Skip to content
This repository was archived by the owner on Jun 3, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 10 additions & 77 deletions docs/source/models.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,83 +53,16 @@ The contents of each model are made up of the following:

### Image Classification

| Model Tag | Validation Baseline Metric |
| ------------------------------------------------------------------------------------------ | -------------------------- |
| cv/classification/efficientnet-b0/pytorch/sparseml/imagenet/base-none | 77.3% top1 accuracy |
| cv/classification/efficientnet-b0/pytorch/sparseml/imagenet/arch-moderate | 76.5% top1 accuracy |
| cv/classification/efficientnet-b4/pytorch/sparseml/imagenet/base-none | 83.0% top1 accuracy |
| cv/classification/efficientnet-b4/pytorch/sparseml/imagenet/arch-moderate | 82.1% top1 accuracy |
| cv/classification/inception_v3/pytorch/sparseml/imagenet/base-none | 77.4% top1 accuracy |
| cv/classification/inception_v3/pytorch/sparseml/imagenet/pruned-conservative | 77.4% top1 accuracy |
| cv/classification/inception_v3/pytorch/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
| cv/classification/mnistnet/pytorch/sparseml/mnist/base-none | 99.4% top1 accuracy |
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/base-none | 70.9% top1 accuracy |
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-conservative | 70.9% top1 accuracy |
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate | 70.1% top1 accuracy |
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned_quant-moderate | 70.1% top1 accuracy |
| cv/classification/mobilenet_v2-1.0/pytorch/sparseml/imagenet/base-none | 71.9% top1 accuracy |
| cv/classification/resnet_v1-101/keras/sparseml/imagenet/base-none | 77.4% top1 accuracy |
| cv/classification/resnet_v1-101/keras/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
| cv/classification/resnet_v1-101/pytorch/sparseml/imagenet/base-none | 77.4% top1 accuracy |
| cv/classification/resnet_v1-101/pytorch/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
| cv/classification/resnet_v1-101/pytorch/torchvision/imagenet/base-none | 76.6% top1 accuracy |
| cv/classification/resnet_v1-101_2x/pytorch/sparseml/imagenet/base-none | 78.8% top1 accuracy |
| cv/classification/resnet_v1-101_2x/pytorch/torchvision/imagenet/base-none | 78.8% top1 accuracy |
| cv/classification/resnet_v1-152/keras/sparseml/imagenet/base-none | 78.3% top1 accuracy |
| cv/classification/resnet_v1-152/keras/sparseml/imagenet/pruned-moderate | 77.5% top1 accuracy |
| cv/classification/resnet_v1-152/pytorch/sparseml/imagenet/base-none | 78.3% top1 accuracy |
| cv/classification/resnet_v1-152/pytorch/sparseml/imagenet/pruned-moderate | 77.5% top1 accuracy |
| cv/classification/resnet_v1-152/pytorch/torchvision/imagenet/base-none | 77.5% top1 accuracy |
| cv/classification/resnet_v1-18/pytorch/sparseml/imagenet/base-none | 69.8% top1 accuracy |
| cv/classification/resnet_v1-18/pytorch/sparseml/imagenet/pruned-conservative | 69.8% top1 accuracy |
| cv/classification/resnet_v1-18/pytorch/torchvision/imagenet/base-none | 69.8% top1 accuracy |
| cv/classification/resnet_v1-20/keras/sparseml/cifar_10/base-none | 91.3% top1 accuracy |
| cv/classification/resnet_v1-34/pytorch/sparseml/imagenet/base-none | 73.3% top1 accuracy |
| cv/classification/resnet_v1-34/pytorch/sparseml/imagenet/pruned-conservative | 73.3% top1 accuracy |
| cv/classification/resnet_v1-34/pytorch/torchvision/imagenet/base-none | 73.3% top1 accuracy |
| cv/classification/resnet_v1-50/keras/sparseml/imagenet/base-none | 76.1% top1 accuracy |
| cv/classification/resnet_v1-50/keras/sparseml/imagenet/pruned-conservative | 76.1% top1 accuracy |
