Skip to content

neurodata/meda

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code
This branch is 117 commits ahead, 1 commit behind MrAE:master.

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README

meda: Matrix Exploratory Data Analysis is an R package for exploring data in the form of matrices.

for the python version, go here https://github.com/neurodata-nomads/pymeda

INSTALLATION

Currently there seems to be a problem installing in RStudio. The best way seems to be installing from R via command line.

To download and install run the following in R:

require(devtools)
devtools::install_github("neurodata/meda")

Run on your own data

To run meda on your own data do the following. Supposing your data is in a csv file with a header:

require(meda)
dat <- read.csv("fileName.csv", header=TRUE)

Example using Fisher's Iris data

First we center the feature columns and then we proceed with exploring the data.

dato <- iris[, -5]
dat <- data.frame(scale(dato, center = TRUE, scale = FALSE))
truth <- iris[, 5]

## optional column classes or feature classes
ccol <- rep(c("darkgreen", "purple"), 2)

plot(mlocation(dato, ccol = ccol))
plot(d1heat(dat, ccol = ccol))
plot(outliers(dat))
plot(medacor(dat, ccol = ccol))
plot(cumvar(dat))
pairhex(dat)

h <- hmc(dat, ccol = ccol)
plot(h, pch = truth)
plotDend(h)
stackM(h, centered = TRUE, ccol = ccol, depth = h$dat$height)
stackM(h, centered = TRUE, ccol = ccol)
clusterMeans(h)

Given a new set of n samples in R^d

follow instructions here

Releases

No releases published

Packages

No packages published

Languages

  • HTML 97.2%
  • R 2.3%
  • Other 0.5%