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Abstract: This paper deals with the solution of systems of ordinary differential equations
(ODEs) and systems of delay differential equations (DDEs) in which solution impulses
are applied at specific times. Such systems include a wide range of biologically motivated
examples. Event functions are used to locate the times at which impulses are applied.
Systems of ODEs and especially DDEs with impulses are often difficult to solve accurately,
but they can be solved quite efficiently using the event finders available in several capable
solvers. The manner in which this may be accomplished is illustrated using the Matlab
ODE and DDE solvers as well as the Fortran 90 ODE solver vode f90 and the Fortran
90 DDE solver dde solver. Systems with both time-dependent and with state-dependent
impulses are included. The use of a GUI for vode f90 is included to illustrate the need for
such GUIs for popular solvers.
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1 Introduction

Systems of ODEs of the form
y′ = f(t, y), t0 ≤ t ≤ tf (1)

with initial values
y(t0) = y0 (2)

as well as systems of DDES of the form

y′(t) = f(t, y(t), y(β1), . . . , y(βk)), t0 ≤ t ≤ tf (3)

with initial history
y(t) = h(t), t ≤ t0 (4)

and delays βi = βi(t, y(t)) ≤ t are sometimes subject to impulses. In the most common case,
time-dependent impulses are used. Time-dependent impulses can be solved by hard coding the
impulse, solving the problem on consecutive time intervals, applying the impulse to alter the
solution at the end of each interval, and joining the output together to obtain the desired solution.
For examples of studies involving time-dependent impulses, refer to [1], [4], [8], [13], and [14], and
the references included in these studies. Refer to [5] and [9] for theoretical discussions of systems
with impulses. More generally, impulses may be triggered by a state-dependent condition. This
situation is more difficult because impulse times are not known in advance. We mention that time-
dependent problems can sometimes be recast as related state-dependent problems. For example,
[1] considers a time-dependent periodic pulse to reduce a population below a threshold. However,
this problem could also be written as a state-dependent problem to calculate the impulse times in
the manner described below for Example 3.

We will describe an event location based procedure which may be used to handle state-
dependent impulses. Examples will be given to demonstrate that the algorithm is particularly
suited to a problem solving environment (PSE) such as Matlab [6]. We will also describe how
to use the procedure in Fortran 90 in a manner approaching the ease and user convenience of a
PSE such as Matlab. Systems with time-dependent impulses can be solved by any code which
contains provisions to return the solution at specified times and which allows the solution to be
altered and the integration to be restarted at these times. However, in order to solve systems with
state-dependent impulses, it is necessary that a code has provisions for locating the state-dependent
impulses. If a code contains provisions for rootfinding or event location, it can be used to handle
state-dependent impulses provided the relevant rootfinding is performed reliably and efficiently.
Event location is accomplished by finding the times corresponding to a set of event functions

0 = gi(t, y) (5)

simultaneously with the integration of the system.

2 Using Event Functions to Apply Impulses

On the surface the numerical difficulties in solving problems with impulses look somewhat akin to
those in solving ODEs and DDEs with discontinuities. Good ODE and DDE solvers are usually
capable of handling derivative discontinuities without help from the user. However, since impulses
must be applied at specific impulse times, it is not possible to simply ignore the impulse times and
hope a solver will manage to solve the problem on its own. Discontinuities in the DDE history
function caused by applying impulses must also be handled appropriately. In order to handle both
systems of ODEs and DDEs with either time-dependent or state-dependent impulses, we will adopt
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an approach based on event location. Generally, both the efficiency and the reliability of a solver can
be improved for problems with discontinuities by using event functions and integration switches
that permit the solver to locate discontinuity times in a smooth fashion and allow appropriate
changes in the problem to be made before continuing the integration.

