9.2 Dynamic Reordering 151

at computing an optimal order, but one is satisfied with sufficiently large
improvements.

The use of a reordering algorithm can now be controlled as follows:

Explicit calls: The user controls the points in time at which a reordering
step is to be performed. For example, this may be desirable before beginning
to perform a complex operation.

Automatic calls: The reordering algorithm is called automatically when-
ever certain situations arise. Typically, a reordering step is called whenever
the size of the shared OBDD representation has been doubled since the last
reordering call.

The reordering aspect is particularly interesting, as it can run in the back-
ground without direct interaction to the application program. Typically, for
the application program only the references to the represented functions are
of interest, and not their internal representation. The dynamic adjustment
of the variable order allows the internally performed OBDD representation
to be hidden from the outside almost completely.

9.2.1 The Variable Swap

A central observation which forms the key idea in many dynamic reordering
algorithms is that two neighboring variables in the order can be swapped ef-
ficiently. Of course, this statement is not valid in an unrestricted manner,
but depends on the chosen implementation. For this reason, we refer in the
following to the basic framework described in Chapter 7, upon which nearly
all existing OBDD packages are based. For this framework we show how a
swap of two neighboring variables in the order can be realized efficiently.

First, we assume that the variable z; occurs immediately before the variable
z; in the order. The effect of this swap on each node labeled by z; can be seen
by applying Shannon’s expansion with respect to x; and z;. If the function
which is represented in a node with label z; is denoted by f, then we have:

f=zzj fir + %5 fro + Tazj for + Ti T foo-

By using commutativity we can order the terms so that that z; occurs be-
fore z;:

f=z5z;i fu1 + 2;T5 for + Tjzi fr0 + T5 Zifoo-
In other words, the actual effect of the swap is the exchange of the two

subfunctions fip and fo; in the OBDD. Here, we have to take care that all
unconcerned nodes in the graph are not affected by this exchange.



152 9. Optimizing the Variable Order

vi vo e

f11 10 fo1 00

Figure 9.5. Swapping two neighboring variables

Figure 9.5 illustrates the swap of the two neighboring variables z; and z;
within an arbitrary, possibly quite large OBDD. In the initial order the func-
tion f is represented by a node v labeled by x;. First, we consider the case
that the two sons v; and vy of v are labeled by z;. The successor nodes of v;
and wvg represent the sub-OBDDs of the cofactors fi1, fio, for and foo. As f
depends on the variable z;, after the modification of the order this function
has to be represented by a node with label z;. The 1-successor of this node
must possess references to the sub-OBDDs f11 and fo1, the 0-successor must
have references to the sub-OBDDs fig and fgq.

Note that the function f in Fig. 9.5 is represented by the same node v before
and after the swap. Only the label and the outgoing edges of the node have
been modified. This strategy guarantees that all existing references to f are
not affected by the swap: neither the references which result from the upper
levels in the OBDD, nor the references from outside the OBDD. As also the
two cofactors f; and fo of f are represented by the original nodes v1 and vy
after the swap, each existing reference remains valid.

It is merely necessary to introduce the nodes u; and wg which represent the
cofactors of f with respect to z;. The figure seems to express that the size
of an OBDD always increases during a variable swap. In case of a reduced
representation, the equivalent status of z; and z; tell us that this cannot hold
true. Indeed, there are even two reasons which reflect this general equivalence
in the realization:

Nodes uy, ug: It is possible that the cofactors of f with respect to z; are
already represented in the original OBDD.

Nodes vg, v;: The preservation of the nodes v; and vy is only necessary if
besides the original reference starting in the node v there is at least one other



9.2 Dynamic Reordering 153

Figure 9.6. Special case of the variable swap where fo does not depend on z;

reference. In a typical implementation these references cannot be efficiently
determined, but the number of these references can be efficiently determined
(see Section 7.1.6). If the reference counter of v; is zero after deleting the
reference from the node v, then v; can be removed. The same holds true
for vg.

In the special cases where at least one of the two successor nodes of v is not
labeled by z; analogous constructions can be performed. For example, let the
cofactor fy be independent of the variable z;. By means of the construction
in Fig. 9.6 the special case can be performed in such a way that all existing
references remain valid.

Memory management. During performing a variable swap many dead
nodes can arise. This suggests connecting the procedure directly with a
garbage collection. That connection can be achieved as follows. Before start-
ing an algorithm based on variable swaps a garbage collection is called, and
the contents of the computed table is deleted such that all dead nodes are
deleted. When swapping two neighboring variables z; and z;, only the ref-
erence counters of the nodes u; and ug may be decreased. If a reference
counter reaches the value zero, then the node is removed immediately. In
this way, it is guaranteed in a typical memory management framework that
during dynamic reordering no dead nodes are carried along.

Complemented edges. In case of OBDDs with complemented edges the
variable swap can be realized analogously. Here, it may happen at first that
during the construction a 1-edge obtains the complement bit. But this can
be corrected quickly and locally. We assume that not the subfunction fio
itself but instead its complement is represented. Hence, the edge to the sub-
OBDD fi¢ carries the complement bit. Swapping the variables first leads to
the graph in Fig. 9.7. The OBDD contains a complemented 1-edge which



154 9. Optimizing the Variable Order

Figure 9.7. Variable swap in case of complemented edges

is drawn as a bold arrow. The figure also shows the transformation which
serves to remove the complement bit from the 1-edge. Here, it is important
that no unconcerned edge is affected by this transformation. At the end of
the construction uniqueness of the representation has been re-established.

Time consumption. The efficiency of the variable swap substantially de-
pends on the time needed for accessing the set of all nodes with label z;. The
time- and space-efficient framework in the form presented in Chapter 7 does
not allow one to realize this access efficiently. However, a small modification
can change this.

Let us recall that the access to the nodes is performed by means of a unique
table. From each node with label z; we have a very fast access to its sons, but
not to all the other nodes with label z;. However, by introducing a separate
unique table for each variable z;, this situation changes. Now, by using the
collision lists we have fast access to the set of all nodes with label z;. The
required time for this access is

O(#tlists + #nodes),

where #lists is the number of collision lists in the unique table, and #nodes
is the number of nodes in the table. Typically, the number of nodes is greater
than the number of collision lists, so all nodes with label x; can be visited in
linear time.

As for each node with label z; only constantly many operations are per-
formed, the variable swap can be performed in linear time with regard to
number of nodes with label z;.



