Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

file 724 lines (575 sloc) 24.24 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
#ifndef __PExpr_H
#define __PExpr_H
/*
* Copyright (c) 1998-2011 Stephen Williams <steve@icarus.com>
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/

# include <string>
# include <vector>
# include <valarray>
# include "netlist.h"
# include "verinum.h"
# include "LineInfo.h"
# include "pform_types.h"

class Design;
class Module;
class LexicalScope;
class NetNet;
class NetExpr;
class NetScope;

/*
* The PExpr class hierarchy supports the description of
* expressions. The parser can generate expression objects from the
* source, possibly reducing things that it knows how to reduce.
*/

class PExpr : public LineInfo {

    public:
      enum width_mode_t { SIZED, EXPAND, LOSSLESS, UNSIZED };

        // Flag values that can be passed to elaborate_expr.
      static const unsigned NO_FLAGS = 0x0;
      static const unsigned NEED_CONST = 0x1;
      static const unsigned SYS_TASK_ARG = 0x2;

      PExpr();
      virtual ~PExpr();

      virtual void dump(ostream&) const;

        // This method tests whether the expression contains any identifiers
        // that have not been previously declared in the specified scope or
        // in any containing scope. Any such identifiers are added to the
        // specified scope as scalar nets of the specified type.
        //
        // This operation must be performed by the parser, to ensure that
        // subsequent declarations do not affect the decision to create an
        // implicit net.
      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

        // This method tests whether the expression contains any
        // references to automatically allocated variables.
      virtual bool has_aa_term(Design*des, NetScope*scope) const;

// This method tests the type and width that the expression wants
// to be. It should be called before elaborating an expression to
// figure out the type and width of the expression. It also figures
// out the minimum width that can be used to evaluate the expression
// without changing the result. This allows the expression width to
// be pruned when not all bits of the result are used.
//
// Normally mode should be initialised to SIZED before starting to
// test the width of an expression. In SIZED mode the expression
// width will be calculated strictly according to the IEEE standard
// rules for expression width.
// If the expression contains an unsized literal, mode will be
// changed to LOSSLESS. In LOSSLESS mode the expression width will
// be calculated as the minimum width necessary to avoid arithmetic
// overflow or underflow.
// If the expression both contains an unsized literal and contains
// an operation that coerces a vector operand to a different type
// (signed <-> unsigned), mode is changed to UNSIZED. UNSIZED mode
// is the same as LOSSLESS, except that the final expression width
// will be forced to be at least integer_width. This is necessary
// to ensure compatibility with the IEEE standard, which requires
// unsized literals to be treated as having the same width as an
// integer. The lossless width calculation is inadequate in this
// case because coercing an operand to a different type means that
// the expression no longer obeys the normal rules of arithmetic.
//
// If mode is initialised to EXPAND instead of SIZED, the expression
// width will be calculated as the minimum width necessary to avoid
// arithmetic overflow or underflow, even if it contains no unsized
// literals. mode will be changed LOSSLESS or UNSIZED as described
// above. This supports a non-standard mode of expression width
// calculation.
//
// When the final value of mode is UNSIZED, the width returned by
// this method is the calculated lossless width, but the width
// returned by a subsequent call to the expr_width method will be
// the final expression width.
      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

// After the test_width method is complete, these methods
// return valid results.
      ivl_variable_type_t expr_type() const { return expr_type_; }
      unsigned expr_width() const { return expr_width_; }
      unsigned min_width() const { return min_width_; }
      bool has_sign() const { return signed_flag_; }

        // This method allows the expression type (signed/unsigned)
        // to be propagated down to any context-dependant operands.
      void cast_signed(bool flag) { signed_flag_ = flag; }

// Procedural elaboration of the expression. The expr_width is
// the required width of the expression.
//
// The sys_task_arg flag is true if expressions are allowed to
// be incomplete.
      virtual NetExpr*elaborate_expr(Design*des, NetScope*scope,
unsigned expr_wid,
                                     unsigned flags) const;

// This method elaborates the expression as gates, but
// restricted for use as l-values of continuous assignments.
      virtual NetNet* elaborate_lnet(Design*des, NetScope*scope) const;

// This is similar to elaborate_lnet, except that the
// expression is evaluated to be bi-directional. This is
// useful for arguments to inout ports of module instances and
// ports of tran primitives.
      virtual NetNet* elaborate_bi_net(Design*des, NetScope*scope) const;

// Expressions that can be in the l-value of procedural
// assignments can be elaborated with this method. If the
// is_force flag is true, then the set of valid l-value types
// is slightly modified to accommodate the Verilog force
// statement
      virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;

// This attempts to evaluate a constant expression, and return
// a verinum as a result. If the expression cannot be
// evaluated, return 0.
      virtual verinum* eval_const(Design*des, NetScope*sc) const;

