This repository has been archived by the owner. It is now read-only.
Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1202 lines (1116 sloc) 54 KB
/*
* Copyright (c) 2008-2009 Brent Fulgham <bfulgham@gmail.org>. All rights reserved.
*
* This source code is a modified version of the CoreFoundation sources released by Apple Inc. under
* the terms of the APSL version 2.0 (see below).
*
* For information about changes from the original Apple source release can be found by reviewing the
* source control system for the project at https://sourceforge.net/svn/?group_id=246198.
*
* The original license information is as follows:
*
* Copyright (c) 2008 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/* CFArray.c
Copyright 1998-2002, Apple, Inc. All rights reserved.
Responsibility: Christopher Kane
*/
#include "CFInternal.h"
#include <CoreFoundation/CFArray.h>
#include "CFStorage.h"
#include "CFPriv.h"
#include <string.h>
#include "auto_stubs.h"
#if DEPLOYMENT_TARGET_WINDOWS
#define bzero(buf, bytes) ((void) memset ((buf), 0x00, (bytes)))
CF_EXPORT bool _CFArrayIsMutable(CFArrayRef array);
#endif
__private_extern__ void _CFStorageSetWeak(CFStorageRef storage);
const CFArrayCallBacks kCFTypeArrayCallBacks = {0, __CFTypeCollectionRetain, __CFTypeCollectionRelease, CFCopyDescription, CFEqual};
static const CFArrayCallBacks __kCFNullArrayCallBacks = {0, NULL, NULL, NULL, NULL};
struct __CFArrayBucket {
const void *_item;
};
enum {
__CF_MAX_BUCKETS_PER_DEQUE = 262140
};
CF_INLINE CFIndex __CFArrayDequeRoundUpCapacity(CFIndex capacity) {
if (capacity < 4) return 4;
return __CFMin((1 << flsl(capacity)), __CF_MAX_BUCKETS_PER_DEQUE);
}
struct __CFArrayDeque {
uint32_t _leftIdx;
uint32_t _capacity;
int32_t _bias;
#if __LP64__
uint32_t _pad; // GC: pointers must be 8-byte aligned for the collector to find them.
#endif
/* struct __CFArrayBucket buckets follow here */
};
struct __CFArray {
CFRuntimeBase _base;
CFIndex _count; /* number of objects */
CFIndex _mutations;
void *_store; /* can be NULL when MutableDeque */
};
/* Flag bits */
enum { /* Bits 0-1 */
__kCFArrayImmutable = 0,
__kCFArrayDeque = 2,
__kCFArrayStorage = 3
};
enum { /* Bits 2-3 */
__kCFArrayHasNullCallBacks = 0,
__kCFArrayHasCFTypeCallBacks = 1,
__kCFArrayHasCustomCallBacks = 3 /* callbacks are at end of header */
};
/*
Bits 4 & 5 are reserved for GC use.
Bit 4, if set, indicates that the array is weak.
Bit 5 marks whether finalization has occured and, thus, whether to continue to do special retain/release processing of elements.
*/
CF_INLINE bool isStrongMemory(CFTypeRef collection) {
return __CFBitfieldGetValue(((const CFRuntimeBase *)collection)->_cfinfo[CF_INFO_BITS], 4, 4) == 0;
}
CF_INLINE bool isWeakMemory(CFTypeRef collection) {
return __CFBitfieldGetValue(((const CFRuntimeBase *)collection)->_cfinfo[CF_INFO_BITS], 4, 4) != 0;
}
CF_INLINE bool hasBeenFinalized(CFTypeRef collection) {
return __CFBitfieldGetValue(((const CFRuntimeBase *)collection)->_cfinfo[CF_INFO_BITS], 5, 5) != 0;
}
CF_INLINE void markFinalized(CFTypeRef collection) {
__CFBitfieldSetValue(((CFRuntimeBase *)collection)->_cfinfo[CF_INFO_BITS], 5, 5, 1);
}
CF_INLINE CFIndex __CFArrayGetType(CFArrayRef array) {
return __CFBitfieldGetValue(((const CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS], 1, 0);
}
CF_INLINE CFIndex __CFArrayGetSizeOfType(CFIndex t) {
CFIndex size = 0;
size += sizeof(struct __CFArray);
if (__CFBitfieldGetValue(t, 3, 2) == __kCFArrayHasCustomCallBacks) {
size += sizeof(CFArrayCallBacks);
}
return size;
}
CF_INLINE CFIndex __CFArrayGetCount(CFArrayRef array) {
return array->_count;
}
CF_INLINE void __CFArraySetCount(CFArrayRef array, CFIndex v) {
((struct __CFArray *)array)->_count = v;
}
/* Only applies to immutable and mutable-deque-using arrays;
* Returns the bucket holding the left-most real value in the latter case. */
CF_INLINE struct __CFArrayBucket *__CFArrayGetBucketsPtr(CFArrayRef array) {
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
return (struct __CFArrayBucket *)((uint8_t *)array + __CFArrayGetSizeOfType(((CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS]));
case __kCFArrayDeque: {
struct __CFArrayDeque *deque = (struct __CFArrayDeque *)array->_store;
return (struct __CFArrayBucket *)((uint8_t *)deque + sizeof(struct __CFArrayDeque) + deque->_leftIdx * sizeof(struct __CFArrayBucket));
}
}
return NULL;
}
/* This shouldn't be called if the array count is 0. */
CF_INLINE struct __CFArrayBucket *__CFArrayGetBucketAtIndex(CFArrayRef array, CFIndex idx) {
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
case __kCFArrayDeque:
return __CFArrayGetBucketsPtr(array) + idx;
case __kCFArrayStorage: {
CFStorageRef store = (CFStorageRef)array->_store;
return (struct __CFArrayBucket *)CFStorageGetValueAtIndex(store, idx, NULL);
}
}
return NULL;
}
CF_INLINE CFArrayCallBacks *__CFArrayGetCallBacks(CFArrayRef array) {
CFArrayCallBacks *result = NULL;
switch (__CFBitfieldGetValue(((const CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS], 3, 2)) {
case __kCFArrayHasNullCallBacks:
return (CFArrayCallBacks *)&__kCFNullArrayCallBacks;
case __kCFArrayHasCFTypeCallBacks:
return (CFArrayCallBacks *)&kCFTypeArrayCallBacks;
case __kCFArrayHasCustomCallBacks:
break;
}
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
result = (CFArrayCallBacks *)((uint8_t *)array + sizeof(struct __CFArray));
break;
case __kCFArrayDeque:
case __kCFArrayStorage:
result = (CFArrayCallBacks *)((uint8_t *)array + sizeof(struct __CFArray));
break;
}
return result;
}
CF_INLINE bool __CFArrayCallBacksMatchNull(const CFArrayCallBacks *c) {
return (NULL == c ||
(c->retain == __kCFNullArrayCallBacks.retain &&
c->release == __kCFNullArrayCallBacks.release &&
c->copyDescription == __kCFNullArrayCallBacks.copyDescription &&
c->equal == __kCFNullArrayCallBacks.equal));
}
CF_INLINE bool __CFArrayCallBacksMatchCFType(const CFArrayCallBacks *c) {
return (&kCFTypeArrayCallBacks == c ||
(c->retain == kCFTypeArrayCallBacks.retain &&
c->release == kCFTypeArrayCallBacks.release &&
c->copyDescription == kCFTypeArrayCallBacks.copyDescription &&
c->equal == kCFTypeArrayCallBacks.equal));
}
struct _releaseContext {
void (*release)(CFAllocatorRef, const void *);
CFAllocatorRef allocator;
};
static void __CFArrayStorageRelease(const void *itemptr, void *context) {
struct _releaseContext *rc = (struct _releaseContext *)context;
INVOKE_CALLBACK2(rc->release, rc->allocator, *(const void **)itemptr);
*(const void **)itemptr = NULL; // GC: clear item to break strong reference.
