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ABSTRACT 

The diversity of ways in which toponyms are specified often 

results in mismatches between queries and the place names 

contained in gazetteers. Search terms that include unofficial 

variants of official place names, unanticipated transliterations, and 

typos are frequently similar but not identical to the place names 

contained in the gazetteer. String similarity measures can mitigate 

this problem, but given their task-dependent performance, the 

optimal choice of measure is unclear. We constructed a task in 

which place names had to be matched to variants of those names 

listed in the GEOnet Names Server, comparing 21 different 

measures on datasets containing romanized toponyms from 11 

different countries. Best-performing measures varied widely 

across datasets, but were highly consistent within-country and 

within-language. We discuss which measures worked best for 

particular languages and provide recommendations for selecting 

appropriate string similarity measures. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – spatial 

databases and GIS 

H.3.1 [Information Storage and Retrieval]: Content Analysis 

and Indexing – linguistic processing 

General Terms 

Algorithms, Performance, Experimentation 

Keywords 

toponyms, string similarity, edit distance, gazetteers, duplicate 

detection, data integration, geographic information retrieval 

1. INTRODUCTION 
At least two topics relevant to computational models of place— 

point of interest conflation and place-based data integration—are 

closely tied to the expansion, search, and conflation of digital 

gazetteers. Some approaches to these tasks (particularly 

conflation) involve toponym matching, the matching of place 

names that share a common referent (e.g. Ting Tsi River, Ting-tzu 

Wan, Tingtze River) [23, 28]. Toponym matching has been 

studied in geographic record linkage [1, 23, 28], named entity 

recognition [25], and other tasks in geographic information 

retrieval (GIR). Hastings [16] developed a novel string similarity 

measure for use in gazetteer conflation, but the most commonly 

used measures in GIR remain edit distance, Jaro-Winkler, or 

English-specific phonetic encoding techniques such as Soundex 

[23, 25]. Seghal et al. [28] compared three string similarity 

measures on a geospatial data integration task, finding that edit 

distance outperformed Jaccard and Jaro-Winkler when mapping 

between two sets of place names in Afghanistan. Martins [23] 

used machine learning to classify gazetteer records as duplicates 

or non-duplicates and compared the importance of several feature 

types, including eight string similarity measures (see also [33]). 

Compared with the other factors they investigated, string 

similarity was the most informative. Of these, Jaccard, Jaro-

Winkler, character overlap, and two measures of edit distance 

were the most useful. However, Martins did not systematically 

compare their performance. 

This study aimed to formulate recommendations facilitating the 

selection of task-appropriate measures for toponym matching. 

Although there has been no comprehensive comparison of string 

similarity measures on a toponym matching task, wide-ranging 

evaluations have been conducted on the closely related task of 

personal name matching. Cohen, Ravikumar, and Fienberg [9] 

compared several string distance measures on a name matching 

task, finding the best results with a combination of Jaro-Winkler 

and a token-based distance function. Most relevant to the present 

study, Christen [5] compared a comprehensive set of 21 

commonly used string similarity measures on a set of personal 

name matching tasks. Although some measures generally did well 

while others generally did poorly, algorithm performance was 

task-dependent, and Christen concluded that “there is no single 

best technique” ([5, p. 13]). Of course, one significant limitation 

of string similarity techniques is that many unofficial place name 

variants are not at all similar to each other (e.g., New York and Big 

Apple). In such cases, string similarity algorithms are unlikely to 

provide any benefit. However, they remain popular in gazetteer 

conflation algorithms due to the large number of place name 

variants that differ only slightly. Given that the best-performing 

techniques for personal names were dataset-dependent [17], we 

anticipated significant variability across datasets of toponyms 

representing different languages and countries. 

2. MATCHING TECHNIQUES 
We aimed to evaluate the performance of the comprehensive set 

of algorithms investigated by [5] in the context of personal name 
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matching, but using a toponym matching rather than a name 

matching task, using datasets representing diverse countries and 

languages. Measures based on phonetic encoding are lacking for 

most non-English languages and are not designed for romanized 

placenames. We therefore restricted our comparisons to the 21 

string similarity measures evaluated in [5]. A brief summary of 

each is presented here. 