A few comments are in order regarding the particular choices of solvers used in this paper.
For the problems we consider a solver needs provisions for event location as well as the ability
to continue an integration with a change of solution when events occur. The Matlab ODE and
DDE solvers, the Fortran 90 ODE solver vode f90 [3], and the Fortran 90 DDE solver dde solver

[15] contain effective event location provisions. We have used these solvers with very satisfactory
results both for systems with time-dependent as well as systems with state-dependent impulses.
Although we present ODE results for the Matlab solver ode23, we mention that similar results were
easily obtained using ode45, and ode15s due to the common design of the solvers. The Matlab
DDE solvers dde23 [12] and ddesd [10], and the Fortran 90 dde solver and its f77 predecessors
(not considered here) are the only readily available solvers we are aware of which contain event
location provisions necessary for systems of DDEs with state-dependent impulses.

When an event time is located, the appropriate impulse can be applied – thus changing the
solution. The integration can then be restarted at this time with the new solution. Although
each of the Matlab and Fortran 90 solvers has provisions for using event functions, the solvers
use rather different approaches for applying impulses. The Matlab solvers return control to the
calling script when terminal events are encountered. The calling script then applies the impulse
and the integration is restarted using the previous solution to obtain the solution history for the
new integration. The function predprey given in Section 3.3 illustrates the manner in which
this is accomplished using dde23. dde solver allows the user to provide a CHANGE subroutine
which is called at event times. The impulses are applied in this subroutine when it is called.
The integration is then continued from the impulse time after the solution has been changed
appropriately. Examples of the use of CHANGE functions may be found in [11]. vode f90 returns
control to the calling program which can apply the impulse and restart the integration at the
impulse time. We say more about the use of vode f90 in Section 4. Example programs for
each of the problems and solvers considered in this paper are available from the website http:

//www.radford.edu/∼thompson/impulses/.

For problems with time-dependent impulses occurring at known times t = t1 < t2 < · · · < tn, a
single event function g = t−Te may be used. Initially, Te = t1. Each time an event time Te = ti is
located, Te is changed to ti+1. With this approach the solver is allowed to step across ti smoothly
so it is not forced to deal with a derivative discontinuity while locating Te. The integration then
proceeds from Te using the new solution. The algorithms used in the solvers mentioned in this
paper ensure that each Te is located since they find the left-most zero of the event function. They
also ensure that the time-dependent events are located exactly which is a necessity for problems
with impulses.

For problems with state-dependent impulse times, an appropriate state dependent event func-
tion may be used. For example, if an impulse is to be applied when a solution component yk is
equal to a prescribed value Y , an event function gk(yk) = yk − Y is used. Event times are located
as accurately as possible depending on the accuracy of the solution components. This capability is
especially important for problems with impulses; it effectively precludes the use of a solver which
requires the user to supply hard-to-determine rootfinding tolerances. Each of the solvers in this
paper allows the direction of the zero crossing of an event function to be specified. This feature
may be used to locate event times more efficiently and to avoid numerical difficulties that might
otherwise arise if “false events” are located due to numerical inaccuracies in the impulse times Te
and corresponding solutions y (Te). Since each of the solvers allows a set of event functions to be
used, the solvers may be used for problems with multiple impulse conditions.
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3 Examples of Systems with Applied Impulses

3.1 Example 1: Time-Dependent DDE with Impulses

Time-dependent impulses arise naturally in many biological and physiological systems, including
ones from delayed cellular neural networks with impulsive effects. We will illustrate the use of
time-dependent impulses using the following example from [16]. Note that the delays for this
problem are sometimes very small and in fact vanish periodically during the integration, making
this a relatively difficult problem.

y′1 = −6y1(t) + sin(2t)f(y1(t)) + cos(3t)f(y2(t))

+ sin(3t)f

(
y1

(
t− 1 + cos(t)

2

))
+ sin(t)f

(
y2

(
t− 1 + sin(t)

2

))

+4 sin(t)

y′2 = −7y2(t) +
cos(t)

3
f(y1(t)) +

cos(2t)

2
f(y2(t))

+ cos(t)f

(
y1

(
t− 1 + cos(t)

2

))
+ cos(2t)f

(
y2

(
t− 1 + sin(t)

2

))

+2 cos(t)

where

f(x) =
|x+ 1| − |x− 1|

2
. (6)

The initial history is given by y1(t) = −0.5 and y2(t) = 0.5. At each impulse time tk = 2k
a time-dependent solution impulse is applied with y1(tk) being replaced by 1.2y1(tk) and y2(tk)
being replaced by 1.3y2(tk). An event function g(t) = t − Te is used where Te = 2 initially and
Te = 2(k+ 1) once T = 2k is located. Fig. 1 shows the phase plane for the solution computed with
impulses using dde solver. Similar results were obtained using dde23 and ddesd.

