From 90dbcae79008d432e22aeccbfd2a2ae6c1a8b32f Mon Sep 17 00:00:00 2001 From: Konstantin Date: Tue, 8 Mar 2022 08:03:16 -0500 Subject: [PATCH 1/2] Update: datasets update to 18.4 --- src/sparseml/transformers/__init__.py | 2 +- src/sparseml/transformers/sparsification/question_answering.py | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/src/sparseml/transformers/__init__.py b/src/sparseml/transformers/__init__.py index 6a887388799..da1c516ace1 100644 --- a/src/sparseml/transformers/__init__.py +++ b/src/sparseml/transformers/__init__.py @@ -60,7 +60,7 @@ def _install_transformers_and_deps(): "pip", "install", transformers_requirement, - "datasets<1.18.0", + "datasets<=1.18.4", "sklearn", "seqeval", ] diff --git a/src/sparseml/transformers/sparsification/question_answering.py b/src/sparseml/transformers/sparsification/question_answering.py index c13a0037978..ba445e5060c 100644 --- a/src/sparseml/transformers/sparsification/question_answering.py +++ b/src/sparseml/transformers/sparsification/question_answering.py @@ -299,7 +299,9 @@ def postprocess_qa_predictions( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None + or len(offset_mapping[start_index]) < 2 or offset_mapping[end_index] is None + or len(offset_mapping[end_index]) < 2 ): continue # Don't consider answers with a length that is either < 0 or > From b79639817aa287cfbab2662748df9819f95d3dfc Mon Sep 17 00:00:00 2001 From: Konstantin Date: Mon, 21 Mar 2022 09:31:44 -0400 Subject: [PATCH 2/2] Fix: grad scaler correct passing when no scaler --- src/sparseml/transformers/sparsification/trainer.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/sparseml/transformers/sparsification/trainer.py b/src/sparseml/transformers/sparsification/trainer.py index 600c9d2be11..f88db3bfc25 100644 --- a/src/sparseml/transformers/sparsification/trainer.py +++ b/src/sparseml/transformers/sparsification/trainer.py @@ -251,13 +251,14 @@ def create_optimizer(self): self.manager, steps_per_epoch=self.manager_steps_per_epoch, loggers=self.logger_manager, - grad_sampler=self.grad_sampler, + initialize_kwargs={"grad_sampler": self.grad_sampler}, ) if not self.manager.initialized: self.manager.initialize( self.model, loggers=self.logger_manager, distillation_teacher=self.teacher, + grad_sampler=self.grad_sampler, ) self.manager_initialized = True _LOGGER.info(