High-performance tools for large-scale network analysis
Explore the docs »
Try Demo
·
Report Bug
·
Request Feature
Table of Contents
NetworKit is an open-source toolkit for high-performance network analysis, designed to handle large networks ranging from thousands to billions of edges. Built with efficiency and scalability at its core, NetworKit implements parallel graph algorithms that leverage multicore architectures to compute standard measures of network analysis.
As both a production tool and a research testbed for algorithm engineering, NetworKit includes novel algorithms from recent publications alongside battle-tested implementations. The toolkit is available as a Python module with high-performance C++ algorithms exposed through Cython, combining Python's interactivity and rich ecosystem with C++'s computational efficiency.
- Scalable: Analyze networks with billions of edges
- Fast: Parallel algorithms utilizing multicore architectures
- Comprehensive: Wide range of network analysis algorithms
- Interactive: Python interface with Jupyter notebook support
- Flexible: Available as Python module or standalone C++ library
- Research-ready: Includes state-of-the-art algorithms from recent publications
For most users, NetworKit can be installed directly via package managers with no additional requirements other than Python 3.9+.
| Package Manager | Command |
|---|---|
| pip | pip install networkit |
| conda | conda install -c conda-forge networkit |
| brew | brew install networkit |
| spack | spack install py-networkit |
If you only need the C++ core without Python bindings:
| Package Manager | Command |
|---|---|
| conda | conda install -c conda-forge libnetworkit |
| brew | brew install libnetworkit |
| spack | spack install libnetworkit |
More platform-specific installation instructions can be found in our getting started guide.
Here's a quick example showing how to generate a random hyperbolic graph with 100k nodes and detect communities:
from networkit.generators import HyperbolicGenerator
from networkit.community import detectCommunities
# Generate a random hyperbolic graph
g = (
HyperbolicGenerator(1e5)
.generate()
)
# Detect communities
detectCommunities(g, inspect=True)Output:
PLM(balanced,pc,turbo) detected communities in 0.14577102661132812 [s]
solution properties:
------------------- -----------
# communities 4536
min community size 1
max community size 2790
avg. community size 22.0459
modularity 0.987243
------------------- -----------
Compute PageRank to rank nodes by importance:
from networkit.centrality import PageRank
pr = (
PageRank(g)
.run()
)
top_nodes = pr.ranking()[:10]Analyze graph structure with connected components:
from networkit.components import ConnectedComponents
cc = (
ConnectedComponents(g)
.run()
)
print(f"Components: {cc.numberOfComponents()}")
print(f"Largest: {max(cc.getComponentSizes().values())}")For comprehensive examples and tutorials, explore our interactive notebooks, especially the NetworKit User Guide. You can try NetworKit directly in your browser using our Binder instance.
Building from source requires:
- C++ Compiler: g++ (>= 10.0), clang++ (>= 11.0), or MSVC (>= 14.30)
- OpenMP: For parallelism (usually included with compiler)
- Python: 3.9 or higher with development libraries
- Debian/Ubuntu:
apt-get install python3-dev - RHEL/CentOS:
dnf install python3-devel - Windows: Official installer
- Debian/Ubuntu:
- CMake: Version 3.6 or higher
- Build System: Make or Ninja
git clone https://github.com/networkit/networkit networkit
cd networkit
pip install cython numpy setuptools wheel
python setup.py build_ext [-jX]
pip install -e .The -jX option specifies the number of threads for compilation (e.g., -j4 for 4 threads). If omitted, it uses all available CPU cores.
mkdir build && cd build
cmake ..
make -jX
sudo make installAfter installation, include NetworKit headers:
#include <networkit/graph/Graph.hpp>Compile your project:
g++ my_file.cpp -lnetworkitTo build and run tests:
cmake -DNETWORKIT_BUILD_TESTS=ON ..
make
./networkit_tests --gtest_filter=CentralityGTest.testBetweennessCentralityFor debugging with address/leak sanitizers:
cmake -DNETWORKIT_WITH_SANITIZERS=leak ..The complete documentation is available online at networkit.github.io.
We welcome contributions to NetworKit! Whether you're fixing bugs, adding features, or improving documentation, your help makes NetworKit better for everyone.
- Check our development guide for instructions
- Browse open issues or open a new one
- Fork the repository and create your feature branch
- Submit a pull request
For support, join our mailing list.
Distributed under the MIT License. We ask that you cite us if you use NetworKit in your research (see our technical report and publications page).
- Issues: Check our issues section for existing discussions or open a new issue
- Mailing List: Subscribe here to stay updated
NetworKit has been used in numerous research projects. Visit our publications page for a complete list of papers about NetworKit, algorithms implemented in NetworKit, and research using NetworKit.
NetworKit is developed by a dedicated team of researchers and contributors. View the full list of contributors on our credits page.