// This method returns true if the expression represents a
        // structural net that can have multiple drivers. This is
        // used to test whether an input port connection can be
        // collapsed to a single wire.
      virtual bool is_collapsible_net(Design*des, NetScope*scope) const;

// This method returns true if that expression is the same as
// this expression. This method is used for comparing
// expressions that must be structurally "identical".
      virtual bool is_the_same(const PExpr*that) const;

    protected:
      unsigned fix_width_(width_mode_t mode);

// The derived class test_width methods should fill these in.
      ivl_variable_type_t expr_type_;
      unsigned expr_width_;
      unsigned min_width_;
      bool signed_flag_;

    private: // not implemented
      PExpr(const PExpr&);
      PExpr& operator= (const PExpr&);
};

ostream& operator << (ostream&, const PExpr&);

class PEConcat : public PExpr {

    public:
      PEConcat(const list<PExpr*>&p, PExpr*r =0);
      ~PEConcat();

      virtual verinum* eval_const(Design*des, NetScope*sc) const;
      virtual void dump(ostream&) const;

      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetNet* elaborate_lnet(Design*des, NetScope*scope) const;
      virtual NetNet* elaborate_bi_net(Design*des, NetScope*scope) const;
      virtual NetExpr*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid,
                                     unsigned flags) const;
      virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;
      virtual bool is_collapsible_net(Design*des, NetScope*scope) const;
    private:
      NetNet* elaborate_lnet_common_(Design*des, NetScope*scope,
bool bidirectional_flag) const;
    private:
      vector<PExpr*>parms_;
      std::valarray<width_mode_t>width_modes_;

      PExpr*repeat_;
      NetScope*tested_scope_;
      unsigned repeat_count_;
};

/*
* Event expressions are expressions that can be combined with the
* event "or" operator. These include "posedge foo" and similar, and
* also include named events. "edge" events are associated with an
* expression, whereas named events simply have a name, which
* represents an event variable.
*/
class PEEvent : public PExpr {

    public:
      enum edge_t {ANYEDGE, POSEDGE, NEGEDGE, POSITIVE};

// Use this constructor to create events based on edges or levels.
      PEEvent(edge_t t, PExpr*e);

      ~PEEvent();

      edge_t type() const;
      PExpr* expr() const;

      virtual void dump(ostream&) const;

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

    private:
      edge_t type_;
      PExpr *expr_;
};

/*
* This holds a floating point constant in the source.
*/
class PEFNumber : public PExpr {

    public:
      explicit PEFNumber(verireal*vp);
      ~PEFNumber();

      const verireal& value() const;

/* The eval_const method as applied to a floating point number
gets the *integer* value of the number. This accounts for
any rounding that is needed to get the value. */
      virtual verinum* eval_const(Design*des, NetScope*sc) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);
      virtual NetExpr*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid,
                                     unsigned flags) const;

      virtual void dump(ostream&) const;

    private:
      verireal*value_;
};

class PEIdent : public PExpr {

    public:
      explicit PEIdent(perm_string, bool no_implicit_sig=false);
      explicit PEIdent(const pform_name_t&);
      ~PEIdent();

// Add another name to the string of hierarchy that is the
// current identifier.
      void append_name(perm_string);

      virtual void dump(ostream&) const;

      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

// Identifiers are allowed (with restrictions) is assign l-values.
      virtual NetNet* elaborate_lnet(Design*des, NetScope*scope) const;

      virtual NetNet* elaborate_bi_net(Design*des, NetScope*scope) const;

// Identifiers are also allowed as procedural assignment l-values.
      virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;

      virtual NetExpr*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid,
                                     unsigned flags) const;

// Elaborate the PEIdent as a port to a module. This method
// only applies to Ident expressions.
      NetNet* elaborate_port(Design*des, NetScope*sc) const;

      verinum* eval_const(Design*des, NetScope*sc) const;

      virtual bool is_collapsible_net(Design*des, NetScope*scope) const;

      const pform_name_t& path() const { return path_; }

    private:
      pform_name_t path_;
      bool no_implicit_sig_;

    private:
// Common functions to calculate parts of part/bit
// selects. These methods return true if the expressions
// elaborate/calculate, or false if there is some sort of
// source error.

