Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

600 lines (522 sloc) 16.541 kB
/*
* Copyright (c) 1999-2000 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT) && !defined(macintosh)
#ident "$Id: elab_expr.cc,v 1.27 2000/08/26 01:31:29 steve Exp $"
#endif
# include "pform.h"
# include "netlist.h"
NetExpr* PExpr::elaborate_expr(Design*des, NetScope*) const
{
cerr << get_line() << ": I do not know how to elaborate expression: "
<< *this << endl;
return 0;
}
/*
* Elaborate binary expressions. This involves elaborating the left
* and right sides, and creating one of a variety of different NetExpr
* types.
*/
NetEBinary* PEBinary::elaborate_expr(Design*des, NetScope*scope) const
{
NetExpr*lp = left_->elaborate_expr(des, scope);
NetExpr*rp = right_->elaborate_expr(des, scope);
if ((lp == 0) || (rp == 0)) {
delete lp;
delete rp;
return 0;
}
/* If either expression can be evaluated ahead of time, then
do so. This can prove helpful later. */
{ NetExpr*tmp;
tmp = lp->eval_tree();
if (tmp) {
delete lp;
lp = tmp;
}
tmp = rp->eval_tree();
if (tmp) {
delete rp;
rp = tmp;
}
}
NetEBinary*tmp = elaborate_expr_base_(des, lp, rp);
return tmp;
}
/*
* This is common elaboration of the operator. It presumes that the
* operands are elaborated as necessary, and all I need to do is make
* the correct NetEBinary object and connect the parameters.
*/
NetEBinary* PEBinary::elaborate_expr_base_(Design*des,
NetExpr*lp, NetExpr*rp) const
{
bool flag;
NetEBinary*tmp;
switch (op_) {
default:
tmp = new NetEBinary(op_, lp, rp);
tmp->set_line(*this);
break;
case 'a':
case 'o':
tmp = new NetEBLogic(op_, lp, rp);
tmp->set_line(*this);
break;
case '*':
tmp = new NetEBMult(op_, lp, rp);
tmp->set_line(*this);
break;
case '/':
case '%':
tmp = new NetEBDiv(op_, lp, rp);
tmp->set_line(*this);
break;
case 'l':
case 'r':
tmp = new NetEBShift(op_, lp, rp);
tmp->set_line(*this);
break;
case '^':
case '&':
case '|':
case 'O':
case 'X':
tmp = new NetEBBits(op_, lp, rp);
tmp->set_line(*this);
break;
case '+':
case '-':
tmp = new NetEBAdd(op_, lp, rp);
tmp->set_line(*this);
break;
case 'e': /* == */
case 'E': /* === */
case 'n': /* != */
case 'N': /* !== */
case 'L': /* <= */
case 'G': /* >= */
case '<':
case '>':
tmp = new NetEBComp(op_, lp, rp);
tmp->set_line(*this);
flag = tmp->set_width(1);
if (flag == false) {
cerr << get_line() << ": internal error: "
"expression bit width of comparison != 1." << endl;
des->errors += 1;
}
break;
}
return tmp;
}
NetExpr* PECallFunction::elaborate_sfunc_(Design*des, NetScope*scope) const
{
unsigned wid = 32;
if (name_ == "$time")
wid = 64;
NetESFunc*fun = new NetESFunc(name_, wid, parms_.count());
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) {
PExpr*expr = parms_[idx];
NetExpr*tmp = expr->elaborate_expr(des, scope);
fun->parm(idx, tmp);
}
return fun;
}
NetExpr* PECallFunction::elaborate_expr(Design*des, NetScope*scope) const
{
if (name_[0] == '$')
return elaborate_sfunc_(des, scope);
NetFuncDef*def = des->find_function(scope->name(), name_);
if (def == 0) {
cerr << get_line() << ": error: No function " << name_ <<
" in this context (" << scope->name() << ")." << endl;
des->errors += 1;
return 0;
}
assert(def);
NetScope*dscope = des->find_scope(def->name());
assert(dscope);
svector<NetExpr*> parms (parms_.count());
/* Elaborate the input expressions for the function. This is
done in the scope of the function call, and not the scope
of the function being called. The scope of the called
function is elaborated when the definition is elaborated. */
for (unsigned idx = 0 ; idx < parms.count() ; idx += 1) {
NetExpr*tmp = parms_[idx]->elaborate_expr(des, scope);
parms[idx] = tmp;
}
/* Look for the return value signal for the called
function. This return value is a magic signal in the scope
of the function, that has the name of the function. The
function code assigns to this signal to return a value. */
NetNet*res = des->find_signal(dscope, name_);
if (res == 0) {
cerr << get_line() << ": internal error: Unable to locate "
"function return value for " << name_ << " in " <<
def->name() << "." << endl;
des->errors += 1;
return 0;
}
assert(res);
NetESignal*eres = new NetESignal(res);
assert(eres);
NetEUFunc*func = new NetEUFunc(def, eres, parms);
return func;
}
NetExpr* PEConcat::elaborate_expr(Design*des, NetScope*scope) const
{
unsigned repeat = 1;
/* If there is a repeat expression, then evaluate the constant
value and set the repeat count. */
if (repeat_) {
verinum*vrep = repeat_->eval_const(des, scope->name());
if (vrep == 0) {
cerr << get_line() << ": error: "
"concatenation repeat expression cannot be evaluated."