| cv/classification/resnet_v1-50/keras/sparseml/imagenet/pruned-moderate | 75.3% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none | 76.1% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned-conservative | 76.1% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned-moderate | 75.3% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate | 75.4% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet-augmented/pruned_quant-aggressive | 76.1% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/base-none | 99.9% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative | 99.9% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/torchvision/imagenet/base-none | 99.9% top1 accuracy |
| cv/classification/resnet_v1-50/pytorch/torchvision/imagenette/pruned-conservative | 99.9% top1 accuracy |
| cv/classification/resnet_v1-50_2x/pytorch/sparseml/imagenet/base-none | 78.1% top1 accuracy |
| cv/classification/resnet_v1-50_2x/pytorch/torchvision/imagenet/base-none | 78.1% top1 accuracy |
| cv/classification/vgg-11/pytorch/sparseml/imagenet/base-none | 69.0% top1 accuracy |
| cv/classification/vgg-11/pytorch/sparseml/imagenet/pruned-moderate | 68.3% top1 accuracy |
| cv/classification/vgg-11/pytorch/torchvision/imagenet/base-none | 68.3% top1 accuracy |
| cv/classification/vgg-11_bn/pytorch/sparseml/imagenet/base-none | 70.4% top1 accuracy |
| cv/classification/vgg-11_bn/pytorch/torchvision/imagenet/base-none | 70.4% top1 accuracy |
| cv/classification/vgg-13/pytorch/sparseml/imagenet/base-none | 69.9% top1 accuracy |
| cv/classification/vgg-13/pytorch/torchvision/imagenet/base-none | 69.9% top1 accuracy |
| cv/classification/vgg-13_bn/pytorch/sparseml/imagenet/base-none | 71.5% top1 accuracy |
| cv/classification/vgg-13_bn/pytorch/torchvision/imagenet/base-none | 71.5% top1 accuracy |
| cv/classification/vgg-16/pytorch/sparseml/imagenet/base-none | 71.6% top1 accuracy |
| cv/classification/vgg-16/pytorch/sparseml/imagenet/pruned-conservative | 71.6% top1 accuracy |
| cv/classification/vgg-16/pytorch/sparseml/imagenet/pruned-moderate | 70.8% top1 accuracy |
| cv/classification/vgg-16/pytorch/torchvision/imagenet/base-none | 70.8% top1 accuracy |
| cv/classification/vgg-16_bn/pytorch/sparseml/imagenet/base-none | 71.6% top1 accuracy |
| cv/classification/vgg-16_bn/pytorch/torchvision/imagenet/base-none | 71.6% top1 accuracy |
| cv/classification/vgg-19/pytorch/sparseml/imagenet/base-none | 72.4% top1 accuracy |
| cv/classification/vgg-19/pytorch/sparseml/imagenet/pruned-moderate | 71.7% top1 accuracy |
| cv/classification/vgg-19/pytorch/torchvision/imagenet/base-none | 71.7% top1 accuracy |
| cv/classification/vgg-19_bn/pytorch/sparseml/imagenet/base-none | 74.2% top1 accuracy |
| cv/classification/vgg-19_bn/pytorch/torchvision/imagenet/base-none | 74.2% top1 accuracy |
<div>
<iframe src="https://sparsezoo.neuralmagic.com/models/cv/classification" title="Image Classification Models" width="100%" height="500px"></iframe>
</div>

Image classification table not loading? View full table [here](https://sparsezoo.neuralmagic.com/models/cv/classification).

### Object Detection

| Model Tag | Validation Baseline Metric |
| ------------------------------------------------------------------------------------------ | -------------------------- |
| cv/detection/ssd-resnet50_300/pytorch/sparseml/coco/base-none | 42.7 mAP@0.5 |
| cv/detection/ssd-resnet50_300/pytorch/sparseml/coco/pruned-moderate | 41.8 mAP@0.5 |
| cv/detection/ssd-resnet50_300/pytorch/sparseml/voc/base-none | 52.2 mAP@0.5 |
| cv/detection/ssd-resnet50_300/pytorch/sparseml/voc/pruned-moderate | 51.5 mAP@0.5 |
| cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/base-none | 64.2 mAP@0.5 |
| cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/pruned-aggressive_97 | 62.4 mAP@0.5 |
| cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/pruned_quant-aggressive_94 | 60.5 mAP@0.5 |
<div>
<iframe src="https://sparsezoo.neuralmagic.com/models/cv/detection" title="Object Detect Models" width="100%" height="500px"></iframe>
</div>

Object detection table not loading? View full table [here](https://sparsezoo.neuralmagic.com/models/cv/detection).