// The calculate_parts_ method calculates the range
// expressions of a part select for the current object. The
// part select expressions are elaborated and evaluated, and
// the values written to the msb/lsb arguments. If there are
// invalid bits (xz) in either expression, then the defined
// flag is set to *false*.
      bool calculate_parts_(Design*, NetScope*, long&msb, long&lsb, bool&defined) const;
      NetExpr* calculate_up_do_base_(Design*, NetScope*, bool need_const) const;
      bool calculate_param_range_(Design*, NetScope*,
const NetExpr*msb_ex, long&msb,
const NetExpr*lsb_ex, long&lsb,
long length) const;

      bool calculate_up_do_width_(Design*, NetScope*, unsigned long&wid) const;

    private:
      NetAssign_*elaborate_lval_net_word_(Design*, NetScope*, NetNet*) const;
      bool elaborate_lval_net_bit_(Design*, NetScope*, NetAssign_*) const;
      bool elaborate_lval_net_part_(Design*, NetScope*, NetAssign_*) const;
      bool elaborate_lval_net_idx_(Design*, NetScope*, NetAssign_*,
                                   index_component_t::ctype_t) const;

    private:
      NetExpr*elaborate_expr_param_(Design*des,
NetScope*scope,
const NetExpr*par,
NetScope*found,
const NetExpr*par_msb,
const NetExpr*par_lsb,
unsigned expr_wid,
                                    unsigned flags) const;
      NetExpr*elaborate_expr_param_part_(Design*des,
NetScope*scope,
const NetExpr*par,
NetScope*found,
const NetExpr*par_msb,
const NetExpr*par_lsb,
unsigned expr_wid) const;
      NetExpr*elaborate_expr_param_idx_up_(Design*des,
NetScope*scope,
const NetExpr*par,
NetScope*found,
const NetExpr*par_msb,
const NetExpr*par_lsb,
                                           bool need_const) const;
      NetExpr*elaborate_expr_param_idx_do_(Design*des,
NetScope*scope,
const NetExpr*par,
NetScope*found,
const NetExpr*par_msb,
const NetExpr*par_lsb,
                                           bool need_const) const;
      NetExpr*elaborate_expr_net(Design*des,
NetScope*scope,
NetNet*net,
NetScope*found,
unsigned expr_wid,
unsigned flags) const;
      NetExpr*elaborate_expr_net_word_(Design*des,
NetScope*scope,
NetNet*net,
NetScope*found,
unsigned expr_wid,
unsigned flags) const;
      NetExpr*elaborate_expr_net_part_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found,
unsigned expr_wid) const;
      NetExpr*elaborate_expr_net_idx_up_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found,
                                         bool need_const) const;
      NetExpr*elaborate_expr_net_idx_do_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found,
                                         bool need_const) const;
      NetExpr*elaborate_expr_net_bit_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found,
                                      bool need_const) const;

    private:
      NetNet* elaborate_lnet_common_(Design*des, NetScope*scope,
bool bidirectional_flag) const;

      bool eval_part_select_(Design*des, NetScope*scope, NetNet*sig,
long&midx, long&lidx) const;
};

class PENumber : public PExpr {

    public:
      explicit PENumber(verinum*vp);
      ~PENumber();

      const verinum& value() const;

      virtual void dump(ostream&) const;
      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetEConst*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid, unsigned) const;
      virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;

      virtual verinum* eval_const(Design*des, NetScope*sc) const;

      virtual bool is_the_same(const PExpr*that) const;

    private:
      verinum*const value_;
};

/*
* This represents a string constant in an expression.
*
* The s parameter to the PEString constructor is a C string that this
* class instance will take for its own. The caller should not delete
* the string, the destructor will do it.
*/
class PEString : public PExpr {

    public:
      explicit PEString(char*s);
      ~PEString();

      string value() const;
      virtual void dump(ostream&) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetEConst*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid, unsigned) const;
      verinum* eval_const(Design*, NetScope*) const;

    private:
      char*text_;
};

class PEUnary : public PExpr {

    public:
      explicit PEUnary(char op, PExpr*ex);
      ~PEUnary();

      virtual void dump(ostream&out) const;

      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetExpr*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid,
                                     unsigned flags) const;
      virtual verinum* eval_const(Design*des, NetScope*sc) const;

    private:
      NetExpr* elaborate_expr_bits_(NetExpr*operand, unsigned expr_wid) const;

    private:
      char op_;
      PExpr*expr_;
};

class PEBinary : public PExpr {

    public:
      explicit PEBinary(char op, PExpr*l, PExpr*r);
      ~PEBinary();

      virtual void dump(ostream&out) const;

      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetExpr*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid,
                                     unsigned flags) const;
      virtual verinum* eval_const(Design*des, NetScope*sc) const;

    protected:
      char op_;
      PExpr*left_;
      PExpr*right_;

      NetExpr*elaborate_expr_base_(Design*, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;
      NetExpr*elaborate_eval_expr_base_(Design*, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;

      NetExpr*elaborate_expr_base_bits_(Design*, NetExpr*lp, NetExpr*rp,
                                        unsigned expr_wid) const;
      NetExpr*elaborate_expr_base_div_(Design*, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;
      NetExpr*elaborate_expr_base_mult_(Design*, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;
      NetExpr*elaborate_expr_base_add_(Design*, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;