2.1 Edit Distance Measures 
Edit distance measures quantify the difference between strings in 

terms of a sometimes weighted sum of the number of insertions, 

deletions, substitutions and/or transpositions required to yield the 

first string from the second. Standard Levenshtein distance [21] 

assigns a value of 1 to each insertion, deletion, and substitution. It 

can be converted to a similarity value by dividing the actual 

Levenshtein distance by the greatest possible Levenshtein 

distance for the given strings (i.e., the length of the longer string), 

and subtracting the resulting value from 1. Another common 

modification, Damerau-Levenshtein distance, additionally counts 

a transposition between adjacent characters as an edit operation 

[12]. Variations of this algorithm assign different weights to edits 

based on the type of operation, phonetic similarities between the 

sounds typically represented by the relevant characters, and other 

considerations [26]. 

2.2 Bag Distance 
The bag distance algorithm enumerates every character in string x 

that cannot be uniquely matched with a character in string y, and 

vice versa; the maximum of the two values is the bag distance. 

Bag distance places an upper bound on Levenshtein distance, and 

has been proposed as a fast approximation thereof [2]. 

2.3 N-gram Measures 
N-gram-based measures count the number of n-grams (substrings 

of length n) in common between the two strings being compared. 

Similarity is obtained either by dividing this count by the number 

of n-grams in the shorter string, the number in the longer string, or 

the average number in both strings; the resulting measures are 

referred to as the overlap coefficient, Jaccard index, and Dice 

coefficient, respectively [20, 26]. N-gram-like measures can also 

be calculated with skip-grams [19] or ‘open bigrams’ [31], 

bigrams that skip one or more characters. For example, cow and 

caw have in common the open bigram c_w. We calculated n-gram 

and positional n-gram measures for unigrams, bigrams, and 

trigrams, as well as skip-grams of gap size 0, 1, and 2. 

2.4 Longest Common Substring Measures 
The “longest common substring” (LCS) method [13], developed 

to match patient records in a clinical setting, begins by 

determining the longest common substring between the strings 

being compared. Its length is recorded, the substring is removed 

from both strings, and the process is repeated until no common 

substring remains that exceeds some minimum length L. As in [5], 

L = 2 and L = 3 were considered, and the result was divided by 

the length of the shorter string, the length of the longer string, and 

the average length to yield three distinct similarity measures.  

2.5 Jaro Variants 
The Jaro algorithm [18, 27] defines ‘matching characters’ as 

characters in strings s1 and s2 that are (1) the same, and (2) whose 

indices are no farther than. If m is the number of matching 

characters between strings x and y and t is the number of 

transpositions, the Jaro distance is defined as  

 when m is greater than 0, and 0 otherwise. 

A common variant generally referred to as Jaro-Winkler [27, 32] 

takes into account the fact that spelling errors are less likely to 

occur at the beginnings of names than elsewhere, and essentially 

assigns a higher weight to initial characters. [5] points out that 

while this is generally an improvement, it can be problematic if 

the strings to be matched contain multiple words that are 

differently ordered (e.g. “Sakhalin Island”, “Island of Sakhalin”). 

To this end, he introduces the variants sorted Winkler and 

permuted Winkler. The former algorithm sorts both strings before 

calculating their similarity, while the latter calculates the 

similarity over all possible permutations and returns the maximum 

value.  

2.6 Normalized Compression Distance 
Normalized compression distance (NCD) [7] is a similarity metric 

that approximates normalized information distance, an 

(uncomputable) information-theoretic measure that quantifies the 

length of the shortest program p that computes string x from string 

y. NCD has been used to approximate the semantic and 

orthographic similarity between single words and documents of 

different languages [5, 8], as well as to quantify the similarity 

among texts suspected to be written by the same author [3, 30]. It 

is defined as 

 

where C is a compressor such as zlib or bz2. 

2.7 Phone-Sensitive Measures 
Phonetic encoding techniques such as Soundex are outside the 

scope of this investigation because measures based on phonetic 

encoding are lacking for most non-English languages, and the 

phonetic equivalencies they encode do not hold for some 

romanization systems. Nevertheless, we did include the three 

measures of string similarity evaluated by [5] that are sensitive to 

similarities between phonemes that frequently map onto particular 

letters (‘t’/’d’, ‘g’/’k’, etc.) 