}
static void __CFArrayReleaseValues(CFArrayRef array, CFRange range, bool releaseStorageIfPossible) {
const CFArrayCallBacks *cb = __CFArrayGetCallBacks(array);
CFAllocatorRef allocator;
CFIndex idx;
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
if (NULL != cb->release && 0 < range.length && !hasBeenFinalized(array)) {
// if we've been finalized then we know that
// 1) we're using the standard callback on GC memory
// 2) the slots don't' need to be zeroed
struct __CFArrayBucket *buckets = __CFArrayGetBucketsPtr(array);
allocator = __CFGetAllocator(array);
for (idx = 0; idx < range.length; idx++) {
INVOKE_CALLBACK2(cb->release, allocator, buckets[idx + range.location]._item);
buckets[idx + range.location]._item = NULL; // GC: break strong reference.
}
}
break;
case __kCFArrayDeque: {
struct __CFArrayDeque *deque = (struct __CFArrayDeque *)array->_store;
if (0 < range.length && NULL != deque && !hasBeenFinalized(array)) {
struct __CFArrayBucket *buckets = __CFArrayGetBucketsPtr(array);
if (NULL != cb->release) {
allocator = __CFGetAllocator(array);
for (idx = 0; idx < range.length; idx++) {
INVOKE_CALLBACK2(cb->release, allocator, buckets[idx + range.location]._item);
buckets[idx + range.location]._item = NULL; // GC: break strong reference.
}
} else {
for (idx = 0; idx < range.length; idx++) {
buckets[idx + range.location]._item = NULL; // GC: break strong reference.
}
}
}
if (releaseStorageIfPossible && 0 == range.location && __CFArrayGetCount(array) == range.length) {
allocator = __CFGetAllocator(array);
if (NULL != deque) _CFAllocatorDeallocateGC(allocator, deque);
__CFArraySetCount(array, 0); // GC: _count == 0 ==> _store == NULL.
((struct __CFArray *)array)->_store = NULL;
}
break;
}
case __kCFArrayStorage: {
CFStorageRef store = (CFStorageRef)array->_store;
if (NULL != cb->release && 0 < range.length && !hasBeenFinalized(array)) {
struct _releaseContext context;
allocator = __CFGetAllocator(array);
context.release = cb->release;
context.allocator = allocator;
CFStorageApplyFunction(store, range, __CFArrayStorageRelease, &context);
}
if (releaseStorageIfPossible && 0 == range.location && __CFArrayGetCount(array) == range.length) {
_CFReleaseGC(store);
__CFArraySetCount(array, 0); // GC: _count == 0 ==> _store == NULL.
((struct __CFArray *)array)->_store = NULL;
__CFBitfieldSetValue(((CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS], 1, 0, __kCFArrayDeque);
}
break;
}
}
}
#if defined(DEBUG)
CF_INLINE void __CFArrayValidateRange(CFArrayRef array, CFRange range, const char *func) {
CFAssert3(0 <= range.location && range.location <= CFArrayGetCount(array), __kCFLogAssertion, "%s(): range.location index (%d) out of bounds (0, %d)", func, range.location, CFArrayGetCount(array));
CFAssert2(0 <= range.length, __kCFLogAssertion, "%s(): range.length (%d) cannot be less than zero", func, range.length);
CFAssert3(range.location + range.length <= CFArrayGetCount(array), __kCFLogAssertion, "%s(): ending index (%d) out of bounds (0, %d)", func, range.location + range.length, CFArrayGetCount(array));
}
#else
#define __CFArrayValidateRange(a,r,f)
#endif
static Boolean __CFArrayEqual(CFTypeRef cf1, CFTypeRef cf2) {
CFArrayRef array1 = (CFArrayRef)cf1;
CFArrayRef array2 = (CFArrayRef)cf2;
const CFArrayCallBacks *cb1, *cb2;
CFIndex idx, cnt;
if (array1 == array2) return true;
cnt = __CFArrayGetCount(array1);
if (cnt != __CFArrayGetCount(array2)) return false;
cb1 = __CFArrayGetCallBacks(array1);
cb2 = __CFArrayGetCallBacks(array2);
if (cb1->equal != cb2->equal) return false;
if (0 == cnt) return true; /* after function comparison! */
for (idx = 0; idx < cnt; idx++) {
const void *val1 = __CFArrayGetBucketAtIndex(array1, idx)->_item;
const void *val2 = __CFArrayGetBucketAtIndex(array2, idx)->_item;
if (val1 != val2) {
if (NULL == cb1->equal) return false;
if (!INVOKE_CALLBACK2(cb1->equal, val1, val2)) return false;
}
}
return true;
}
static CFHashCode __CFArrayHash(CFTypeRef cf) {
CFArrayRef array = (CFArrayRef)cf;
return __CFArrayGetCount(array);
}
static CFStringRef __CFArrayCopyDescription(CFTypeRef cf) {
CFArrayRef array = (CFArrayRef)cf;
CFMutableStringRef result;
const CFArrayCallBacks *cb;
CFAllocatorRef allocator;
CFIndex idx, cnt;
cnt = __CFArrayGetCount(array);
allocator = CFGetAllocator(array);
result = CFStringCreateMutable(allocator, 0);
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
CFStringAppendFormat(result, NULL, CFSTR("<CFArray %p [%p]>{type = immutable, count = %u, values = (\n"), cf, allocator, cnt);
break;
case __kCFArrayDeque:
CFStringAppendFormat(result, NULL, CFSTR("<CFArray %p [%p]>{type = mutable-small, count = %u, values = (\n"), cf, allocator, cnt);
break;
case __kCFArrayStorage:
CFStringAppendFormat(result, NULL, CFSTR("<CFArray %p [%p]>{type = mutable-large, count = %u, values = (\n"), cf, allocator, cnt);
break;
}
cb = __CFArrayGetCallBacks(array);
for (idx = 0; idx < cnt; idx++) {
CFStringRef desc = NULL;
const void *val = __CFArrayGetBucketAtIndex(array, idx)->_item;
if (NULL != cb->copyDescription) {
desc = (CFStringRef)INVOKE_CALLBACK1(cb->copyDescription, val);
}
if (NULL != desc) {
CFStringAppendFormat(result, NULL, CFSTR("\t%u : %@\n"), idx, desc);
CFRelease(desc);
} else {
CFStringAppendFormat(result, NULL, CFSTR("\t%u : <%p>\n"), idx, val);
}
}
CFStringAppend(result, CFSTR(")}"));
return result;
}
static void __CFResourceRelease(CFTypeRef cf, const void *ignored) {
kCFTypeArrayCallBacks.release(kCFAllocatorSystemDefault, cf);
}
static void __CFArrayDeallocate(CFTypeRef cf) {
CFArrayRef array = (CFArrayRef)cf;
// Under GC, keep contents alive when we know we can, either standard callbacks or NULL
// if (__CFBitfieldGetValue(cf->info, 5, 4)) return; // bits only ever set under GC
CFAllocatorRef allocator = __CFGetAllocator(array);
if (CF_IS_COLLECTABLE_ALLOCATOR(allocator)) {
// XXX_PCB keep array intact during finalization.
