator is too small.

4.4 Output Feedback Weights Tuning

The dynamics of Echo State Networks used in this research heavily depend on the magnitude of
the entries in the output feedback matrix Wback. It is of crucial importance to tune these weights
appropriately for the network to reproduce the input signal as realistically as possible. If the output
feedback weights are to small, the network will not be excited enough to reproduce the signal. This
results in a signal that behaves as if it were a more relaxed version of the original signal or the
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network might just converge to a fixed point. On the other hand, if the weights are too big, the
network might behave chaotically or get squashed to border values.

Figure 5: This figure shows how big output feedback weights squash the value of the internal states close to -1 or 1
and how the small output feedback weights squash the values of the internal units into the non-linear region close to
0. The second plot shows a good selection of output feedback weights.

It is once again important to observe the internal states to determine whether the output feedback
weights are of the right magnitude. To learn human movements, the hyperbolic tangent function
tanh(x) was selected as the sigmond function for the internal units such that the function f(x) of
Equation 1 is defined as f(x) = (tanh(x1), .., tanh(xn)). While observing the internal units of these
networks it is important that the values of the internal units oscillate using the largest amount
of values in the range [−1, 1], which is the range of the tanh(x) function. Large output feedback
weights usually squash the values of the internal units either towards −1 or 1. On the other hand,
small output feedback weights usually squash the values towards a single value.

Figure 6: This figure shows a plot of the tanh(x) function. It can be observed that the behavior of the function is
almost linear for values close to zero.
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There are two main reasons why it is important to use as much values of the tanh(x) as possible.
First, the fact that the network is using a larger selection of values to learn a particular signal which
gives the network more space to store information about the signal. The second is the behavior of
the tanh(x) function. As it can be seen in the picture, the tanh(x) behaves like a linear function
when values are close to 0 or when values become large or small. If the states stay squashed into
one of these regions, the reservoir will behave like a linear dynamical system instead of behaving
like a non-linear dynamical system.

It is important to begin tuning the network with reasonable magnitudes for the output feedback
matrix. To outline what reasonable means consider the update equation for the network. In
this particular case tanh(x) is being used as the network function. The entries of the current
state x(n) are always between [−1, 1] and the entries of the internal weigh matrix W are usually
small because of the scaling applied to the matrix in order to impose a particular spectral radius.
Therefore the value of each entry of the vector Wx(t) will also remain close to that range. This
means that the other value Wbacky(t) should oscillate around the range [-4,4] to ensure that the
network remains non-linear. It is important to inspect the teacher signal to bring these values into
the range mentioned above. Often enough it is useful to globally scale the signal to choose these
weights more easily (although global scaling is equivalent to scaling the Wback matrix).

4.5 Validation

Validation was performed by single step prediction accuracy as described by Equation 4 over a
validation set. Each of the experiments indicates whether the validation set consisted of another
instance of the same movement used for training or an unseen portion of the training data.

The process was different depending on the method used. In the case of validating against a
different instance, the network was driven by the validation set for some initial transient in order
for it to evolve into the rhythm of that movement and then the validation process was carried out
comparing the single step prediction performance.

In the case of using the unseen portion of the training set, the validation was done immediately
after training since the network had already been run for the initial transient mentioned above
during training. Since training only optimizes the output weights, the state update of a teacher
forced network is exactly the same for trained and untrained networks.

4.6 Pre-Processing

In many cases it is helpful or necessary to pre-process the teacher signal. In the case of motion cap-
ture data, the signal is already clean enough that no pre-processing is strictly necessary. However,
to avoid having too small output feedback weights, the signal was globally scaled from the range
[0, 180] to fit the range [−0.5, 0.5]. The scaling was done by dividing all values in the teacher signal
by the biggest value in the signal and subtracting 0.5 from all entries.

4.7 Remarks

It should be noted that before beginning the process of fine tuning the parameter, reasonable
parameters for the leaking rate and feedback matrices should be chosen. The reason is that un-
reasonable values for these parameters can be spotted by inspecting the network behavior during
training. As indicated previously, some negative indicators such as chaotic behavior or fixed points
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can be detected by inspecting the network states during training. Doing so is important because
the way the network responds to the adjustment of a certain parameter depends on the values of
the other parameters. Once a reasonable starting point is found, the network can be finely tuned
by incrementally adjusting any of the parameters and inspecting the internal states and output of
the network during training and testing.

5 Results

Different networks were built and trained to learn different movements. All of the movements
are periodic motions and span different levels of complexity. Each of the movements emphasized
motion of a particular set of bones and the network had to learn which were the important bones
for each of the motions. The parameters used to build the network and results are provided. The
state update function was chosen to be f(x) = (tanh(x1), .., tanh(xn)) and the network output
function fout(x) was the identity function for all networks. In the case of swimming and rowing, no
similar data-set existed. Hence, to calculate the testing mean square error, an optimal network was
produced using the full data-set and then the network was re-trained using the same parameters
leaving out some data of the sequence for validation. Have in mind that the signal was re-scaled
to the range [−0.5, 0.5] when observing the mean squared error (MSE).