<< endl;
des->errors += 1;
return 0;
}
repeat = vrep->as_ulong();
delete vrep;
}
/* Make the empty concat expression. */
NetEConcat*tmp = new NetEConcat(parms_.count(), repeat);
tmp->set_line(*this);
/* Elaborate all the parameters and attach them to the concat node. */
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) {
assert(parms_[idx]);
NetExpr*ex = parms_[idx]->elaborate_expr(des, scope);
if (ex == 0) continue;
ex->set_line(*parms_[idx]);
tmp->set(idx, ex);
}
return tmp;
}
NetExpr* PEIdent::elaborate_expr(Design*des, NetScope*scope) const
{
assert(text_[0] != '$');
//string name = path+"."+text_;
assert(scope);
// If the identifier name is a parameter name, then return
// a reference to the parameter expression.
if (const NetExpr*ex = des->find_parameter(scope, text_)) {
NetExpr*tmp;
if (dynamic_cast<const NetExpr*>(ex))
tmp = ex->dup_expr();
else
tmp = new NetEParam(des, scope, text_);
tmp->set_line(*this);
return tmp;
}
// If the identifier names a signal (a register or wire)
// then create a NetESignal node to handle it.
if (NetNet*net = des->find_signal(scope, text_)) {
// If this is a part select of a signal, then make a new
// temporary signal that is connected to just the
// selected bits. The lsb_ and msb_ expressions are from
// the foo[msb:lsb] expression in the original.
if (lsb_) {
assert(msb_);
verinum*lsn = lsb_->eval_const(des, scope->name());
verinum*msn = msb_->eval_const(des, scope->name());
if ((lsn == 0) || (msn == 0)) {
cerr << get_line() << ": error: "
"Part select expresions must be "
"constant expressions." << endl;
des->errors += 1;
return 0;
}
assert(lsn);
assert(msn);
/* The indices of part selects are signed
integers, so allow negative values. However,
the width that they represent is
unsigned. Remember that any order is possible,
i.e. [1:0], [-4,6], etc. */
long lsv = lsn->as_long();
long msv = msn->as_long();
unsigned long wid = 1 + ((msv>lsv)? (msv-lsv) : (lsv-msv));
if (wid > net->pin_count()) {
cerr << get_line() << ": error: part select ["
<< msv << ":" << lsv << "] out of range."
<< endl;
des->errors += 1;
delete lsn;
delete msn;
return 0;
}
assert(wid <= net->pin_count());
if (net->sb_to_idx(msv) < net->sb_to_idx(lsv)) {
cerr << get_line() << ": error: part select ["
<< msv << ":" << lsv << "] out of order."
<< endl;
des->errors += 1;
delete lsn;
delete msn;
return 0;
}
if (net->sb_to_idx(msv) >= net->pin_count()) {
cerr << get_line() << ": error: part select ["
<< msv << ":" << lsv << "] out of range."
<< endl;
des->errors += 1;
delete lsn;
delete msn;
return 0;
}
string tname = des->local_symbol(scope->name());
NetTmp*tsig = new NetTmp(scope, tname, wid);
// Connect the pins from the lsb up to the msb.
unsigned off = net->sb_to_idx(lsv);
for (unsigned idx = 0 ; idx < wid ; idx += 1)
connect(tsig->pin(idx), net->pin(idx+off));
NetESignal*tmp = new NetESignal(tsig);
tmp->set_line(*this);
return tmp;
}
// If the bit select is constant, then treat it similar
// to the part select, so that I save the effort of
// making a mux part in the netlist.