const CFArrayCallBacks *cb = __CFArrayGetCallBacks(array);
if (cb->retain == NULL && cb->release == NULL)
return;
if (cb == &kCFTypeArrayCallBacks || cb->release == kCFTypeArrayCallBacks.release) {
markFinalized(cf);
CFArrayApplyFunction((CFArrayRef)cf, CFRangeMake(0, __CFArrayGetCount(array)), (CFArrayApplierFunction)__CFResourceRelease, 0);
return;
}
}
__CFArrayReleaseValues(array, CFRangeMake(0, __CFArrayGetCount(array)), true);
}
static CFTypeID __kCFArrayTypeID = _kCFRuntimeNotATypeID;
static const CFRuntimeClass __CFArrayClass = {
_kCFRuntimeScannedObject,
"CFArray",
NULL, // init
NULL, // copy
__CFArrayDeallocate,
__CFArrayEqual,
__CFArrayHash,
NULL, //
__CFArrayCopyDescription
};
__private_extern__ void __CFArrayInitialize(void) {
__kCFArrayTypeID = _CFRuntimeRegisterClass(&__CFArrayClass);
}
CFTypeID CFArrayGetTypeID(void) {
return __kCFArrayTypeID;
}
static CFArrayRef __CFArrayInit(CFAllocatorRef allocator, UInt32 flags, CFIndex capacity, const CFArrayCallBacks *callBacks) {
struct __CFArray *memory;
UInt32 size;
__CFBitfieldSetValue(flags, 31, 2, 0);
if (CF_IS_COLLECTABLE_ALLOCATOR(allocator)) {
if (!callBacks || (callBacks->retain == NULL && callBacks->release == NULL)) {
__CFBitfieldSetValue(flags, 4, 4, 1); // setWeak
}
}
if (__CFArrayCallBacksMatchNull(callBacks)) {
__CFBitfieldSetValue(flags, 3, 2, __kCFArrayHasNullCallBacks);
} else if (__CFArrayCallBacksMatchCFType(callBacks)) {
__CFBitfieldSetValue(flags, 3, 2, __kCFArrayHasCFTypeCallBacks);
} else {
__CFBitfieldSetValue(flags, 3, 2, __kCFArrayHasCustomCallBacks);
}
size = __CFArrayGetSizeOfType(flags) - sizeof(CFRuntimeBase);
switch (__CFBitfieldGetValue(flags, 1, 0)) {
case __kCFArrayImmutable:
size += capacity * sizeof(struct __CFArrayBucket);
break;
case __kCFArrayDeque:
case __kCFArrayStorage:
break;
}
memory = (struct __CFArray*)_CFRuntimeCreateInstance(allocator, __kCFArrayTypeID, size, NULL);
if (NULL == memory) {
return NULL;
}
__CFBitfieldSetValue(memory->_base._cfinfo[CF_INFO_BITS], 6, 0, flags);
__CFArraySetCount((CFArrayRef)memory, 0);
switch (__CFBitfieldGetValue(flags, 1, 0)) {
case __kCFArrayImmutable:
if (isWeakMemory(memory)) { // if weak, don't scan
auto_zone_set_layout_type(__CFCollectableZone, memory, AUTO_OBJECT_UNSCANNED);
}
if (__CFOASafe) __CFSetLastAllocationEventName(memory, "CFArray (immutable)");
break;
case __kCFArrayDeque:
case __kCFArrayStorage:
if (__CFOASafe) __CFSetLastAllocationEventName(memory, "CFArray (mutable-variable)");
((struct __CFArray *)memory)->_mutations = 1;
((struct __CFArray*)memory)->_store = NULL;
break;
}
if (__kCFArrayHasCustomCallBacks == __CFBitfieldGetValue(flags, 3, 2)) {
CFArrayCallBacks *cb = (CFArrayCallBacks *)__CFArrayGetCallBacks((CFArrayRef)memory);
*cb = *callBacks;
FAULT_CALLBACK((void **)&(cb->retain));
FAULT_CALLBACK((void **)&(cb->release));
FAULT_CALLBACK((void **)&(cb->copyDescription));
FAULT_CALLBACK((void **)&(cb->equal));
}
return (CFArrayRef)memory;
}
CFArrayRef CFArrayCreate(CFAllocatorRef allocator, const void **values, CFIndex numValues, const CFArrayCallBacks *callBacks) {
CFArrayRef result;
const CFArrayCallBacks *cb;
struct __CFArrayBucket *buckets;
CFAllocatorRef bucketsAllocator;
void* bucketsBase;
CFIndex idx;
CFAssert2(0 <= numValues, __kCFLogAssertion, "%s(): numValues (%d) cannot be less than zero", __PRETTY_FUNCTION__, numValues);
result = __CFArrayInit(allocator, __kCFArrayImmutable, numValues, callBacks);
cb = __CFArrayGetCallBacks(result);
buckets = __CFArrayGetBucketsPtr(result);
bucketsAllocator = isStrongMemory(result) ? allocator : kCFAllocatorNull;
bucketsBase = CF_IS_COLLECTABLE_ALLOCATOR(bucketsAllocator) ? (void *)auto_zone_base_pointer(__CFCollectableZone, buckets) : NULL;
if (NULL != cb->retain) {
for (idx = 0; idx < numValues; idx++) {
CF_WRITE_BARRIER_BASE_ASSIGN(bucketsAllocator, bucketsBase, buckets->_item, (void *)INVOKE_CALLBACK2(cb->retain, allocator, *values));
values++;
buckets++;
}
}
else {
for (idx = 0; idx < numValues; idx++) {
CF_WRITE_BARRIER_BASE_ASSIGN(bucketsAllocator, bucketsBase, buckets->_item, *values);
values++;
buckets++;
}
}
__CFArraySetCount(result, numValues);
return result;
}
CFMutableArrayRef CFArrayCreateMutable(CFAllocatorRef allocator, CFIndex capacity, const CFArrayCallBacks *callBacks) {
CFAssert2(0 <= capacity, __kCFLogAssertion, "%s(): capacity (%d) cannot be less than zero", __PRETTY_FUNCTION__, capacity);
CFAssert2(capacity <= (CFIndex)(LONG_MAX / sizeof(void *)), __kCFLogAssertion, "%s(): capacity (%d) is too large for this architecture", __PRETTY_FUNCTION__, capacity);
return (CFMutableArrayRef)__CFArrayInit(allocator, __kCFArrayDeque, capacity, callBacks);
}
// This creates an array which is for CFTypes or NSObjects, with an ownership transfer --
// the array does not take a retain, and the caller does not need to release the inserted objects.
// The incoming objects must also be collectable if allocated out of a collectable allocator.