2.7.1 Smith-Waterman Distance 
Like edit distance measures, the Smith-Waterman algorithm [24, 

29] determines the sequence of operations necessary to transform 

one string to another, but ascribes lesser weights to 

transformations between similar-sounding characters and employs 

specialized logic for handling alignment gaps, i.e., there is a ‘gap 

start’ penalty corresponding to the beginning of a string of 

unmatched characters, and a separate ‘gap continuation’ penalty 

for its continuation. As with the n-gram measures, similarity may 

be obtained by scaling the resulting value by the length of the 

shorter string, the length of the longer string, or the average 

length. 

2.7.2 Editex 
Editex [34] straightforwardly combines Levenshtein distance with 

‘letter groups’ (aeiouy, bp, ckq, etc.) such that letters in a similar 

group frequently correspond to similar phonemes.  As in 

Levenshtein distance, the minimal number of insertions, deletions, 

and replacements necessary to transform one string to another is 

computed, but edits that replace a letter with another letter from a 



different group are weighted more heavily, and deletions of letters 

that are frequently silent (h and w) are weighted less heavily than 

other deletions. 

2.7.3 Syllable Alignment 
Syllable alignment pattern searching [15] treats syllables rather 

than characters as the basic unit of analysis. Syllable locations are 

estimated by first applying numerous context-sensitive 

transformations that convert characters to character groups, 

yielding a series of letter groups for each string [14]. Syllable 

locations are estimated, and the minimum cost necessary to 

transform one string of character groups to the other using any of 

seven weighted operations (some on character groups, some on 

syllables) is determined. 

3. STUDY 

3.1 Data Preparation 
Country files for China, France, Germany, Italy, Japan, Mexico, 

Saudi Arabia, Spain, Taiwan, the United Kingdom, and Yemen 

were downloaded from the National Geospatial-Intelligence 

Agency (NGA) GEOnet Names Server. These files consist of 

place names indexed to unique feature identifiers that uniquely 

identify the referent of the name. For example, the three alternate 

names of the Tingtze River mentioned earlier all share the same 

unique feature identifier (i.e., the same spatial referent). Although 

the country files do include some exonyms, the vast majority of 

the toponyms in each country file were romanizations of local 

place names in local languages. Place names were filtered to 

exclude entries rendered in non-Roman scripts, as some string 

similarity measures to be tested (e.g., syllable alignment) were not 

designed for non-Latin strings, and romanized equivalents were 

available for all toponyms.  

Of all unique feature identifiers that were described by more than 

one name, 2,000 were randomly selected for each country and 

formed the source set S1 for that country. The union of the sets of 

alternate names for the toponyms in S1 formed the query set Q1. 

No two names in S1 shared the same referent. 

3.2 Procedure 

3.2.1 Evaluation of String Similarity Methods 
Each name q in the query set Q1 was considered a successful 

match if the name in S1 with the highest similarity to q (according 

to the string similarity measure under evaluation) was also the 

unique element in S1 with the same referent as q. Given that the 

task consisted of finding the element of the source set that shared 

the same referent as the element of the query set, accuracy was 

quantified as the proportion of elements of the query set that 

yielded successful matches. The datasets created from each of 

these 11 country files were evaluated on each of the 21 string 

similarity measures discussed in Section 2, using the 

implementations of these algorithms available in the open-source 

data linkage system Febrl [6]. In cases in which the parameters 

used in [5] were ambiguous, Febrl’s default values were used. 

Finally, to clarify how much of the differences in performance 

between country files were due to country/language-specific 

differences (as opposed to random variation among datasets), the 

entire experiment was replicated with new source and query sets 

generated from each country file in such a way that no element of 

the original source set S1 corresponded to the same referent as any 

element of the new source set S2. 

3.2.2 Exploratory Data Analysis 
Although optimal measures may vary considerably by dataset, 

regularities may exist that allow the researcher to select measures 

that are appropriate to a particular language or country. 