3.2 Example 2: State-Dependent ODE with Impulses

In order to illustrate the solution procedure as simply as possible when state-dependent impulses
are applied, we begin with the following simple predator-prey ODE system.

y′1 = αy1(t) + βy1(t)y2(t)

y′2 = γy2(t) + δy1(t)y2(t)

where α = 0.25, β = −0.01, γ = −1.0, δ = 0.01. The initial history is given by y1(t) = 80 and
y2(t) = 30. We modify this problem in the following manner. At each time Te at which the size
of the prey population y1(t) reaches a prescribed value Y we apply a solution impulse, changing
y1 (Te) to 0.8y1 (Te). A state-dependent event function g(y1) = y1 − Y is used to accomplish this.

Four impulse times, 5.9, 8.5, 11.3, and 14.8 are located for this value of Y . At each impulse time
the prey population is reduced. After the last impulse time is located the correct periodic solution
is obtained. Fig. 2 shows the phase plane for the solution computed using dvode f90 for Y = 114.
Similar results were obtained using the Matlab ODE solver ode15s (as well as the DDE solvers
considered although, of course, one would not normally use a DDE solver to solve an ODE).
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Figure 1: Neural Network DDE with Time-Dependent Impulses.

75 80 85 90 95 100 105 110 115
14

16

18

20

22

24

26

28

30

32

y
1

y 2

Figure 2: Predator-Prey ODE with State-Dependent Impulses.

3.3 Example 3: Impulse Harvesting Predator-Prey Models

This section considers more involved predator-prey systems with state-dependent impulses. The
examples in question belong to a class of state-dependent impulse harvesting predator-prey mod-
els. Solving these problems demonstrates that the solvers considered are capable of successfully
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handling the numerical difficulties that arise when impulses are present. The motivation for the
following model comes from fish conservation biology and harvesting where we are interested in
the scenario in which a species of fish is harvested for human consumption. However, the species
of interest is preyed upon by a predator species for which the prey species is its only food resource.
Moreover, in the interest of conservation, we are interested in harvesting strategies that promote
both stable fish harvest quotas and fish conservation of both predator and prey species.

Let N(t) and H(t) be the density of prey and predators respectively at time t. We assume that
prey are harvested via a state-dependent impulse, that is, when prey density reaches a threshold
level, Y , a proportion, p ∈ (0, 1), of the prey population are harvested. The basic model is then
given by the following system of coupled DDEs.

dN

dt
(t) = rN(t)

(
1− N(t− τ1)

K

)
− aN(t)H(t) (7a)

dH

dt
(t) = abN(t− τ2)H(t− τ2)− dH(t) (7b)

for N(t) 6= Y , and

∆N(t) := N(t+)−N(t−) = −pN(t) (7c)

∆H(t) := H(t+)−H(t−) = 0 (7d)

for N(t) = Y .
Here we assume that in the absence of predation and harvesting the prey grow logistically with

intrinsic growth rate r and carrying capacity K. However, the prey’s regulatory effect depends on
the population at an earlier time, t − τ1, which takes into account the development period, thus
giving the classic delayed logistic equation. Prey are preyed upon at a per capita rate aH(t) which
is converted into predator biomass with conversion rate b. However, predator development time
has period τ2 which must be taken into account. We also assume that predators have a background
mortality rate d.

