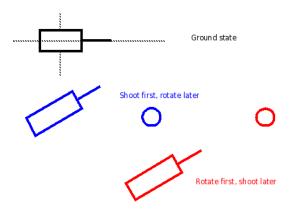
CIF Revisited

- Finalize
- Hope for endorsement of CIF community
- AIM: provide data necessary to derive positions of components from transformation matrics

Transformation Matrices

$$T = \left(\begin{array}{cccc} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{array}\right)$$


Transformation Matrices

$$T = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} r11 & r12 & r13 & 0 \\ r21 & r22 & r23 & 0 \\ r31 & r32 & r33 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Combining Transformations

Some Properties

- Transformations can be combined by matrix multiplications
- Individual matrices can be derived by looking at the situation when everything else is 0
- Absolute positions can be obtained by multiplying the resulting matrix with its transpose
- Defines new coordinate systems at components
- CIF contains a duplication: vector, offset scheme

What Use Is This?

- Allows to calculate absolute positions of components in the laboratory coordinate systems
- Can directly convert from a detector coordinate system to vectors in Lab coordinate system
- Calculate things like impact of primary beam on detector, SAS
- Allows arbitray axis to be expressed
- Intuitively describe an instrument with angles and translations and still be able to recover absolute coordinates

NeXus Axis Mapped

- rotation angle, polar angle, rotate 0 1 0
- azimuthal_angle, rotate 0 0 1
- distance, translate 0 0 1
- chi, rotate 0 0 1
- phi rotate, 0 1 0
- NeXus polar coordinate system: rotate azimuthal_angle, rotate polar_angle, translate by distance

CIF Dependency Table

axis-id	type	equipment	dependson	vector	offset
gonio_phi	rotation	goniometer		1,0,0,	
det_{z}	translation	detector		0,0,-1	0 0 0
det_y	translation	detector	det_z	0,1,0	0,0,0
det x	translation	detector	det y	1,0,0	0,0,0

Expressing Axis Dependency in NeXus

- Implied: use existing NeXus coordinate system
- depends on attribute pointing to depending axis
- Create a special container to hold axis dependencies, NXtransformations, to collect the dependencies in one place for easy access. This is what CIF does

Separate Group Option

```
sample, NX sample
      rotation angle
      chi
      phi
transformations, NX transformations
      sample/chi =
             sample/rotation angle
      sample/phi =
             sample/chi
      instrument/detector/x translation =
             instrument/detector/distance
      instrument/detector/distance =
             instrument/detector/polar angle
```


Tech Committee Recommendation

```
sample,NXsample
rotation_angle (vector 0,1,0)
chi (depends_on rotation_angle, vector 0,0,1)
phi (depends_on chi, vector 0,1,0)
depends_on
phi
```


Tech Committe Recommendation Continued

- Add offset attribute to fully cover CIF. This is an extra translation
- offset_unit to give units for offset
- The vector attribute becomes mandatory
- This gives us CIF endorsement!

