Fetching contributors…
Cannot retrieve contributors at this time
588 lines (479 sloc) 12.1 KB
/*
* Copyright (c) 1998-2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "config.h"
# include <iostream>
/*
* The emit function is called to generate the output required of the
* target.
*/
# include "target.h"
# include "netlist.h"
# include <typeinfo>
# include <cassert>
# include <cstring>
bool NetNode::emit_node(struct target_t*) const
{
cerr << "EMIT: Gate type? " << typeid(*this).name() << endl;
return false;
}
bool NetLogic::emit_node(struct target_t*tgt) const
{
tgt->logic(this);
return true;
}
bool NetUDP::emit_node(struct target_t*tgt) const
{
tgt->udp(this);
return true;
}
bool NetAbs::emit_node(struct target_t*tgt) const
{
tgt->lpm_abs(this);
return true;
}
bool NetAddSub::emit_node(struct target_t*tgt) const
{
tgt->lpm_add_sub(this);
return true;
}
bool NetArrayDq::emit_node(struct target_t*tgt) const
{
return tgt->lpm_array_dq(this);
}
bool NetCaseCmp::emit_node(struct target_t*tgt) const
{
tgt->net_case_cmp(this);
return true;
}
bool NetCastInt2::emit_node(struct target_t*tgt) const
{
return tgt->lpm_cast_int2(this);
}
bool NetCastInt4::emit_node(struct target_t*tgt) const
{
return tgt->lpm_cast_int4(this);
}
bool NetCastReal::emit_node(struct target_t*tgt) const
{
return tgt->lpm_cast_real(this);
}
bool NetCLShift::emit_node(struct target_t*tgt) const
{
tgt->lpm_clshift(this);
return true;
}
bool NetCompare::emit_node(struct target_t*tgt) const
{
tgt->lpm_compare(this);
return true;
}
bool NetConcat::emit_node(struct target_t*tgt) const
{
return tgt->concat(this);
}
bool NetConst::emit_node(struct target_t*tgt) const
{
return tgt->net_const(this);
}
bool NetDivide::emit_node(struct target_t*tgt) const
{
tgt->lpm_divide(this);
return true;
}
bool NetFF::emit_node(struct target_t*tgt) const
{
tgt->lpm_ff(this);
return true;
}
bool NetLiteral::emit_node(struct target_t*tgt) const
{
return tgt->net_literal(this);
}
bool NetModulo::emit_node(struct target_t*tgt) const
{
tgt->lpm_modulo(this);
return true;
}
bool NetMult::emit_node(struct target_t*tgt) const
{
tgt->lpm_mult(this);
return true;
}
bool NetMux::emit_node(struct target_t*tgt) const
{
tgt->lpm_mux(this);
return true;
}
bool NetPartSelect::emit_node(struct target_t*tgt) const
{
return tgt->part_select(this);
}
bool NetPow::emit_node(struct target_t*tgt) const
{
tgt->lpm_pow(this);
return true;
}
bool NetReplicate::emit_node(struct target_t*tgt) const
{
return tgt->replicate(this);
}
bool NetSignExtend::emit_node(struct target_t*tgt) const
{
return tgt->sign_extend(this);
}
bool NetUReduce::emit_node(struct target_t*tgt) const
{
return tgt->ureduce(this);
}
bool NetSysFunc::emit_node(struct target_t*tgt) const
{
return tgt->net_sysfunction(this);
}
bool NetUserFunc::emit_node(struct target_t*tgt) const
{
return tgt->net_function(this);
}
bool NetTran::emit_node(struct target_t*tgt) const
{
return tgt->tran(this);
}
bool NetBUFZ::emit_node(struct target_t*tgt) const
{
return tgt->bufz(this);
}
bool NetProcTop::emit(struct target_t*tgt) const
{
return tgt->process(this);
}
bool NetAnalogTop::emit(struct target_t*tgt) const
{
return tgt->process(this);
}
bool NetProc::emit_proc(struct target_t*) const
{
cerr << "EMIT: Proc type? " << typeid(*this).name() << endl;
return false;
}
bool NetAlloc::emit_proc(struct target_t*tgt) const
{
tgt->proc_alloc(this);
return true;
}
bool NetAssign::emit_proc(struct target_t*tgt) const
{
return tgt->proc_assign(this);
}