This system has three equilibrium solutions with the one of interest (species coexistence) given
by

(N0, H0) =

(
d

ab
,
r

a

(
1− d

abK

))
. (8)

The following code illustrates the manner in which dde23 may be used to solve a problem of
this type. (Note: For reasons of space, we have not included various plotting commands used in
the program.) The program has several noteworthy features. It successively solves (7) between
impulse times. Such times occur when y1(t) = Y ; they are located using the Events option. The
impulse is then applied and the new solution is supplied as the initial solution for the next call
using the InitialY option. This is crucial for problems with impulses since the previous history
would be used to obtain the initial solution otherwise.

function predprey

r = 1; K = 1; a = 2; b = 1; d = 1; impcount = 0;

Y = 1.2 * (d/(a*b)); p = 0.3; tstar = 0; tfinal = 40;

while true

if (impcount ==0 )

options = ddeset(’Events’,@events,’AbsTol’,1e-9,...

’RelTol’,1e-9);

sol = dde23(@ddes, [0.0 0.0], ....

[0.2; 0.1], [tstar,tfinal], options);
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else

% Specify the new solution at impulse times...

options = ddeset(options, ’InitialY’,...

[(1-p)*sol.y(1,end); sol.y(2,end)]);

sol = dde23(@ddes, [0.0 0.0], ....

sol, [tstar,tfinal], options);

end

tstar = sol.x(end);

impcount = impcount + 1;

if (tstar >= tfinal)

break;

end

end

%===Nested functions==============================

% Evaluate the DDES...

function dydt = ddes(t,y,Z)

dydt = [r*y(1)*(1-(Z(1,1)/K))-a*y(1)*y(2); ...

a*b*Z(1,2)*Z(2,2)-d*y(2)];

end

% Evaluate the event function residuals...

function [value,isterminal,direction] = events(t,y,Z)

value = y(1)-Y;

isterminal = 1;

direction = 1;

end

%=================================================

end

Using the above code, we demonstrate that dde23 is successful in solving the simpler ODE
case, (τ1, τ2) = (0, 0), when the system is solved without impulses (Fig. 3 (a)) and with impulses
(Fig. 3 (b)). Similar results were obtained using ddesd and dde solver.
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Figure 3: Predator-Prey Harvesting Model with State-Dependent Impulses (τ1 = 0, τ2 = 0).

In the absence of harvesting the predator-prey ODE system oscillates into the coexistence
equilibrium (8). However, when the system is subject to prey harvesting the long-term dynamics
significantly changes depending on the harvesting threshold, Y . If Y < N0, then N(t) < N0 for all
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t. It then follows that

dH

dt
= abN(t)H(t)− dH(t) < (abN0 − d)H(t) = 0 (9)

since N0 =
d

ab
. Because dH/dt < 0 the predators go extinct. Conversely,

dH

dt
> 0 if Y > N0.

In this case the predator population will always grow while the prey are subject to the harvesting
(Fig. 3 (b)). At first there is insufficient prey to sustain the predators and so the prey increase and
the predators decrease in density; but as the prey increase this allows the predators to increase until
eventually the prey hit the threshold and are harvested. The solution now enters the harvesting
strategy phase where the predators always increase (but may suffer a decrease after harvesting
depending on the proportion of harvest, p). Eventually the predator population becomes so large
that it stops the prey from reaching harvesting density, after which the system goes to equilibrium.
Therefore, the ODE model predicts that either no sustainable harvesting strategy exists, or that
sustained harvesting of prey is achievable but at the cost of causing predator extinction.

For the DDE case, dde23 successfully solves the predator-prey model. For some delay parameter
choices (e.g., those given in the displayed dde23 program) the solution eventually converges to the
equilibrium solution of (7) (Fig. 4 (a)). Some other parameters choices (e.g., (τ1, τ2) = (4, 0.001))
lead to solutions which are periodic for a very long time and do not converge to the equilibrium as
the prey level zigzigs back and forth horizontally, indicating a successful harvesting strategy which
conserves the predator population (Fig. 4 (b)).
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Figure 4: Predator-Prey Harvesting Model with State-Dependent Impulses. In (a) τ1 = 0.2, τ2 =
0.2 and in (b) τ1 = 4, τ2 = 0.001.

