survELtest 
Computing the one-sided/two-sided integrated/maximally selected EL statistics for simultaneous testing, the one-sided/two-sided EL tests for pointwise testing, and an initial test that precedes one-sided testing to exclude the possibility of crossings or alternative orderings among the survival functions.
Data Frame
hepatitisSevere alcoholic hepatitis datathreearmTime to first remission datahazardcrossSimulated survival data with crossing hazard functions from the piece- wise exponential distributionhazardcross_WeibullSimulated survival data with crossing hazard functions from the Weibull distribution
Function
intELtestThe integrated EL testsupELtestThe maximally selected EL testptwiseELtestThe pointwise EL testingnocrossingsThe test that excludes the possibility of crossings or alternative orderings among the survival functionsprint.intELtestPrint an intELtest objectprint.supELtestPrint a supELtest objectprint.ptwiseELtestPrint a ptwiseELtest objectprint.nocrossingsPrint a nocrossings objectsummary.intELtestSummary function for intELtest objectsummary.supELtestSummary function for supELtest objectsummary.ptwiseELtestSummary function for ptwiseELtest objectsummary.nocrossingsSummary function for nocrossings object
Installation
# install package directly
install.packages("survELtest")
library(survELtest)Development version
#install.packages("devtools", dependencies = TRUE)
devtools::install_github("news11/survELtest")
library(survELtest)Usage
intELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2, nboot = 1000, wt = "p.event", alpha = 0.05, seed = 1011, nlimit = 200)supELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2, nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)ptwiseELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2, nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)nocrossings(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2, nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)print.intELtest(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)print.supELtest(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)print.ptwiseELtest(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)print.nocrossings(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)summary.intELtest(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)summary.supELtest(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)summary.ptwiseELtest(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)summary.nocrossings(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
formulaa formula object with a Surv object as the response on the left of the ~ operator and the grouping variable as the term on the right. The Surv object involves two variables: the observed survival and censoring times, and the censoring indicator, which takes a value of 1 if the observed time is uncensored and 0 otherwise. The grouping variable takes different values for different groups.dataan optional data frame containing the variables in the formula: the observed survival and censoring times, the censoring indicator, and the grouping variable. If not found in data, the variables in the formula should be already defined by the user or in attached R objects. The default is the data frame with three columns of variables taken from the formula: column 1 contains the observed survival and censoring times, column 2 the censoring indicator, and column 3 the grouping variable.group_ordera k-vector containing the values of the grouping variable, with the j-th element being the group hypothesized to have the j-th highest survival rates, j = 1, . . . , k. The default is the vector of sorted grouping variables.t1the first endpoint of a prespecified time interval, if any, to which the comparison of the survival functions is restricted. The default value is 0.t2the second endpoint of a prespecified time interval, if any, to which the comparison of the survival functions is restricted. The default value is ∞.sided2 if two-sided test, and 1 if one-sided test. The default value is 2.nbootthe number of bootstrap replications in calculating critical values for the tests. The default value is 1000.wtthe name of the weight for the integrated EL statistics: "p.event", "dF", or "dt". The default is "p.event".alphathe pre-specified significance level of the tests. The default value is 0.05.seedthe seed for the random number generator in R, for generating bootstrap samples needed to calculate the critical values for the tests. The default value is 1011.nlimita number used to calculate nsplit= m/nlimit, the number of parts into which the calculation of the nboot bootstrap replications is split. The use of this vari- able can make computation faster when the number of time points m is large. The default value for nlimit is 200.xthe result of a call to the intELtest/supELtest/ptwiseELtest/nocrossings function.objectthe result of a call to the intELtest/supELtest/ptwiseELtest/nocrossings function.digitssignificant digits to print, the default value is max(3L,getOption("digits")-3L).quieta logical indicating whether to reduce the amount of output or not, the default value is FALSE....for future method.
More Information
Find the reference manual for more details: https://cran.r-project.org/web/packages/survELtest/survELtest.pdf