Multidimensional scaling, factor analysis, and hierarchical 

clustering were used to explore these regularities. For each 

dataset, vectors of the accuracy of each method on that dataset 

were computed (“dataset vectors”). Likewise, for each method, 

vectors of the accuracy of that method on each dataset were 

computed (“method vectors”). SPSS 20 was used to calculate 

Euclidean distances between each pair of z-scored dataset vectors 

and to conduct three exploratory analyses on the resulting 

distance matrix: multidimensional scaling, hierarchical clustering, 

and factor analysis. Following the methodology of Maki & 

Buchanan [22], average linkage was used for hierarchical 

clustering, factors were extracted using the method of unweighted 

least squares, and a direct oblimin rotation was applied. This 

oblique rotation permits us to obtain a loading structure such that 

each variable loads primarily on a single factor, but in such a way 

that preserves information about correlations among factors, 

yielding what is likely to be a more accurate solution [10]. These 

analyses were initially conducted on dataset vectors to explore 

regularities among datasets, but were also conducted on method 

vectors to explore regularities among string similarity methods. 

4. RESULTS AND DISCUSSION 
Table 1 highlights the best-performing (most accurate) measures, 

while the Appendix lists precision and recall of each. As this was 

a matching task (1 item retrieved per element of S) rather than a 

retrieval task (retrieving all elements exceeding some threshold), 

precision and accuracy are identical. We observed substantial 

variation in the methods that worked best on datasets 

corresponding to different countries, i.e., the top-performing 

algorithm on the China and Japan datasets was among the worst-

performing algorithms on the Spain and Mexico datasets.  

For each country, a replication was conducted on a disjoint 

dataset derived from the same country file. For each country, the 

results of the replication were extremely similar to the results of 

the original analysis, with the set of the three best-performing 

measures for S2 identical to the set of the three best-performing 

measures for S1 for all countries.  

While the greatest similarities were between datasets of place 

names corresponding to the same country, there was also a high 

degree of consistency in measure performance among countries 

with similar dominant languages. For example, the set of the five 

best-performing algorithms was identical for Yemen and Saudi 

Arabia. Likewise, the set of the five best-performing algorithms 

was identical for Mexico, Italy, and Spain.  

For the 22 dataset vectors, results of the multidimensional scaling 

and factor analysis are illustrated in Figure 1 and Table 2, 

respectively. Each of these analyses showed that the same 

algorithms tended to work best on each of the two (non- 

overlapping) datasets drawn from each country file. This differs 

from prior findings that string similarity algorithms’ performance 

tends to be dataset-specific [5, 9], and may be due to the similarity 

and homogeneity of toponyms from a single country (relative to 

the heterogeneity of the datasets investigated by Christen and 

Cohen et al. [5, 9]). In the hierarchical clustering analysis, the 

three highest-level clusters corresponded to the datasets derived 

from the European, Middle Eastern, and Asian countries, 

respectively. Likewise, the method of unweighted least



Table 1. Best-performing measures by dataset. 

Dataset China (1, 2) France (1) France (2) Germany (1) Germany (2) Italy (1, 2) 

Best Jaro-Winkler Skip-grams Skip-grams Skip-grams Skip-grams Skip-grams 

2nd best Perm. Winkler Trigrams Trigrams Trigrams Trigrams Trigrams 

3rd best Jaro Bigrams Bigrams Bigrams Bigrams Smith-Wat. 

4th best Sort. Winkler LCS (L = 3) Sort. Winkler LCS (L = 3) Smith-Wat. Bigrams 

5th best Skip-grams S. Winkler Smith-Wat. Smith-Wat. LCS (L = 3) LCS (L = 3) 

       Dataset Japan (1) Japan (2) Mexico (1, 2) Saudi A. (1) Saudi A. (2) Spain (1, 2) 

Best Jaro-Winkler Jaro-Winkler Skip-grams Syllable Skip-grams Trigrams 

2nd best Perm. Winkler Perm. Winkler Smith-Wat. Skip-grams Smith-Wat. Skip-grams 

3rd best Pos. bigrams Pos. bigrams Trigrams Smith-Wat. Syllable Smith-Wat. 

4th best Jaro Bigrams Bigrams Editex Editex Bigrams 

5th best Bigrams Skip-grams LCS (L = 3) Bigrams Bigrams LCS (L = 3) 

       Dataset Taiwan (1) Taiwan (2) U. K. (1) U. K. (2) Yemen (1) Yemen (2) 

Best Editex Editex Bigrams Skip-grams Syllable Skip-grams 

2nd best Dam.-Lev. Levenshtein Skip-grams Bigrams Editex Editex 

3rd best Levenshtein Dam.-Lev. Perm. Winkler Perm. Winkler Skip-grams Syllable 

4th best Jaro Jaro Trigrams Trigrams Smith-Wat. Smith-Wat. 

