Skip to content
This repository was archived by the owner on Jun 3, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions src/sparseml/pytorch/optim/modifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,9 +196,7 @@ def initialize(
for individual modifiers.
"""
self._initialized = True

if loggers:
self.initialize_loggers(loggers)
self.initialize_loggers(loggers)

def initialize_loggers(self, loggers: Union[None, List[BaseLogger]]):
"""
Expand Down
22 changes: 11 additions & 11 deletions src/sparseml/pytorch/optim/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,11 +81,11 @@ def __init__(
):
# do not call into super since this instance is not passing all calls to
# the nested optimizer
warnings.warn(
"ScheduledOptimizer is deprecated and will be deleted in the future. "
"Please replace with manager.modify",
UserWarning,
)
# warnings.warn(
# "ScheduledOptimizer is deprecated and will be deleted in the future. "
# "Please replace with manager.modify",
# UserWarning,
# ) TODO: uncomment in next release once docs are ready

manager.initialize(module, epoch=0.0, loggers=loggers)
self._wrapper = RecipeManagerStepWrapper(
Expand All @@ -107,7 +107,7 @@ def __getattr__(self, item):
if item in self.__dict__:
return getattr(self, item)

return getattr(self._wrapped, item)
return getattr(self._wrapper.wrapped_optimizer, item)

def __setattr__(self, key, value):
if key in [
Expand All @@ -118,23 +118,23 @@ def __setattr__(self, key, value):
]:
super().__setattr__(key, value)
else:
setattr(self._optimizer, key, value)
setattr(self._wrapper.wrapped_optimizer, key, value)

@property
def learning_rate(self) -> float:
"""
:return: convenience function to get the first learning rate for any of
the param groups in the optimizer
"""
return get_optim_learning_rate(self._optimizer)
return get_optim_learning_rate(self._wrapper.wrapped_optimizer)

@learning_rate.setter
def learning_rate(self, value: float):
"""
:param value: the learning rate to set for the optimizer,
will set all param groups in the optim to this value
"""
set_optim_learning_rate(self._optimizer, value)
set_optim_learning_rate(self._wrapper.wrapped_optimizer, value)

@property
def manager(self) -> ScheduledModifierManager:
Expand All @@ -144,10 +144,10 @@ def manager(self) -> ScheduledModifierManager:
return self._wrapper.wrapped_manager

def manager_state_dict(self):
return self._manager.state_dict()
return self._wrapper.wrapped_manager.state_dict()

def load_manager_state_dict(self, state_dict):
self._manager.load_state_dict(state_dict)
self._wrapper.wrapped_manager.load_state_dict(state_dict)

def step(self, closure=None):
"""
Expand Down
10 changes: 0 additions & 10 deletions tests/sparseml/pytorch/optim/test_modifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,11 +216,6 @@ def test_log_update(
model = model_lambda()
optimizer = optim_lambda(model)

with pytest.raises(RuntimeError):
modifier.log_update(model, optimizer, test_epoch, test_steps_per_epoch)

self.initialize_helper(modifier, model, log_initialize=False)

with pytest.raises(RuntimeError):
modifier.log_update(model, optimizer, test_epoch, test_steps_per_epoch)

Expand Down Expand Up @@ -496,11 +491,6 @@ def test_scheduled_log_update(
model = model_lambda()
optimizer = optim_lambda(model)

with pytest.raises(RuntimeError):
modifier.scheduled_log_update(model, optimizer, 0.0, test_steps_per_epoch)

self.initialize_helper(modifier, model, log_initialize=False)

with pytest.raises(RuntimeError):
modifier.scheduled_log_update(model, optimizer, 0.0, test_steps_per_epoch)

Expand Down