5.1 Simple Walk

Network Specifications

Bias Vector xbias N (0, 0.1)
Spectral Radius |σi|max 1.15

Output Feedback Weights Wback U(−2/3, 2/3)
Leaking Rate λ 1/3
Regularization α 0.1
Training Data 343 steps recorded at 120Hz
MSE 18.26 over 198 steps

This is the simplest motion of all. It consists of a periodic walk where only the movement of
the legs is used as training data. An initial regularization parameter of 0.05 was chosen using
single step prediction against another walk but it was immediately evident that the model was
over-fitted since the first walks produced movements which were not present in the training data.
This is similar to over-fitting a polynomial with one of higher degree. The polynomial of higher
degree will oscillate in ways that the other polynomial does not. The regularization parameter
was experimentally increased to 0.1 by observing the generated output which finally produced a
realistic and stable walk.
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Figure 7: Comparison of the learned movement and the training movement. The three images above are the motion
produced by the network and the movements below are the motion used for training.

As it can be observed in Figure 7, the movement of legs looks very similar to the real movement.
All the joints are folded as much as they should at the right moment of the sequence. Although it
cannot be observed through pictures, the movements also occur at similar speed. The reader can
visit [6] to see more videos of motions produced by the networks.

Network Specifications

Bias Vector xbias N (0, 0.1)
Spectral Radius |σi|max 1.15

Output Feedback Weights Wback U(−1/8, 1/8)
Leaking Rate λ 1
Regularization α 0.0005
Training Data 343 steps recorded at 120Hz
MSE 6.74 over 198 steps

The simple walk was also chosen to structure the optimization procedure since the motion was
the simplest one. The table above shows the specifications of the same network used to produce
the walk optimized to minimize the single step prediction.

Figure 8: This plot shows the internal states of an autonomous walk with the optimized network
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There are several remarks to be made about the optimized network. First is that the leaking
rate is set to 1 which usually models a system with discrete dynamics but increasing the leaking
rate usually decreased the MSE for single step prediction leaving the rest of parameters untouched;
even if the resulting network did not produce a walk. The second remark is the small regularization
parameter that results from this optimization. Even though the training and validation sets are
different (they are in fact different walks) an apparently overfitted model minimizes the MSE for
single step prediction. Finally, as it can be seen in Figure 8, the states usually remain squashed in
a small section of the range of the tanh(x) function instead of oscillating over the whole range as it
should happen in a regular network. This results in a network with linear behavior. The squashing
of the states was compensated by the big output weights resulting from the big regularization
parameter which resulted in a cyclic motion that looked like a very stiff/robotic walk.

5.2 Swimming

Network Specifications

Bias Vector xbias N (0, 0.1)
Spectral Radius |σi|max 1.15

Output Feedback Weights Wback U(−3/2, 3/2)
Leaking Rate λ 1/5
Regularization α 0.7
Training Data 500 steps recorded at 60Hz
MSE 25.77 over 239 steps

Swimming involves the arms, legs and back which results in a much more complex motion. There
were a total of 37 degrees of freedom in the training data for the swimming motion. The training
data was very short containing about four strokes which had some differences between each other.
There was no other data-set available to use single step prediction to find the initial regularization
parameter so 0.1 was chosen based on the results from the simple walk. It was too small and
caused the produced output to converge into fixed points. When the regularization parameter is
not big enough, the output weights result in being too big. This creates an output that will easily
squash the tanh(x) into the corners resulting in convergence to a fixed point. This was the case
for swimming even after selecting large and small output feedback weights. The regularization
parameter was then gradually increased until 0.7 was found to produce realistic and stable strokes.
Unfortunately the model produced after sparing some steps for the single step prediction was much
worse than the model trained with the entire data. A complete stroke was used for validation and
the resulting model looked overfitted.
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Figure 9: Comparison of the learned movement and the training movement. The three images above are the motion
produced by the network and the movements below are the motion used for training.

It can be observed that the movements differ much more than in the case of the simple walk. The
network generated stronger leg motion as it can be seen comparing the last image of the sequence.
Nevertheless, it is difficult to compare by observing the images, but the swimming motion generated
by the network was similar to the training data. Both of them moved the arms and legs in similar
cycles and both evolved at a similar pace.

5.3 Rowing

Network Specifications

Bias Vector xbias N (0, 0.1)
Spectral Radius |σi|max 1.15

Output Feedback Weights Wback U(−1, 1)
Leaking Rate λ 1/6
Regularization α 2
Training Data 300 steps recorded at 60Hz
MSE 15.21 over 80 steps

Working with the rowing data was probably the most challenging task in this research. The
data-set used was very small and the movement was complex since it involved 37 degrees of free-
dom, all of which contained important motion.