CFArrayRef _CFArrayCreate_ex(CFAllocatorRef allocator, Boolean isMutable, const void **values, CFIndex numValues) {
CFArrayRef result;
result = __CFArrayInit(allocator, isMutable ? __kCFArrayDeque : __kCFArrayImmutable, numValues, &kCFTypeArrayCallBacks);
if (!isMutable) {
struct __CFArrayBucket *buckets = __CFArrayGetBucketsPtr(result);
CF_WRITE_BARRIER_MEMMOVE(buckets, values, numValues * sizeof(struct __CFArrayBucket));
} else {
if (__CF_MAX_BUCKETS_PER_DEQUE <= numValues) {
CFStorageRef store = (CFStorageRef)CFMakeCollectable(CFStorageCreate(allocator, sizeof(const void *)));
if (__CFOASafe) __CFSetLastAllocationEventName(store, "CFArray (store-storage)");
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, result, result->_store, store);
CFStorageInsertValues(store, CFRangeMake(0, numValues));
CFStorageReplaceValues(store, CFRangeMake(0, numValues), values);
__CFBitfieldSetValue(((CFRuntimeBase *)result)->_cfinfo[CF_INFO_BITS], 1, 0, __kCFArrayStorage);
} else if (0 <= numValues) {
struct __CFArrayDeque *deque;
struct __CFArrayBucket *raw_buckets;
CFIndex capacity = __CFArrayDequeRoundUpCapacity(numValues);
CFIndex size = sizeof(struct __CFArrayDeque) + capacity * sizeof(struct __CFArrayBucket);
deque = (struct __CFArrayDeque *)_CFAllocatorAllocateGC(allocator, size, isStrongMemory(result) ? __kCFAllocatorGCScannedMemory : 0);
if (__CFOASafe) __CFSetLastAllocationEventName(deque, "CFArray (store-deque)");
deque->_leftIdx = (capacity - numValues) / 2;
deque->_capacity = capacity;
deque->_bias = 0;
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, result, result->_store, deque);
raw_buckets = (struct __CFArrayBucket *)((uint8_t *)deque + sizeof(struct __CFArrayDeque));
CF_WRITE_BARRIER_MEMMOVE(raw_buckets + deque->_leftIdx + 0, values, numValues * sizeof(struct __CFArrayBucket));
__CFBitfieldSetValue(((CFRuntimeBase *)result)->_cfinfo[CF_INFO_BITS], 1, 0, __kCFArrayDeque);
}
}
__CFArraySetCount(result, numValues);
return result;
}
CFArrayRef CFArrayCreateCopy(CFAllocatorRef allocator, CFArrayRef array) {
CFArrayRef result;
const CFArrayCallBacks *cb;
struct __CFArrayBucket *buckets;
CFAllocatorRef bucketsAllocator;
void* bucketsBase;
CFIndex numValues = CFArrayGetCount(array);
CFIndex idx;
if (CF_IS_OBJC(__kCFArrayTypeID, array)) {
cb = &kCFTypeArrayCallBacks;
} else {
cb = __CFArrayGetCallBacks(array);
}
result = __CFArrayInit(allocator, __kCFArrayImmutable, numValues, cb);
cb = __CFArrayGetCallBacks(result); // GC: use the new array's callbacks so we don't leak.
buckets = __CFArrayGetBucketsPtr(result);
bucketsAllocator = isStrongMemory(result) ? allocator : kCFAllocatorNull;
bucketsBase = CF_IS_COLLECTABLE_ALLOCATOR(bucketsAllocator) ? (void *)auto_zone_base_pointer(__CFCollectableZone, buckets) : NULL;
for (idx = 0; idx < numValues; idx++) {
const void *value = CFArrayGetValueAtIndex(array, idx);
if (NULL != cb->retain) {
value = (void *)INVOKE_CALLBACK2(cb->retain, allocator, value);
}
CF_WRITE_BARRIER_BASE_ASSIGN(bucketsAllocator, bucketsBase, buckets->_item, value);
buckets++;
}
__CFArraySetCount(result, numValues);
return result;
}
CFMutableArrayRef CFArrayCreateMutableCopy(CFAllocatorRef allocator, CFIndex capacity, CFArrayRef array) {
CFMutableArrayRef result;
const CFArrayCallBacks *cb;
CFIndex idx, numValues = CFArrayGetCount(array);
UInt32 flags;
if (CF_IS_OBJC(__kCFArrayTypeID, array)) {
cb = &kCFTypeArrayCallBacks;
}
else {
cb = __CFArrayGetCallBacks(array);
}
flags = __kCFArrayDeque;
result = (CFMutableArrayRef)__CFArrayInit(allocator, flags, capacity, cb);
if (0 == capacity) _CFArraySetCapacity(result, numValues);
for (idx = 0; idx < numValues; idx++) {
const void *value = CFArrayGetValueAtIndex(array, idx);
CFArrayAppendValue(result, value);
}
return result;
}
CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCH0(__kCFArrayTypeID, CFIndex, array, "count");
__CFGenericValidateType(array, __kCFArrayTypeID);
return __CFArrayGetCount(array);
}
CFIndex CFArrayGetCountOfValue(CFArrayRef array, CFRange range, const void *value) {
const CFArrayCallBacks *cb;
CFIndex idx, count = 0;
// CF: this ignores range
CF_OBJC_FUNCDISPATCH1(__kCFArrayTypeID, CFIndex, array, "countOccurrences:", value);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
cb = __CFArrayGetCallBacks(array);
for (idx = 0; idx < range.length; idx++) {
const void *item = __CFArrayGetBucketAtIndex(array, range.location + idx)->_item;
if (value == item || (cb->equal && INVOKE_CALLBACK2(cb->equal, value, item))) {
count++;
}
}
return count;
}
Boolean CFArrayContainsValue(CFArrayRef array, CFRange range, const void *value) {
CFIndex idx;
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, char, array, "containsObject:inRange:", value, range);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
for (idx = 0; idx < range.length; idx++) {
const void *item = __CFArrayGetBucketAtIndex(array, range.location + idx)->_item;
if (value == item) {
return true;
}
}
const CFArrayCallBacks *cb = __CFArrayGetCallBacks(array);
if (cb->equal) {
for (idx = 0; idx < range.length; idx++) {
const void *item = __CFArrayGetBucketAtIndex(array, range.location + idx)->_item;
if (INVOKE_CALLBACK2(cb->equal, value, item)) {
return true;
}
}
}
return false;
}
const void *CFArrayGetValueAtIndex(CFArrayRef array, CFIndex idx) {
CF_OBJC_FUNCDISPATCH1(__kCFArrayTypeID, void *, array, "objectAtIndex:", idx);
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert2(0 <= idx && idx < __CFArrayGetCount(array), __kCFLogAssertion, "%s(): index (%d) out of bounds", __PRETTY_FUNCTION__, idx);
return __CFArrayGetBucketAtIndex(array, idx)->_item;
}
// This is for use by NSCFArray; it avoids ObjC dispatch, and checks for out of bounds
const void *_CFArrayCheckAndGetValueAtIndex(CFArrayRef array, CFIndex idx) {
if (0 <= idx && idx < __CFArrayGetCount(array)) return __CFArrayGetBucketAtIndex(array, idx)->_item;
return (void *)(-1);
}
void CFArrayGetValues(CFArrayRef array, CFRange range, const void **values) {
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, void, array, "getObjects:range:", values, range);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