bool NetAssignNB::emit_proc(struct target_t*tgt) const
{
tgt->proc_assign_nb(this);
return true;
}
bool NetBlock::emit_proc(struct target_t*tgt) const
{
return tgt->proc_block(this);
}
bool NetCase::emit_proc(struct target_t*tgt) const
{
tgt->proc_case(this);
return true;
}
bool NetCAssign::emit_proc(struct target_t*tgt) const
{
return tgt->proc_cassign(this);
}
bool NetCondit::emit_proc(struct target_t*tgt) const
{
return tgt->proc_condit(this);
}
bool NetContribution::emit_proc(struct target_t*tgt) const
{
return tgt->proc_contribution(this);
}
bool NetDeassign::emit_proc(struct target_t*tgt) const
{
return tgt->proc_deassign(this);
}
bool NetDisable::emit_proc(struct target_t*tgt) const
{
return tgt->proc_disable(this);
}
bool NetForce::emit_proc(struct target_t*tgt) const
{
return tgt->proc_force(this);
}
bool NetForever::emit_proc(struct target_t*tgt) const
{
tgt->proc_forever(this);
return true;
}
bool NetFree::emit_proc(struct target_t*tgt) const
{
tgt->proc_free(this);
return true;
}
bool NetPDelay::emit_proc(struct target_t*tgt) const
{
return tgt->proc_delay(this);
}
bool NetPDelay::emit_proc_recurse(struct target_t*tgt) const
{
if (statement_) return statement_->emit_proc(tgt);
return true;
}
bool NetRelease::emit_proc(struct target_t*tgt) const
{
return tgt->proc_release(this);
}
bool NetRepeat::emit_proc(struct target_t*tgt) const
{
tgt->proc_repeat(this);
return true;
}
bool NetSTask::emit_proc(struct target_t*tgt) const
{
tgt->proc_stask(this);
return true;
}
bool NetUTask::emit_proc(struct target_t*tgt) const
{
tgt->proc_utask(this);
return true;
}
bool NetWhile::emit_proc(struct target_t*tgt) const
{
tgt->proc_while(this);
return true;
}
void NetBlock::emit_recurse(struct target_t*tgt) const
{
if (last_ == 0)
return;
NetProc*cur = last_;
do {
cur = cur->next_;
cur->emit_proc(tgt);
} while (cur != last_);
}
bool NetCondit::emit_recurse_if(struct target_t*tgt) const
{
if (if_)
return if_->emit_proc(tgt);
else
return true;
}
bool NetCondit::emit_recurse_else(struct target_t*tgt) const
{
if (else_)
return else_->emit_proc(tgt);
else
return true;
}
bool NetEvProbe::emit_node(struct target_t*tgt) const
{
tgt->net_probe(this);
return true;
}
bool NetEvTrig::emit_proc(struct target_t*tgt) const
{
return tgt->proc_trigger(this);
}
bool NetEvWait::emit_proc(struct target_t*tgt) const
{
return tgt->proc_wait(this);
}
bool NetEvWait::emit_recurse(struct target_t*tgt) const
{
if (!statement_) return true;
return statement_->emit_proc(tgt);
}
void NetForever::emit_recurse(struct target_t*tgt) const
{
if (statement_)
statement_->emit_proc(tgt);
}
void NetRepeat::emit_recurse(struct target_t*tgt) const
{
if (statement_)
statement_->emit_proc(tgt);
}
void NetScope::emit_scope(struct target_t*tgt) const
{
tgt->scope(this);
for (NetEvent*cur = events_ ; cur ; cur = cur->snext_)
tgt->event(cur);
for (list<netenum_t*>::const_iterator cur = enum_sets_.begin()
; cur != enum_sets_.end() ; ++cur)
tgt->enumeration(this, *cur);
for (map<hname_t,NetScope*>::const_iterator cur = children_.begin()
; cur != children_.end() ; ++ cur )
cur->second->emit_scope(tgt);
for (signals_map_iter_t cur = signals_map_.begin()
; cur != signals_map_.end() ; ++ cur ) {
tgt->signal(cur->second);
}
// Run the signals again, but this time to connect the
// delay paths. This is done as a second pass because
// the paths reference other signals that may be later
// in the list. We can do it here because delay paths are
// always connected within the scope.