5th best Jaro-Winkler Jaro-Winkler LCS (L = 3) Smith-Wat. Bigrams Bigrams 

  Note. When the five best algorithms and their rankings for two datasets are identical, datasets are combined into a single column. 

 

Figure 1. Multidimensional scaling plot of dataset vectors. Each point corresponds to one of the two disjoint datasets generated 

from each country file.  
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Table 2. Results of the factor analysis conducted on dataset 

vectors (pattern matrix); loadings having the highest weight 

for each variable are rendered in bold. 

 

Dataset Factor 

1 2 3 

China (1) .302 .832 -.320 

China (2) .278 .852 -.298 

France (1) .902 .213 -.290 

France (2) .899 .217 -.298 

Germany (1) .891 .095 .153 

Germany (2) .847 .163 .152 

Italy (1) 1.008 .011 -.086 

Italy (2) .982 .055 -.060 

Japan (1) .230 .826 .077 

Japan (2) .304 .788 .032 

Mexico (1) .952 -.053 .192 

Mexico (2) .957 -.057 .190 

Saudi Arabia (1) .389 .271 .681 

Saudi Arabia (2) .466 .230 .643 

Spain (1) 1.017 -.247 .188 

Spain (2) 1.016 -.243 .180 

Taiwan (1) -.203 .992 .243 

Taiwan (2) -.189 .983 .259 

United Kingdom (1) .814 .303 -.041 

United Kingdom (2) .849 .261 -.054 

Yemen (1) .360 .400 .598 

Yemen (2) .345 .383 .630 

 

squares extracted exactly three factors, which explained 96% of 

the total variance and corresponded to the same three region-

specific clusters (Table 2). 

It seems reasonable to assume that these regularities are due to the 

similarities in the dominant languages among the European, 

Middle Eastern, and Asian countries in this dataset (Table 3). A 

close look at Table 1 suggests that for France, Germany, Italy, 

Mexico, Spain, and the United Kingdom, the three best-

performing methods always include at least two of skip-grams, 

trigrams, and bigrams; Smith-Waterman distance and LCS with an 

L threshold of 3 are also strong contenders. In contrast, Jaro-

Winkler and Permuted Winkler are the highest-performing 

algorithms for China and Japan, whereas three edit distance 

measures (Editex, Levenshtein distance, and Damerau-

Levenshtein distance) perform best for Taiwan. For both datasets 

from both Arabic-speaking countries, the five best-performing 

methods were syllable alignment, Editex, Smith-Waterman 

distance, skip-grams, and bigrams, though not always in that 

order. 

For the 21 method vectors, the method of unweighted least 

squares again extracted three factors which cumulatively 

explained 94% of the total variance. With a few exceptions 

(Smith-Waterman, sorted Winkler, and syllable alignment), 

Table 3. Major languages spoken in countries investigated in 

the present study. Language lists are derived from [4]. 

 

Country Languages 

China 

Standard Chinese or Mandarin, Cantonese, 

Shanghainese, Fuzhou, Hokkien-Taiwanese, 

Xiang, Gan, Hakka dialects, and others 

France French, regional dialects 

Germany German 

Italy Italian, German, French, Slovene 

Japan Japanese 

Mexico 
Spanish, indigenous languages (Mayan, 

Nahuatl, and others) 

Saudi 

Arabia 
Arabic 

Spain Castilian Spanish, Catalan, Galician, Basque 

Taiwan Mandarin Chinese, Taiwanese, Hakka dialects 

United 

Kingdom 

English, Scots, Scottish Gaelic, Welsh, Irish, 

Cornish 

Yemen Arabic 

 

measures for which the unit of analysis included bigrams, open 

bigrams, or longer substrings tended to cluster together and load 

on Factor 1, measures for which the unit of analysis was a single 

character or operation (edit distance measures, bag distance, 

Editex, unigrams) loaded on Factor 2, and Jaro variants loaded on 

Factor 3. The three largest clusters in the hierarchical clustering 

analysis were similar, but with positional unigrams, positional 

bigrams, and positional trigrams clustering with the Jaro variants. 