CFAssert1(NULL != values, __kCFLogAssertion, "%s(): pointer to values may not be NULL", __PRETTY_FUNCTION__);
if (0 < range.length) {
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
case __kCFArrayDeque:
CF_WRITE_BARRIER_MEMMOVE(values, __CFArrayGetBucketsPtr(array) + range.location, range.length * sizeof(struct __CFArrayBucket));
break;
case __kCFArrayStorage: {
CFStorageRef store = (CFStorageRef)array->_store;
CFStorageGetValues(store, range, values);
break;
}
}
}
}
unsigned long _CFArrayFastEnumeration(CFArrayRef array, struct __objcFastEnumerationStateEquivalent *state, void *stackbuffer, unsigned long count) {
if (array->_count == 0) return 0;
enum { ATSTART = 0, ATEND = 1 };
switch (__CFArrayGetType(array)) {
case __kCFArrayImmutable:
if (state->state == ATSTART) { /* first time */
static const unsigned long const_mu = 1;
state->state = ATEND;
state->mutationsPtr = (unsigned long *)&const_mu;
state->itemsPtr = (unsigned long *)__CFArrayGetBucketsPtr(array);
return array->_count;
}
return 0;
case __kCFArrayDeque:
if (state->state == ATSTART) { /* first time */
state->state = ATEND;
state->mutationsPtr = (unsigned long *)&array->_mutations;
state->itemsPtr = (unsigned long *)__CFArrayGetBucketsPtr(array);
return array->_count;
}
return 0;
case __kCFArrayStorage:
state->mutationsPtr = (unsigned long *)&array->_mutations;
return _CFStorageFastEnumeration((CFStorageRef)array->_store, state, stackbuffer, count);
}
return 0;
}
void CFArrayApplyFunction(CFArrayRef array, CFRange range, CFArrayApplierFunction applier, void *context) {
CFIndex idx;
FAULT_CALLBACK((void **)&(applier));
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, void, array, "apply:context:", applier, context);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
CFAssert1(NULL != applier, __kCFLogAssertion, "%s(): pointer to applier function may not be NULL", __PRETTY_FUNCTION__);
for (idx = 0; idx < range.length; idx++) {
const void *item = __CFArrayGetBucketAtIndex(array, range.location + idx)->_item;
INVOKE_CALLBACK2(applier, item, context);
}
}
CFIndex CFArrayGetFirstIndexOfValue(CFArrayRef array, CFRange range, const void *value) {
const CFArrayCallBacks *cb;
CFIndex idx;
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, CFIndex, array, "_cfindexOfObject:inRange:", value, range);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
cb = __CFArrayGetCallBacks(array);
for (idx = 0; idx < range.length; idx++) {
const void *item = __CFArrayGetBucketAtIndex(array, range.location + idx)->_item;
if (value == item || (cb->equal && INVOKE_CALLBACK2(cb->equal, value, item)))
return idx + range.location;
}
return kCFNotFound;
}
CFIndex CFArrayGetLastIndexOfValue(CFArrayRef array, CFRange range, const void *value) {
const CFArrayCallBacks *cb;
CFIndex idx;
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, CFIndex, array, "_cflastIndexOfObject:inRange:", value, range);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
cb = __CFArrayGetCallBacks(array);
for (idx = range.length; idx--;) {
const void *item = __CFArrayGetBucketAtIndex(array, range.location + idx)->_item;
if (value == item || (cb->equal && INVOKE_CALLBACK2(cb->equal, value, item)))
return idx + range.location;
}
return kCFNotFound;
}
void CFArrayAppendValue(CFMutableArrayRef array, const void *value) {
CF_OBJC_FUNCDISPATCH1(__kCFArrayTypeID, void, array, "addObject:", value);
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
_CFArrayReplaceValues(array, CFRangeMake(__CFArrayGetCount(array), 0), &value, 1);
}
void CFArraySetValueAtIndex(CFMutableArrayRef array, CFIndex idx, const void *value) {
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, void, array, "setObject:atIndex:", value, idx);
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
CFAssert2(0 <= idx && idx <= __CFArrayGetCount(array), __kCFLogAssertion, "%s(): index (%d) out of bounds", __PRETTY_FUNCTION__, idx);
if (idx == __CFArrayGetCount(array)) {
_CFArrayReplaceValues(array, CFRangeMake(idx, 0), &value, 1);
} else {
const void *old_value;
const CFArrayCallBacks *cb = __CFArrayGetCallBacks(array);
CFAllocatorRef allocator = __CFGetAllocator(array);
CFAllocatorRef bucketsAllocator = isStrongMemory(array) ? allocator : kCFAllocatorNull;
struct __CFArrayBucket *bucket = __CFArrayGetBucketAtIndex(array, idx);
if (NULL != cb->retain && !hasBeenFinalized(array)) {
value = (void *)INVOKE_CALLBACK2(cb->retain, allocator, value);
}
old_value = bucket->_item;
CF_WRITE_BARRIER_ASSIGN(bucketsAllocator, bucket->_item, value); // GC: handles deque/CFStorage cases.
if (NULL != cb->release && !hasBeenFinalized(array)) {
INVOKE_CALLBACK2(cb->release, allocator, old_value);
}
array->_mutations++;
}
}
void CFArrayInsertValueAtIndex(CFMutableArrayRef array, CFIndex idx, const void *value) {
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, void, array, "insertObject:atIndex:", value, idx);
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
CFAssert2(0 <= idx && idx <= __CFArrayGetCount(array), __kCFLogAssertion, "%s(): index (%d) out of bounds", __PRETTY_FUNCTION__, idx);
_CFArrayReplaceValues(array, CFRangeMake(idx, 0), &value, 1);
}
void CFArrayExchangeValuesAtIndices(CFMutableArrayRef array, CFIndex idx1, CFIndex idx2) {
const void *tmp;
struct __CFArrayBucket *bucket1, *bucket2;
CFAllocatorRef bucketsAllocator;
CF_OBJC_FUNCDISPATCH2(__kCFArrayTypeID, void, array, "exchange::", idx1, idx2);
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert2(0 <= idx1 && idx1 < __CFArrayGetCount(array), __kCFLogAssertion, "%s(): index #1 (%d) out of bounds", __PRETTY_FUNCTION__, idx1);
CFAssert2(0 <= idx2 && idx2 < __CFArrayGetCount(array), __kCFLogAssertion, "%s(): index #2 (%d) out of bounds", __PRETTY_FUNCTION__, idx2);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
bucket1 = __CFArrayGetBucketAtIndex(array, idx1);
bucket2 = __CFArrayGetBucketAtIndex(array, idx2);
tmp = bucket1->_item;
bucketsAllocator = isStrongMemory(array) ? __CFGetAllocator(array) : kCFAllocatorNull;
// XXX these aren't needed.
