Experimental goals

- test for presence of P, PE signalling in layer 2/3 and layer 5
- identify PE neurons in layer 5
- correlate to eye movements

Workflow

- Linear corridor with mismatch and playback sessions like in Keller, Jordan, Leinweber, Attinger
- Glossary
 - <u>Closed-loop mode</u>: locomotion (ball movement) and visual flow (VR) are coupled by a factor (gain)
 - Open-loop mode: locomotion and visual flow are fully decoupled
 - <u>Mismatch</u>: global halts/change in speed of visual flow during running
 - Playback: replay of visual flow in presence / absence of running
- Example videos:

https://www.cell.com/cell/fulltext/S0092-8674(17)30583-4? returnURL=https%3A%2F%2Flinkin ghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867417305834%3Fshowall%3Dtrue#suppleme ntaryMaterial

- During habituation (**training**): mice run in *closed loop mode* with optic flow in VR coupled to movement*
- Each **experimental session** will be composed by a combination of these blocks:
 - 1) baseline block: closed loop mode
 - 2) <u>mismatch block type 1</u>: closed-loop + visual flow halts
 - 3) mismatch block type 2: closed-loop + visual flow gain change
 - 4) <u>playback block</u>: open-loop mode; the visual flow presented to the mice consists of playback stimuli ("movies") selected from a pre saved library created for each mouse (i.e. record VR from baseline block)

Parameters (json file):

- Global level parameters + a sequence of block parameters (baseline/mismatch/playback)
- Global level
 - VR gain: default value
 - Running threshold: predetermined from previous recordings
- Baseline and Mismatch blocks (closed-loop)
 - VR gain: default global gain is used if this is not set
 - Stimuli
 - Grating
 - Spatial frequency
 - Square or sinusoidal grating
 - Texture
 - Filename

- Motion cloud
 - Link to python configuration script
- Path to save visual flow to (i.e. to create the library for subsequent playback block): could be visual flow speed/running speed rather than heavier VR movies
- Visual flow halts (shown if the mouse is running see algorithm 1 below)
 - Halt probability (e.g. 0.5): whether we do the halt at a given time of running
 - Minimum running time delay (e.g. 2 sec): how long we wait after deciding to show halt
 - Random delay (e.g. Gaussian): the delay sampled from random distribution, shown after the minimum delay
 - Running threshold: optionally variable on the level of single blocks, but very unlikely this will be needed
 - Halt time (e.g. 1 sec)
 - Gain multiplier: for visual flow halts it's set to 0, for speeding up the visual field it's going to be positive value higher than the default
- Playback (open-loop)
 - VR gain
 - Stimuli
 - Path to library of playbacks saved during baseline block
 - Playback halts/speed ups
 - Halt probability: probability of the played back flow stopping at each given time
 - Minimum delay between halts (e.g. 2 sec): the delay before trying to halt again
 - Predictable stimulus during running (always happening after running initiation see algorithm 2 below)
 - Enable (True/False)
 - Minimum running time delay
 - Running threshold
 - Stimulus time (e.g. 1 sec)
 - Gain multiplier as above

Internal logic in stimuli workflow:

- Algorithm 1
 - Detect running state using running threshold
 - Apply halt probability result: halt True or halt False
 - If halt True:
 - Wait for minimum running time delay
 - Sample random delay
 - Check if still running after delays
 - If running True:
 - Deliver halt (alternatively, change gain multiplier)
 - If running False: restart
 - If halt False: restart
- Algorithm 2
 - Detect running state using running threshold in present session AND in playback session

- Wait for minimum running time delay
- Check if still running after delay in present session AND in playback session
- If running True:
 - Deliver halt (alternatively, change gain multiplier)
- If running False: restart