These groupings seem to map onto the classes of algorithms that 

perform best on different country files: The best-performing 

algorithms on China and Japan were Jaro variants, edit distance 

performed best on Taiwan, and n-gram based measures worked 

best on countries with toponyms in Romance and Germanic 

languages. Although the phone-sensitive algorithms did not form 

their own cluster, it is interesting that these measures tended to 

perform well on the two Arabic-speaking countries, and with high 

variability on others. For example, the best-performing algorithm 

on one of the Yemen and Saudi Arabia datasets (syllable 

alignment) was among the five worst-performing algorithms on 

the China and France datasets, and achieved middling 

performance on several others. Similarly, Editex and Smith-

Waterman distance performed well on Yemen and Saudi Arabia, 

but varied considerably with respect to their performance on other 

datasets.  

4.1 Similarities and Differences Among 

Datasets 
What properties of toponyms might cause some string similarity 

algorithms to perform better than others, and to differ so 

dramatically in their performance across languages? Although this 

study was not designed to answer this question, we can make 

some informed speculations by informally comparing the 

properties of each set of toponyms. Upon even a cursory  



observation of each dataset, it is not surprising that methods that 

simply count the number of shared short substrings (bigrams, 

trigrams) tend to perform well. Variants that are abbreviations of 

longer forms of a place name (e.g., Ojo de Agua de Rosales / Ojo 

Rosales, Ojo de Agua) are ubiquitous. Pieces of the name may 

drop out from the beginning (Province of Ulster / Ulster), end 

(Abingdon-on-Thames / Abingdon), or center (Worcester and 

Birmingham Canal / Worcester Birmingham Canal) of a string, 

and can even be simultaneously added and dropped (County 

Borough of Wrexham / Wrexham Maelor). Abbreviations in the 

China, Japan, and Taiwan datasets exhibit more regularity; in 

these, abbreviations most frequently involve cropping the end of 

the string. In the set of Chinese toponyms with variants, for 

example, the most frequent tokens are Zhen, Xiang, Xian, -hsien, 

and Qu, all of which appear nearly always at the end of the string 

(when appearing as standalone tokens), and are frequently 

abbreviated or transformed. Correspondingly, Jaro-Winkler does 

well on these datasets, as it is the only one of the algorithms that 

intentionally penalizes differences more when they occur towards 

the beginning of the string. 

Algorithms for toponym matching must be robust to abbreviations 

both large (Albertshausen / Albertshausen bei Bad Kissingen) and 

small (Lac d' Alles / Lac d' Allos), as well as transpositions 

(Aldwincle Saint Peter / Saint Peter Aldwinkle). All three kinds of 

transformations occur frequently across datasets. When large 

chunks of a toponym swap places, algorithms that count the 

number of character-based edits necessary to transform one string 

to another are overly pessimistic. Although this can be addressed 

with n-gram-based methods, n-grams are sensitive to minor 

disturbances: a single deletion (abcde→abde) will destroy three 

trigrams, and two bigrams. Skip-grams preserve the advantages of 

n-gram methods while turning a blind eye to pluralization, 

hyphenation, apostrophe placement, tokenization differences, 

vowel shifts, and other phenomena that frequently cause toponym 

variants to differ by only one or two characters. 

We were initially surprised that the three phone-sensitive 

measures (Editex, Smith-Waterman, and syllable alignment) 

achieved such high performance on datasets consisting primarily 

of transliterated Arabic toponyms. However, it seems likely that 

the vast majority of variant toponyms in these datasets are due to 

phonetically similar transliterations of the same place name. For 

example, the following were observed in a random selection of ten 

toponym/variant pairs from the Yemen dataset: (Gebel Sadab / 

Jebel Satab), (Ra's Kathib / Ra's al Katib), (Bir Haiyirah / Bi'r 

Hayyirah), (Jau Mulais / Jaww Mulais), (Djol Bin Fadl / Jawl Bin 

Fadl), and (Wadi Balas / Wadi Bilas). In each case, phonetic 

differences are minimal, despite differences in spelling. This is 

also somewhat true of the China and Taiwan datasets, but to a 

lesser extent, and the phone-sensitive algorithms’ assumptions 

about which letters represent similar speech sounds are not well-

suited to the Hanyu Pinyin frequently used to transliterate Chinese 

place names. The Editex letter groups seem to fare somewhat 

better at matching names rendered in Tongyong Pinyin 

(frequently used in the Taiwan dataset) to alternate 

transliterations, although other factors are in play as well.  