CF_WRITE_BARRIER_ASSIGN(bucketsAllocator, bucket1->_item, bucket2->_item);
CF_WRITE_BARRIER_ASSIGN(bucketsAllocator, bucket2->_item, tmp);
array->_mutations++;
}
void CFArrayRemoveValueAtIndex(CFMutableArrayRef array, CFIndex idx) {
CF_OBJC_FUNCDISPATCH1(__kCFArrayTypeID, void, array, "removeObjectAtIndex:", idx);
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
CFAssert2(0 <= idx && idx < __CFArrayGetCount(array), __kCFLogAssertion, "%s(): index (%d) out of bounds", __PRETTY_FUNCTION__, idx);
_CFArrayReplaceValues(array, CFRangeMake(idx, 1), NULL, 0);
}
void CFArrayRemoveAllValues(CFMutableArrayRef array) {
CF_OBJC_FUNCDISPATCH0(__kCFArrayTypeID, void, array, "removeAllObjects");
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
__CFArrayReleaseValues(array, CFRangeMake(0, __CFArrayGetCount(array)), true);
__CFArraySetCount(array, 0);
array->_mutations++;
}
static void __CFArrayConvertDequeToStore(CFMutableArrayRef array) {
struct __CFArrayDeque *deque = (struct __CFArrayDeque *)array->_store;
struct __CFArrayBucket *raw_buckets = (struct __CFArrayBucket *)((uint8_t *)deque + sizeof(struct __CFArrayDeque));
CFStorageRef store;
CFIndex count = CFArrayGetCount(array);
CFAllocatorRef allocator = __CFGetAllocator(array);
store = (CFStorageRef)CFMakeCollectable(CFStorageCreate(allocator, sizeof(const void *)));
if (__CFOASafe) __CFSetLastAllocationEventName(store, "CFArray (store-storage)");
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, array, array->_store, store);
CFStorageInsertValues(store, CFRangeMake(0, count));
CFStorageReplaceValues(store, CFRangeMake(0, count), raw_buckets + deque->_leftIdx);
_CFAllocatorDeallocateGC(__CFGetAllocator(array), deque);
__CFBitfieldSetValue(((CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS], 1, 0, __kCFArrayStorage);
}
static void __CFArrayConvertStoreToDeque(CFMutableArrayRef array) {
CFStorageRef store = (CFStorageRef)array->_store;
struct __CFArrayDeque *deque;
struct __CFArrayBucket *raw_buckets;
CFIndex count = CFStorageGetCount(store);// storage, not array, has correct count at this point
// do not resize down to a completely tight deque
CFIndex capacity = __CFArrayDequeRoundUpCapacity(count + 6);
CFIndex size = sizeof(struct __CFArrayDeque) + capacity * sizeof(struct __CFArrayBucket);
CFAllocatorRef allocator = __CFGetAllocator(array);
deque = (struct __CFArrayDeque *)_CFAllocatorAllocateGC(allocator, size, isStrongMemory(array) ? __kCFAllocatorGCScannedMemory : 0);
if (__CFOASafe) __CFSetLastAllocationEventName(deque, "CFArray (store-deque)");
deque->_leftIdx = (capacity - count) / 2;
deque->_capacity = capacity;
deque->_bias = 0;
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, array, array->_store, deque);
raw_buckets = (struct __CFArrayBucket *)((uint8_t *)deque + sizeof(struct __CFArrayDeque));
CFStorageGetValues(store, CFRangeMake(0, count), raw_buckets + deque->_leftIdx);
_CFReleaseGC(store); // GC: balances CFMakeCollectable() above.
__CFBitfieldSetValue(((CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS], 1, 0, __kCFArrayDeque);
}
// may move deque storage, as it may need to grow deque
static void __CFArrayRepositionDequeRegions(CFMutableArrayRef array, CFRange range, CFIndex newCount) {
// newCount elements are going to replace the range, and the result will fit in the deque
struct __CFArrayDeque *deque = (struct __CFArrayDeque *)array->_store;
struct __CFArrayBucket *buckets;
CFIndex cnt, futureCnt, numNewElems;
CFIndex L, A, B, C, R;
buckets = (struct __CFArrayBucket *)((uint8_t *)deque + sizeof(struct __CFArrayDeque));
cnt = __CFArrayGetCount(array);
futureCnt = cnt - range.length + newCount;
L = deque->_leftIdx; // length of region to left of deque
A = range.location; // length of region in deque to left of replaced range
B = range.length; // length of replaced range
C = cnt - B - A; // length of region in deque to right of replaced range
R = deque->_capacity - cnt - L; // length of region to right of deque
numNewElems = newCount - B;
CFIndex wiggle = deque->_capacity >> 17;
if (wiggle < 4) wiggle = 4;
if (deque->_capacity < (uint32_t)futureCnt || (cnt < futureCnt && L + R < wiggle)) {
// must be inserting or space is tight, reallocate and re-center everything
CFIndex capacity = __CFArrayDequeRoundUpCapacity(futureCnt + wiggle);
CFIndex size = sizeof(struct __CFArrayDeque) + capacity * sizeof(struct __CFArrayBucket);
CFAllocatorRef allocator = __CFGetAllocator(array);
struct __CFArrayDeque *newDeque = (struct __CFArrayDeque *)_CFAllocatorAllocateGC(allocator, size, isStrongMemory(array) ? __kCFAllocatorGCScannedMemory : 0);
if (__CFOASafe) __CFSetLastAllocationEventName(newDeque, "CFArray (store-deque)");
struct __CFArrayBucket *newBuckets = (struct __CFArrayBucket *)((uint8_t *)newDeque + sizeof(struct __CFArrayDeque));
CFIndex oldL = L;
CFIndex newL = (capacity - futureCnt) / 2;
CFIndex oldC0 = oldL + A + B;
CFIndex newC0 = newL + A + newCount;
newDeque->_leftIdx = newL;
newDeque->_capacity = capacity;
newDeque->_bias = 0;
if (0 < A) CF_WRITE_BARRIER_MEMMOVE(newBuckets + newL, buckets + oldL, A * sizeof(struct __CFArrayBucket));
if (0 < C) CF_WRITE_BARRIER_MEMMOVE(newBuckets + newC0, buckets + oldC0, C * sizeof(struct __CFArrayBucket));
if (deque) _CFAllocatorDeallocateGC(allocator, deque);
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, array, array->_store, newDeque);
return;
}
if ((numNewElems < 0 && C < A) || (numNewElems <= R && C < A)) { // move C
// deleting: C is smaller
// inserting: C is smaller and R has room
CFIndex oldC0 = L + A + B;
CFIndex newC0 = L + A + newCount;
if (0 < C) CF_WRITE_BARRIER_MEMMOVE(buckets + newC0, buckets + oldC0, C * sizeof(struct __CFArrayBucket));
// GrP GC: zero-out newly exposed space on the right, if any
if (oldC0 > newC0) memset(buckets + newC0 + C, 0x00, (oldC0 - newC0) * sizeof(struct __CFArrayBucket));
} else if ((numNewElems < 0) || (numNewElems <= L && A <= C)) { // move A
// deleting: A is smaller or equal (covers remaining delete cases)
// inserting: A is smaller and L has room
CFIndex oldL = L;
CFIndex newL = L - numNewElems;
deque->_leftIdx = newL;
if (0 < A) CF_WRITE_BARRIER_MEMMOVE(buckets + newL, buckets + oldL, A * sizeof(struct __CFArrayBucket));
// GrP GC: zero-out newly exposed space on the left, if any
if (newL > oldL) memset(buckets + oldL, 0x00, (newL - oldL) * sizeof(struct __CFArrayBucket));
} else {
// now, must be inserting, and either:
// A<=C, but L doesn't have room (R might have, but don't care)
// C<A, but R doesn't have room (L might have, but don't care)
// re-center everything
CFIndex oldL = L;
CFIndex newL = (L + R - numNewElems) / 2;
CFIndex oldBias = deque->_bias;
deque->_bias = (newL < oldL) ? -1 : 1;
if (oldBias < 0) {
newL = newL - newL / 2;
} else if (0 < oldBias) {
newL = newL + newL / 2;
}
CFIndex oldC0 = oldL + A + B;
CFIndex newC0 = newL + A + newCount;
deque->_leftIdx = newL;
if (newL < oldL) {
if (0 < A) CF_WRITE_BARRIER_MEMMOVE(buckets + newL, buckets + oldL, A * sizeof(struct __CFArrayBucket));
if (0 < C) CF_WRITE_BARRIER_MEMMOVE(buckets + newC0, buckets + oldC0, C * sizeof(struct __CFArrayBucket));
// GrP GC: zero-out newly exposed space on the right, if any
if (oldC0 > newC0) memset(buckets + newC0 + C, 0x00, (oldC0 - newC0) * sizeof(struct __CFArrayBucket));
} else {
if (0 < C) CF_WRITE_BARRIER_MEMMOVE(buckets + newC0, buckets + oldC0, C * sizeof(struct __CFArrayBucket));
if (0 < A) CF_WRITE_BARRIER_MEMMOVE(buckets + newL, buckets + oldL, A * sizeof(struct __CFArrayBucket));
// GrP GC: zero-out newly exposed space on the left, if any
if (newL > oldL) memset(buckets + oldL, 0x00, (newL - oldL) * sizeof(struct __CFArrayBucket));
}
}
}
static void __CFArrayHandleOutOfMemory(CFTypeRef obj, CFIndex numBytes) {
CFStringRef msg = CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("Attempt to allocate %ld bytes for CFArray failed"), numBytes);
CFBadErrorCallBack cb = _CFGetOutOfMemoryErrorCallBack();
if (NULL == cb || !cb(obj, CFSTR("NS/CFArray"), msg)) {
CFLog(kCFLogLevelCritical, CFSTR("%@"), msg);
HALT;
}
CFRelease(msg);
}
// This function is for Foundation's benefit; no one else should use it.