};

/*
* Here are a few specialized classes for handling specific binary
* operators.
*/
class PEBComp : public PEBinary {

    public:
      explicit PEBComp(char op, PExpr*l, PExpr*r);
      ~PEBComp();

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      NetExpr* elaborate_expr(Design*des, NetScope*scope,
unsigned expr_wid, unsigned flags) const;

    private:
      unsigned l_width_;
      unsigned r_width_;
};

/*
* This derived class is for handling logical expressions: && and ||.
*/
class PEBLogic : public PEBinary {

    public:
      explicit PEBLogic(char op, PExpr*l, PExpr*r);
      ~PEBLogic();

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      NetExpr* elaborate_expr(Design*des, NetScope*scope,
unsigned expr_wid, unsigned flags) const;
};

/*
* A couple of the binary operands have a special sub-expression rule
* where the expression width is carried entirely by the left
* expression, and the right operand is self-determined.
*/
class PEBLeftWidth : public PEBinary {

    public:
      explicit PEBLeftWidth(char op, PExpr*l, PExpr*r);
      ~PEBLeftWidth() =0;

      virtual NetExpr*elaborate_expr_leaf(Design*des, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const =0;

    protected:
      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetExpr*elaborate_expr(Design*des, NetScope*scope,
unsigned expr_wid,
                                     unsigned flags) const;
};

class PEBPower : public PEBLeftWidth {

    public:
      explicit PEBPower(char op, PExpr*l, PExpr*r);
      ~PEBPower();

      NetExpr*elaborate_expr_leaf(Design*des, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;
};

class PEBShift : public PEBLeftWidth {

    public:
      explicit PEBShift(char op, PExpr*l, PExpr*r);
      ~PEBShift();

      NetExpr*elaborate_expr_leaf(Design*des, NetExpr*lp, NetExpr*rp,
unsigned expr_wid) const;
};

/*
* This class supports the ternary (?:) operator. The operator takes
* three expressions, the test, the true result and the false result.
*/
class PETernary : public PExpr {

    public:
      explicit PETernary(PExpr*e, PExpr*t, PExpr*f);
      ~PETernary();

      virtual void dump(ostream&out) const;

      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

      virtual NetExpr*elaborate_expr(Design*des, NetScope*,
unsigned expr_wid,
                                     unsigned flags) const;
      virtual verinum* eval_const(Design*des, NetScope*sc) const;

    private:
      NetExpr* elab_and_eval_alternative_(Design*des, NetScope*scope,
PExpr*expr, unsigned expr_wid,
                                          unsigned flags) const;

    private:
      PExpr*expr_;
      PExpr*tru_;
      PExpr*fal_;
};

/*
* This class represents a parsed call to a function, including calls
* to system functions. The parameters in the parms list are the
* expressions that are passed as input to the ports of the function.
*/
class PECallFunction : public PExpr {
    public:
      explicit PECallFunction(const pform_name_t&n, const vector<PExpr *> &parms);
// Call of system function (name is not hierarchical)
      explicit PECallFunction(perm_string n, const vector<PExpr *> &parms);
      explicit PECallFunction(perm_string n);

// svector versions. Should be removed!
      explicit PECallFunction(const pform_name_t&n, const list<PExpr *> &parms);
      explicit PECallFunction(perm_string n, const list<PExpr *> &parms);

      ~PECallFunction();

      virtual void dump(ostream &) const;

      virtual void declare_implicit_nets(LexicalScope*scope, NetNet::Type type);

      virtual bool has_aa_term(Design*des, NetScope*scope) const;

      virtual NetExpr*elaborate_expr(Design*des, NetScope*scope,
unsigned expr_wid,
                                     unsigned flags) const;

      virtual unsigned test_width(Design*des, NetScope*scope,
width_mode_t&mode);

    private:
      pform_name_t path_;
      vector<PExpr *> parms_;

      bool check_call_matches_definition_(Design*des, NetScope*dscope) const;

      NetExpr* cast_to_width_(NetExpr*expr, unsigned wid) const;

      NetExpr* elaborate_sfunc_(Design*des, NetScope*scope,
                                unsigned expr_wid,
                                unsigned flags) const;
      NetExpr* elaborate_access_func_(Design*des, NetScope*scope, ivl_nature_t,
                                      unsigned expr_wid) const;
      unsigned test_width_sfunc_(Design*des, NetScope*scope,
width_mode_t&mode);
};

/*
* This class is used for error recovery. All methods do nothing and return
* null or default values.
*/
class PEVoid : public PExpr {

    public:
      explicit PEVoid();
      ~PEVoid();

      virtual NetExpr*elaborate_expr(Design*des, NetScope*scope,
unsigned expr_wid,
                                     unsigned flags) const;
};

#endif
Something went wrong with that request. Please try again.