According to the “nature” of Echo State Networks, rowing is a very different motion because
the initial values in the range of [0.15, 0.7] for the regularization parameter produced an over-fitted
model. The over-fitting was evident because even though the periodic nature of the motion was
preserved and there were several poses which were similar in the training data and the produced
motion; the generated motion contained bone rotations which are impossible for humans. This
is analogous to an over-fitted polynomial which contains oscillations which are impossible in the
polynomial of lower degree but still shares values in common with the lower degree polynomial.
The network was finally trained by using a regularization value of 2 which is considerably larger to
the value used in the previous cases.
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Figure 10: Comparison of the learned movement and the training movement. The three images above are the motion
produced by the network and the movements below are the motion used for training.

In the case of rowing, the network could correctly identify several of the poses adopted by the
rower as well as the movements to go from one pose to the other. The biggest drawback in this
case was speed and acceleration. The network seems to have a fixed speed and moves at that speed
all the time. The speed at which a network evolves is controlled by the magnitude of the leaky
integrator, but in this case the problematic part was the fact that the rowing motion is quicker
during the stroke than during the sliding phase. The network could not correctly learn this feature
and performs both segments at a similar speed.

6 Discussion

In spite of the small size of the training data-sets, the network successfully reproduced the move-
ments that were taught. It is difficult to objectively asses the quality of the produced movements
since the objective of this research was not to exactly imitate the movements but rather determine
if the network was capable of correctly detecting the important features that the movements had
such that it is capable of producing a realistic simulation of the motion without falling into chaos
or fixed points. Although the movements produced by the network were faithful to the original
motion on many aspects, there were several drawbacks.

The first drawback encountered is over-emphasis of some of the positions. The network tended
to bend some of the bones over a larger range of angular values than those present in the training
data. This can clearly be seen on Figure 9 since the network bent the knees much more than the
original motion. The method usually used to reduce the emphasis the network has over a movement
is scaling the output feedback weights. The limitation in the case of swimming is that large output
feedback weights were needed for the network to properly follow the movement of the arms since
those movements were really strong and covered a big range of values. A compromise between the
two movements had to be made to allow a good enough simulation of the original motion.
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Figure 11: The first image contains a plot of the internal states during the autonomous row and the second plot
contains the states of the same network while being trained with rowing data. During the autonomous run, the
network has a regular period whereas the training signal changes speed over time.

The second drawback is the difficulty the network had to learn movements where the speed
changes over time. Adjusting the intensity of the leaky integrator was useful to allow the network
to learn motions of different paces such as walking and rowing but did not prove useful to learn the
speed variations of a movement. This had a negative impact in the rowing motion. A compromise
for the leaky integrator had to be made such that the network was fast enough for the stroke and
slow enough for the sliding section. It can clearly be seen in Figure 11 that the value of the internal
states changes at different speed over time during the training and during the autonomous run, the
speed remains constant over time.

One of the main characteristics of ESNs is the fact that they are easy to create and train. This
is because very few parameters have to be adjusted while tuning the network. In general this was
the case for human movements. It was a matter of minutes to generate and tune the network
for each of the movements considered in this work. This is also due to the low computational
requirements of the networks since it was a matter of seconds to run the training algorithms on a
regular computer. This was even the case when using an environment without fancy functionality
such as the interactive Haskell shell.

7 Future Work

The first direction in which the work presented here can be extended is by allowing motion which
responds to input data as well. There exists work in a similar direction to use these networks to
control robots in [5] such that the motion generated can adapt to the input from the sensors. With
human motion it might get a little more difficult since there is no straightforward way to connect
sensory input to motion capture data. A less provocative extension in this direction is running the
network output in an environment that simulates physics. This way it can be researched how the
network can be taught to move in a way that would not result in a catastrophe under more realistic
conditions.

There is also a theoretical direction in which this work can be extended. It would be useful
and interesting to produce networks that can learn the peculiarities of the different aspects of a
single motion. This means having a network that suffers less from the shortcomings presented for
rowing and swimming data. The reasoning behind having sparse matrices is allowing clusters with
a particular behavior to be formed in the network to allow it to learn many of these peculiarities.
A bigger network might allow more of these clusters to exist letting the network learn more aspects
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about the behavior of each of the components of the movement data signal. Understanding the
memory limitations of the ESNs might also be helpful and such information is available in [3].

The single step prediction method proposed in this work to choose the regularization parameter
also has a lot of room for improvement. In the case of this research, the limited training data
did not allow much room for performance assessments for the network. It was also difficult to
judge the performance of the network since it was not trained to precisely reproduce a particular
signal. Instead the objective of this work was to create motion that looked realistic so evaluation
was mostly done by observing the generated movement on a skeleton. The network output could
be automatically compared to another instance of the same movement but as mentioned in [12],
comparing time series is a difficult task and is an active field of research. An automatic performance
assessment would also allow more automated tuning since sub-optimal configurations such as over-
fitting are currently detected and adjusted by manually inspecting the output.
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