void _CFArraySetCapacity(CFMutableArrayRef array, CFIndex cap) {
if (CF_IS_OBJC(__kCFArrayTypeID, array)) return;
__CFGenericValidateType(array, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
CFAssert3(__CFArrayGetCount(array) <= cap, __kCFLogAssertion, "%s(): desired capacity (%d) is less than count (%d)", __PRETTY_FUNCTION__, cap, __CFArrayGetCount(array));
// Currently, attempting to set the capacity of an array which is the CFStorage
// variant, or set the capacity larger than __CF_MAX_BUCKETS_PER_DEQUE, has no
// effect. The primary purpose of this API is to help avoid a bunch of the
// resizes at the small capacities 4, 8, 16, etc.
if (__CFArrayGetType(array) == __kCFArrayDeque) {
struct __CFArrayDeque *deque = (struct __CFArrayDeque *)array->_store;
CFIndex capacity = __CFArrayDequeRoundUpCapacity(cap);
CFIndex size = sizeof(struct __CFArrayDeque) + capacity * sizeof(struct __CFArrayBucket);
CFAllocatorRef allocator = __CFGetAllocator(array);
if (NULL == deque) {
deque = (struct __CFArrayDeque *)_CFAllocatorAllocateGC(allocator, size, isStrongMemory(array) ? __kCFAllocatorGCScannedMemory : 0);
if (NULL == deque) __CFArrayHandleOutOfMemory(array, size);
if (__CFOASafe) __CFSetLastAllocationEventName(deque, "CFArray (store-deque)");
deque->_leftIdx = capacity / 2;
} else {
struct __CFArrayDeque *olddeque = deque;
CFIndex oldcap = deque->_capacity;
deque = (struct __CFArrayDeque *)_CFAllocatorAllocateGC(allocator, size, isStrongMemory(array) ? __kCFAllocatorGCScannedMemory : 0);
if (NULL == deque) __CFArrayHandleOutOfMemory(array, size);
CF_WRITE_BARRIER_MEMMOVE(deque, olddeque, sizeof(struct __CFArrayDeque) + oldcap * sizeof(struct __CFArrayBucket));
_CFAllocatorDeallocateGC(allocator, olddeque);
if (__CFOASafe) __CFSetLastAllocationEventName(deque, "CFArray (store-deque)");
}
deque->_capacity = capacity;
deque->_bias = 0;
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, array, array->_store, deque);
}
}
// This function is for Foundation's benefit; no one else should use it.
bool _CFArrayIsMutable(CFArrayRef array) {
return (__CFArrayGetType(array) != __kCFArrayImmutable);
}
void CFArrayReplaceValues(CFMutableArrayRef array, CFRange range, const void **newValues, CFIndex newCount) {
CF_OBJC_FUNCDISPATCH3(__kCFArrayTypeID, void, array, "replaceObjectsInRange:withObjects:count:", range, (void **)newValues, newCount);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
CFAssert2(0 <= newCount, __kCFLogAssertion, "%s(): newCount (%d) cannot be less than zero", __PRETTY_FUNCTION__, newCount);
return _CFArrayReplaceValues(array, range, newValues, newCount);
}
// This function does no ObjC dispatch or argument checking;
// It should only be called from places where that dispatch and check has already been done, or NSCFArray
void _CFArrayReplaceValues(CFMutableArrayRef array, CFRange range, const void **newValues, CFIndex newCount) {
const CFArrayCallBacks *cb;
CFAllocatorRef allocator;
CFIndex idx, cnt, futureCnt;
const void **newv, *buffer[256];
cnt = __CFArrayGetCount(array);
futureCnt = cnt - range.length + newCount;
CFAssert1(newCount <= futureCnt, __kCFLogAssertion, "%s(): internal error 1", __PRETTY_FUNCTION__);
cb = __CFArrayGetCallBacks(array);
allocator = __CFGetAllocator(array);
/* Retain new values if needed, possibly allocating a temporary buffer for them */
if (NULL != cb->retain && !hasBeenFinalized(array)) {
newv = (newCount <= 256) ? (const void **)buffer : (const void **)CFAllocatorAllocate(allocator, newCount * sizeof(void *), 0); // GC OK
if (newv != buffer && __CFOASafe) __CFSetLastAllocationEventName(newv, "CFArray (temp)");
for (idx = 0; idx < newCount; idx++) {
newv[idx] = (void *)INVOKE_CALLBACK2(cb->retain, allocator, (void *)newValues[idx]);
}
} else {
newv = newValues;
}
array->_mutations++;
/* Now, there are three regions of interest, each of which may be empty:
* A: the region from index 0 to one less than the range.location
* B: the region of the range
* C: the region from range.location + range.length to the end
* Note that index 0 is not necessarily at the lowest-address edge
* of the available storage. The values in region B need to get
* released, and the values in regions A and C (depending) need
* to get shifted if the number of new values is different from
* the length of the range being replaced.