It is clear that the feedback between the time delays and harvesting can significantly influence
the long-term dynamics of the model. For example, assume for the sake of simplicity that τ2 = 0.
In this case, it is well-known for the delayed logistic equation that the system becomes unstable if
τ1 becomes sufficiently large [7]. However, when we couple this with the predator dynamics, the
predator acts as a stabilizing feedback and actually manages to stabilize the system whereas the
prey would oscillate otherwise. We demonstrate this in Fig. 5 where we vary the delays τ1 and τ2,
showing the various periodic behavior of solutions (white indicates equilibria and black indicates
long periodic behavior).

We have used dde23, ddesd, and dde solver to solve Example 3 for a wide range of parameters
and delays to determine that they correctly solve the problem. We note that solving the problem
in the presence of impulses is a nontrivial task. In particular, numerous impulse times must be
located in order to apply the relevant impulses. It is also necessary in some cases to integrate over
very long intervals in order to obtain the correct limiting behavior of the solution. In addition,
small step sizes are necessary at event times in order to handle the discontinuities specified by the
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Figure 5: Behavior of Solutions for the Predator-Prey Harvesting Model.

InitialY option. Depending on the dynamics for particular choices of the problem parameters,
very many (several thousand in some cases) closely spaced impulse times may occur. Although
each of the solvers located the relevant impulse times, these systems pose worthy challenges for
the solvers since an enormous amount of root finding is required.

4 A Step in the Right Direction: GUIs for Fortran Solvers

The solution procedure we have described is ideally suited to a PSE such as Matlab which con-
tains solvers that have the ability to return control to the calling script when a terminal event
occurs. Since the Fortran 90 DDE solver dde solver was developed with the design of the Mat-
lab program dde23 in mind, the necessary calculations are only slightly more involved than the
corresponding calculations for the Matlab ODE and DDE solvers. In particular, dde solver

allows the user to supply a CHANGE function which is called whenever an event is located. How-
ever, a straightforward solution for a Fortran solver such as vode f90, a Fortran 90 extension of
the well-known vode.f Fortran 77 solver [2], becomes a bit awkward. After calling the solver,
the solution must be processed manually to determine the type of return. If an impulse time is
located, the solution must be altered and the integration restarted. In addition, the solution of
complicated problems such as those described in this paper requires user provided subroutines to
evaluate the derivatives, to evaluate the residuals of the event functions, and to process impulse
times and apply solution impulses.

To facilitate the use of vode f90, we developed an experimental Java Graphical User Interface
(GUI), Vlad, which prompts the user for problem information and writes the necessary Fortran
90 subroutines and calling program. Fig. 6 depicts the top level Vlad menu screen. (All vode f90

options are available in appropriate submenus.) Vlad allows vode f90 to be used in a manner
similar to that of the Matlab ODE solvers. It was designed in a fashion similar to ones previously
developed for the Fortran 77 predecessors of dde solver. Particularly noteworthy is the fact that
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the GUI allows the user to supply a CHANGE subroutine which resembles that used by dde solver.
Although use of Vlad requires a knowledge of Fortran 90, it is possible to easily organize the cal-
culations and to simplify the usage of vode f90 considerably. This suggests that the development
of similar GUIs for other available Fortran ODE and DDE solvers will increase the ease of use of
the solvers.

Figure 6: Vlad GUI for vode f90.

5 Summary

This paper described the manner in which ODE and DDE solvers with root finding capabilities can
be used to solve systems of ODEs and DDEs in which either time-dependent or state-dependent
solution impulses must be applied at different times. The manner in which this can be done
using event functions was illustrated using different solvers to solve several biologically motivated
examples. Results were given for several rather different ODE and DDE solvers. The results show
that systems with either time-dependent or state-dependent impulses can be solved satisfactorily
provided the solver has provisions for effective event location. Experience with one of the solvers
considered, vode f90, illustrated that usage of popular ODE and DDE solvers can be simplified by
the use of GUIs intended to perform many common tasks thereby relieving the user of the necessity
to do so.
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