This discussion is not intended to provide a rigorous investigation 

of which differences between datasets lead to differences in 

algorithm performance, but may nonetheless serve as a starting 

place for future research. We close with some recommendations 

for integrating string similarity measures into GIR systems that are 

suggested by our results. 

5. CONCLUSION 
In many GIR use cases, users query a set of place names with 

search terms that include alternate spellings, transliterations, and 

variants that are similar but not identical to the place name 

associated with the desired record. Many string similarity 

algorithms can accomplish this ‘fuzzy matching’ task, but there 

has been no systematic investigation of whether different 

algorithms are appropriate to different kinds of toponyms. The 

present results demonstrate that there are at least some language-

dependent regularities that hold across datasets, and form the 

basis of the following recommendations: 

If possible, test several algorithms on a country-specific or 

language-specific dataset, and use the best-performing algorithm 

for future queries involving that dataset. In cases for which the 

country of the desired record is known, and enough records are 

available to compare the performance of various algorithms, it 

appears worthwhile to do so. Algorithms that perform very well 

on some datasets perform very poorly on others, but similar 

algorithms tend to do well on disjoint datasets drawn from the 

same country. In addition, similar algorithms appear to perform 

well for countries that share similar languages. 

Some algorithms are strictly better than most others, irrespective 

of country. Averaged across all countries, the best-performing 

algorithms were skip-grams, bigrams, trigrams, Smith-Waterman, 

and LCS (L = 3), while the worst-performing algorithms were 

positional trigrams, unigrams, positional unigrams, bag distance, 

and NCD (bz2 compressor). Skip-grams were the best-performing 

algorithm on the plurality of datasets, and performed poorly on 

none. Skip-grams were always the best performing measure, with 

the following exceptions: They were beaten out by Jaro variants 

only on the China datasets, by trigrams only on the Spain datasets, 

and by bigrams only on one of the two UK datasets. On Japan, 

skip-grams were outperformed by Jaro variants, bigrams, and 

positional bigrams; by syllable alignment and/or Editex on half of 

the Saudi Arabia and Yemen datasets; and by Jaro variants, 

Editex, and edit distance measures on the Taiwan dataset. 

Therefore, skip-grams seem to be an excellent choice in the 

absence of other information about one’s dataset, closely followed 

by bigrams.  

There are superior alternatives to Levenshtein distance. Despite 

the ubiquity of Levenshtein distance as the method of choice in 

many toponym matching applications, we found that its average 

performance was only 11th out of the 21 algorithms investigated, 

and that it was outperformed by skip-grams and bigrams on all 

datasets except for Taiwan. 

5.1 Future Directions 
Given the excellent performance of skip-grams using the default 

settings in the Febrl software package, one promising next step 

would be to investigate whether other combinations of n-grams of 

various lengths and gap sizes perform even better. Interestingly, 

skip-grams have been investigated as the basis of a 

psychologically plausible model of word representation under the 

name “open bigrams” [31], and there are numerous competing 

word-form representations [11] that have not yet been 

investigated closely in the literature on computational linguistics 

or geography. This area is ripe for further study. In the meantime, 

we hope that the present investigation offers useful insights to 

researchers and practitioners interested in applying fuzzy 

matching techniques to place names from different countries and 

languages. 
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APPENDIX 

A. PRECISION AND RECALL 
 

Because this was constructed as a matching task (i.e., select the best match in Q for each element of S) rather than as a retrieval task (i.e., 

select all matches from Q exceeding some threshold), the total number of retrieved items was 2,000 (1 item retrieved for each of the 2,000 

names in S). As such, precision is equal to accuracy for this particular task. Chance precision—the precision that would be obtained by 

selecting a random item from Q for each element of S—is 1 divided by the size of S (1/2,000 = .0005). In most datasets, the vast majority 

of names in S are associated with only one alternate name in Q, causing mean recall to typically be only slightly lower than mean precision. 

Values in Table 4 represent mean precision and mean recall (respectively) on the two datasets from each particular country, and rows are 

sorted by mean precision. 

