💬 Talk: "Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths"
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
Figs
Ruby
fonts
.gitignore
2018_jsm_fairtmle.tex
2018_jsm_fairtmle_withnotes.tex
LICENSE
Makefile
README.md
header.tex
references.bib

README.md

JSM 2018 Talk: Fair Estimation for Targeted Learning

Materials for a presentation given at the session "New Developments in Nonparametric and Semiparametric Statistics" at the Joint Statistical Meetings, on 02 August 2018, in Vancouver, Canada


Title: "Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths"

Authors: Nima S. Hejazi and Mark J. van der Laan

Abstract

We consider nonparametrically estimating a parameter of interest under the constraint that a functional of the parameter is bounded. We define the unconstrained parameter as the minimizer of the expectation of a loss function over the unconstrained parameter space, allowing that the constraint functional depend on the unknown distribution of the data, thus making it unknown. We characterize the constrained functional parameter as a penalized expectation of a loss function and characterize the minimizer over the unconstrained parameter space as a quantity dependent on the canonical gradients of the expectation of the loss function and the constraint functional. Further, we show that when closed-form solutions are attainable, these may be used to define a path through the unconstrained parameter space that may be used to iterate toward a solution that satisfies the desired constraint. We present this approach in light of both prediction problems where we construct optimal ensemble learners via cross-validation and in the estimation of causal effects under arbitrary constraints that encode desirable social intuitions -- thereby providing a mechanism for fair learning and inference.

Related

  • Slides are available here
  • Notes are available here
  • Talk info via JSM here

License

To the extent possible under law, Nima Hejazi has waived all copyright and related or neighboring rights to these materials. This work is published from the United States.
CC0