*/
if (0 < range.length) {
__CFArrayReleaseValues(array, range, false);
}
// region B elements are now "dead"
if (__kCFArrayStorage == __CFArrayGetType(array)) {
CFStorageRef store = (CFStorageRef)array->_store;
// reposition regions A and C for new region B elements in gap
if (range.length < newCount) {
CFStorageInsertValues(store, CFRangeMake(range.location + range.length, newCount - range.length));
} else if (newCount < range.length) {
CFStorageDeleteValues(store, CFRangeMake(range.location + newCount, range.length - newCount));
}
if (futureCnt <= __CF_MAX_BUCKETS_PER_DEQUE / 2) {
__CFArrayConvertStoreToDeque(array);
}
} else if (NULL == array->_store) {
if (__CF_MAX_BUCKETS_PER_DEQUE <= futureCnt) {
CFStorageRef store = (CFStorageRef)CFMakeCollectable(CFStorageCreate(allocator, sizeof(const void *)));
if (! isStrongMemory(array)) _CFStorageSetWeak(store);
if (__CFOASafe) __CFSetLastAllocationEventName(store, "CFArray (store-storage)");
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, array, array->_store, store);
CFStorageInsertValues(store, CFRangeMake(0, newCount));
__CFBitfieldSetValue(((CFRuntimeBase *)array)->_cfinfo[CF_INFO_BITS], 1, 0, __kCFArrayStorage);
} else if (0 <= futureCnt) {
struct __CFArrayDeque *deque;
CFIndex capacity = __CFArrayDequeRoundUpCapacity(futureCnt);
CFIndex size = sizeof(struct __CFArrayDeque) + capacity * sizeof(struct __CFArrayBucket);
deque = (struct __CFArrayDeque *)_CFAllocatorAllocateGC(allocator, size, isStrongMemory(array) ? __kCFAllocatorGCScannedMemory : 0);
if (__CFOASafe) __CFSetLastAllocationEventName(deque, "CFArray (store-deque)");
deque->_leftIdx = (capacity - newCount) / 2;
deque->_capacity = capacity;
deque->_bias = 0;
CF_WRITE_BARRIER_BASE_ASSIGN(allocator, array, array->_store, deque);
}
} else { // Deque
// reposition regions A and C for new region B elements in gap
if (__CF_MAX_BUCKETS_PER_DEQUE <= futureCnt) {
CFStorageRef store;
__CFArrayConvertDequeToStore(array);
store = (CFStorageRef)array->_store;
if (range.length < newCount) {
CFStorageInsertValues(store, CFRangeMake(range.location + range.length, newCount - range.length));
} else if (newCount < range.length) { // this won't happen, but is here for completeness
CFStorageDeleteValues(store, CFRangeMake(range.location + newCount, range.length - newCount));
}
} else if (range.length != newCount) {
__CFArrayRepositionDequeRegions(array, range, newCount);
}
}
// copy in new region B elements
if (0 < newCount) {
if (__kCFArrayStorage == __CFArrayGetType(array)) {
CFStorageRef store = (CFStorageRef)array->_store;
CFStorageReplaceValues(store, CFRangeMake(range.location, newCount), newv);
} else { // Deque
struct __CFArrayDeque *deque = (struct __CFArrayDeque *)array->_store;
struct __CFArrayBucket *raw_buckets = (struct __CFArrayBucket *)((uint8_t *)deque + sizeof(struct __CFArrayDeque));
CFAllocatorRef bucketsAllocator = isStrongMemory(array) ? allocator : kCFAllocatorNull;
if (newCount == 1)
CF_WRITE_BARRIER_ASSIGN(bucketsAllocator, *((const void **)raw_buckets + deque->_leftIdx + range.location), newv[0]);
else
CF_WRITE_BARRIER_MEMMOVE(raw_buckets + deque->_leftIdx + range.location, newv, newCount * sizeof(struct __CFArrayBucket));
}
}
__CFArraySetCount(array, futureCnt);
if (newv != buffer && newv != newValues) CFAllocatorDeallocate(allocator, newv);
}
struct _acompareContext {
CFComparatorFunction func;
void *context;
};
static CFComparisonResult __CFArrayCompareValues(const void *v1, const void *v2, struct _acompareContext *context) {
const void **val1 = (const void **)v1;
const void **val2 = (const void **)v2;
return (CFComparisonResult)(INVOKE_CALLBACK3(context->func, *val1, *val2, context->context));
}
void CFArraySortValues(CFMutableArrayRef array, CFRange range, CFComparatorFunction comparator, void *context) {
FAULT_CALLBACK((void **)&(comparator));
CF_OBJC_FUNCDISPATCH3(__kCFArrayTypeID, void, array, "sortUsingFunction:context:range:", comparator, context, range);
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
CFAssert1(NULL != comparator, __kCFLogAssertion, "%s(): pointer to comparator function may not be NULL", __PRETTY_FUNCTION__);
array->_mutations++;
if (1 < range.length) {
struct _acompareContext ctx;
struct __CFArrayBucket *bucket;
ctx.func = comparator;
ctx.context = context;
switch (__CFArrayGetType(array)) {
case __kCFArrayDeque:
bucket = __CFArrayGetBucketsPtr(array) + range.location;
if (CF_USING_COLLECTABLE_MEMORY && isStrongMemory(array)) {
size_t size = range.length * sizeof(void*);
__CFObjCWriteBarrierRange(bucket, size);
CFQSortArray(bucket, range.length, sizeof(void *), (CFComparatorFunction)__CFArrayCompareValues, &ctx);
} else {
CFQSortArray(bucket, range.length, sizeof(void *), (CFComparatorFunction)__CFArrayCompareValues, &ctx);
}
break;
case __kCFArrayStorage: {
CFStorageRef store = (CFStorageRef)array->_store;
CFAllocatorRef allocator = __CFGetAllocator(array);
const void **values, *buffer[256];
values = (range.length <= 256) ? (const void **)buffer : (const void **)CFAllocatorAllocate(allocator, range.length * sizeof(void *), 0); // GC OK
if (values != buffer && __CFOASafe) __CFSetLastAllocationEventName(values, "CFArray (temp)");
CFStorageGetValues(store, range, values);
CFQSortArray(values, range.length, sizeof(void *), (CFComparatorFunction)__CFArrayCompareValues, &ctx);
CFStorageReplaceValues(store, range, values);
if (values != buffer) CFAllocatorDeallocate(allocator, values); // GC OK
break;
}
}
}
}
CFIndex CFArrayBSearchValues(CFArrayRef array, CFRange range, const void *value, CFComparatorFunction comparator, void *context) {
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFArrayValidateRange(array, range, __PRETTY_FUNCTION__);
CFAssert1(NULL != comparator, __kCFLogAssertion, "%s(): pointer to comparator function may not be NULL", __PRETTY_FUNCTION__);
bool isObjC = CF_IS_OBJC(__kCFArrayTypeID, array);
FAULT_CALLBACK((void **)&(comparator));
CFIndex idx = 0;
if (range.length <= 0) return range.location;
if (isObjC || __kCFArrayStorage == __CFArrayGetType(array)) {
const void *item;
SInt32 lg;
item = CFArrayGetValueAtIndex(array, range.location + range.length - 1);
if ((CFComparisonResult)(INVOKE_CALLBACK3(comparator, item, value, context)) < 0) {
return range.location + range.length;
}
item = CFArrayGetValueAtIndex(array, range.location);
if ((CFComparisonResult)(INVOKE_CALLBACK3(comparator, value, item, context)) < 0) {
return range.location;
}
lg = flsl(range.length) - 1; // lg2(range.length)
item = CFArrayGetValueAtIndex(array, range.location + -1 + (1 << lg));
idx = range.location + ((CFComparisonResult)(INVOKE_CALLBACK3(comparator, item, value, context)) < 0) ? range.length - (1 << lg) : -1;
while (lg--) {
item = CFArrayGetValueAtIndex(array, range.location + idx + (1 << lg));
if ((CFComparisonResult)(INVOKE_CALLBACK3(comparator, item, value, context)) < 0) {
idx += (1 << lg);
}
}
idx++;
} else {
struct _acompareContext ctx;
ctx.func = comparator;
ctx.context = context;
idx = CFBSearch(&value, sizeof(void *), __CFArrayGetBucketsPtr(array) + range.location, range.length, (CFComparatorFunction)__CFArrayCompareValues, &ctx);
}
return idx + range.location;
}
void CFArrayAppendArray(CFMutableArrayRef array, CFArrayRef otherArray, CFRange otherRange) {
CFIndex idx;
__CFGenericValidateType(array, __kCFArrayTypeID);
__CFGenericValidateType(otherArray, __kCFArrayTypeID);
CFAssert1(__CFArrayGetType(array) != __kCFArrayImmutable, __kCFLogAssertion, "%s(): array is immutable", __PRETTY_FUNCTION__);
__CFArrayValidateRange(otherArray, otherRange, __PRETTY_FUNCTION__);
for (idx = otherRange.location; idx < otherRange.location + otherRange.length; idx++) {
CFArrayAppendValue(array, CFArrayGetValueAtIndex(otherArray, idx));
}
}