 

Table 4. Mean precision/recall of each method on datasets from each country. 

 
China France Germany Italy Japan Mexico 

Saudi 

Arabia 
Spain Taiwan 

United 

Kingdom 
Yemen 

Skip-grams .26/.26 .74/.73 .75/.74 .63/.62 .52/.51 .66/.59 .52/.51 .66/.54 .51/.50 .70/.70 .58/.57 

Bigrams .25/.24 .72/.72 .75/.73 .61/.60 .52/.51 .63/.57 .50/.49 .63/.52 .47/.47 .70/.70 .56/.55 

Trigrams .25/.24 .73/.72 .75/.74 .62/.61 .51/.50 .64/.57 .47/.46 .66/.54 .39/.38 .68/.68 .54/.52 

Smith-Wat. .22/.21 .71/.71 .71/.69 .61/.60 .43/.42 .65/.58 .52/.51 .63/.52 .41/.40 .67/.66 .57/.55 

LCS (L = 3) .20/.20 .70/.70 .71/.69 .60/.59 .47/.46 .62/.56 .47/.46 .61/.50 .32/.32 .67/.66 .51/.50 

Perm. Winkler .31/.30 .70/.69 .63/.62 .56/.55 .55/.54 .52/.47 .41/.40 .40/.32 .53/.52 .69/.69 .49/.47 

LCS (L = 2) .20/.19 .63/.63 .68/.67 .54/.53 .47/.46 .57/.51 .48/.47 .54/.44 .44/.43 .65/.65 .52/.50 

Jaro .30/.30 .68/.68 .60/.59 .48/.47 .52/.50 .47/.42 .44/.43 .39/.31 .58/.57 .62/.61 .52/.50 

Sort. Winkler .29/.29 .71/.71 .61/.60 .54/.53 .49/.48 .55/.50 .40/.39 .44/.36 .39/.39 .61/.61 .46/.45 

Jaro-Winkler .32/.31 .65/.65 .59/.58 .46/.46 .56/.55 .43/.39 .40/.39 .36/.29 .56/.55 .61/.61 .48/.46 

Levenshtein .22/.21 .51/.51 .61/.60 .45/.45 .51/.50 .49/.44 .49/.48 .44/.36 .59/.58 .55/.55 .55/.54 

Dam.-Leven. .22/.21 .51/.51 .61/.60 .45/.45 .51/.49 .49/.44 .49/.48 .44/.36 .59/.58 .55/.55 .56/.54 

Editex .22/.22 .48/.48 .59/.58 .43/.43 .50/.49 .49/.44 .51/.49 .42/.35 .60/.59 .55/.54 .58/.57 

Syllable .19/.19 .48/.47 .60/.59 .47/.46 .49/.48 .55/.49 .52/.51 .48/.39 .39/.38 .58/.57 .58/.56 

Pos. bigrams .25/.24 .62/.61 .55/.54 .41/.40 .53/.52 .35/.31 .41/.40 .32/.26 .31/.30 .57/.57 .50/.49 

NCD (zlib) .12/.12 .60/.59 .56/.55 .50/.50 .31/.31 .52/.47 .42/.41 .49/.40 .17/.17 .55/.55 .47/.46 

Pos. trigrams .24/.23 .61/.61 .54/.53 .41/.41 .52/.51 .35/.31 .38/.38 .32/.26 .26/.26 .56/.56 .47/.46 

Unigrams .15/.15 .44/.43 .56/.55 .39/.38 .38/.37 .46/.41 .43/.42 .38/.31 .38/.38 .52/.52 .48/.47 

Pos. unigrams .21/.21 .52/.52 .51/.50 .36/.35 .49/.48 .32/.29 .41/.40 .28/.23 .28/.28 .53/.53 .50/.48 

Bag distance .11/.11 .36/.36 .47/.46 .32/.32 .36/.35 .37/.33 .39/.38 .28/.23 .27/.27 .43/.43 .46/.45 

NCD (bz2) .05/.05 .25/.25 .31/.30 .24/.24 .16/.16 .23/.20 .22/.22 .21/.17 .06/.06 .29/.29 .24/.23 

 

Note. Mean precision is on the left of each slash mark, while mean recall is on the right.

 