for (signals_map_iter_t cur = signals_map_.begin()
; cur != signals_map_.end() ; ++ cur) {
tgt->signal_paths(cur->second);
}
if (type_ == MODULE) tgt->convert_module_ports(this);
}
bool NetScope::emit_defs(struct target_t*tgt) const
{
bool flag = true;
switch (type_) {
case MODULE:
for (map<hname_t,NetScope*>::const_iterator cur = children_.begin()
; cur != children_.end() ; ++ cur )
flag &= cur->second->emit_defs(tgt);
break;
case FUNC:
flag &= tgt->func_def(this);
break;
case TASK:
tgt->task_def(this);
break;
default: /* BEGIN_END and FORK_JOIN, GENERATE... */
for (map<hname_t,NetScope*>::const_iterator cur = children_.begin()
; cur != children_.end() ; ++ cur )
flag &= cur->second->emit_defs(tgt);
break;
}
return flag;
}
void NetWhile::emit_proc_recurse(struct target_t*tgt) const
{
proc_->emit_proc(tgt);
}
int Design::emit(struct target_t*tgt) const
{
int rc = 0;
if (tgt->start_design(this) == false)
return -2;
// enumerate the scopes
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); ++ scope )
(*scope)->emit_scope(tgt);
// emit nodes
bool nodes_rc = true;
if (nodes_) {
NetNode*cur = nodes_->node_next_;
do {
nodes_rc = nodes_rc && cur->emit_node(tgt);
cur = cur->node_next_;
} while (cur != nodes_->node_next_);
}
bool branches_rc = true;
for (NetBranch*cur = branches_ ; cur ; cur = cur->next_) {
branches_rc = tgt->branch(cur) && branches_rc;
}
// emit task and function definitions
bool tasks_rc = true;
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); ++ scope )
tasks_rc &= (*scope)->emit_defs(tgt);
// emit the processes
bool proc_rc = true;
for (const NetProcTop*idx = procs_ ; idx ; idx = idx->next_)
proc_rc &= idx->emit(tgt);
for (const NetAnalogTop*idx = aprocs_ ; idx ; idx = idx->next_)
proc_rc &= idx->emit(tgt);
rc = tgt->end_design(this);
if (nodes_rc == false)
return -1;
if (tasks_rc == false)
return -2;
if (proc_rc == false)
return -3;
if (branches_rc == false)
return -4;
return rc;
}
void NetEAccess::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_access_func(this);
}
void NetEBinary::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_binary(this);
}
void NetEConcat::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_concat(this);
}
void NetEConst::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_const(this);
}
void NetEConstEnum::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_const(this);
}
void NetEConstParam::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_param(this);
}
void NetECReal::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_creal(this);
}
void NetECRealParam::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_rparam(this);
}
void NetEEvent::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_event(this);
}
void NetENetenum::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_netenum(this);
}
void NetEScope::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_scope(this);
}
void NetESelect::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_select(this);
}
void NetESFunc::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_sfunc(this);
}
void NetEUFunc::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_ufunc(this);
}
void NetESignal::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_signal(this);
}
void NetETernary::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_ternary(this);
}
void NetEUnary::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_unary(this);
}