verinum*msn;
if (msb_ && (msn = msb_->eval_const(des, scope->name()))) {
assert(idx_ == 0);
unsigned long msv = msn->as_ulong();
unsigned idx = net->sb_to_idx(msv);
if (idx >= net->pin_count()) {
cerr << get_line() << ": internal error: "
<< "bit " << msv << " out of range of net "
<< net->name() << "[" << net->msb()
<< ":" << net->lsb() << "]." << endl;
return 0;
}
string tname = des->local_symbol(scope->name());
NetTmp*tsig = new NetTmp(scope, tname);
connect(tsig->pin(0), net->pin(idx));
NetESignal*tmp = new NetESignal(tsig);
tmp->set_line(*this);
return tmp;
}
NetESignal*node = new NetESignal(net);
assert(idx_ == 0);
// Non-constant bit select? punt and make a subsignal
// device to mux the bit in the net.
if (msb_) {
NetExpr*ex = msb_->elaborate_expr(des, scope);
NetESubSignal*ss = new NetESubSignal(node, ex);
ss->set_line(*this);
return ss;
}
// All else fails, return the signal itself as the
// expression.
assert(msb_ == 0);
return node;
}
// If the identifier names a memory, then this is a
// memory reference and I must generate a NetEMemory
// object to handle it.
if (NetMemory*mem = des->find_memory(scope, text_)) {
if (msb_ == 0) {
NetEMemory*node = new NetEMemory(mem);
node->set_line(*this);
return node;
}
assert(msb_ != 0);
if (lsb_) {
cerr << get_line() << ": error: part select of a memory: "
<< mem->name() << endl;
des->errors += 1;
return 0;
}
assert(lsb_ == 0);
assert(idx_ == 0);
NetExpr*i = msb_->elaborate_expr(des, scope);
if (msb_ && i == 0) {
cerr << get_line() << ": error: Unable to exaborate "
"index expression `" << *msb_ << "'" << endl;
des->errors += 1;
return 0;
}
NetEMemory*node = new NetEMemory(mem, i);
node->set_line(*this);
return node;
}
// Finally, if this is a scope name, then return that.
if (NetScope*nsc = des->find_scope(text_)) {
NetEScope*tmp = new NetEScope(nsc);
tmp->set_line(*this);
return tmp;
}
// I cannot interpret this identifier. Error message.
cerr << get_line() << ": error: Unable to bind wire/reg/memory "
"`" << text_ << "' in `" << scope->name() << "'" << endl;
des->errors += 1;
return 0;
}
NetEConst* PENumber::elaborate_expr(Design*des, NetScope*) const
{
assert(value_);
NetEConst*tmp = new NetEConst(*value_);
tmp->set_line(*this);
return tmp;
}
NetEConst* PEString::elaborate_expr(Design*des, NetScope*) const
{
NetEConst*tmp = new NetEConst(value());
tmp->set_line(*this);
return tmp;
}
/*
* Elaborate the Ternary operator. I know that the expressions were
* parsed so I can presume that they exist, and call elaboration
* methods. If any elaboration fails, then give up and return 0.
*/
NetETernary*PETernary::elaborate_expr(Design*des, NetScope*scope) const
{
assert(expr_);
assert(tru_);
assert(fal_);
NetExpr*con = expr_->elaborate_expr(des, scope);
if (con == 0)
return 0;
NetExpr*tru = tru_->elaborate_expr(des, scope);
if (tru == 0) {
delete con;
return 0;
}
NetExpr*fal = fal_->elaborate_expr(des, scope);
if (fal == 0) {
delete con;
delete tru;
return 0;
}
NetETernary*res = new NetETernary(con, tru, fal);
return res;
}
NetEUnary* PEUnary::elaborate_expr(Design*des, NetScope*scope) const
{
NetExpr*ip = expr_->elaborate_expr(des, scope);
if (ip == 0) return 0;
/* Should we evaluate expressions ahead of time,
* just like in PEBinary::elaborate_expr() ?
*/
NetEUnary*tmp;
switch (op_) {
default:
tmp = new NetEUnary(op_, ip);
tmp->set_line(*this);
break;
case '~':
tmp = new NetEUBits(op_, ip);
tmp->set_line(*this);
break;
}
return tmp;
}
/*
* $Log: elab_expr.cc,v $
* Revision 1.27 2000/08/26 01:31:29 steve
* Handle out of range part select expressions.
*
* Revision 1.26 2000/05/19 01:55:09 steve
* Catch part select of memories as an error.
*
* Revision 1.25 2000/05/07 18:20:07 steve
* Import MCD support from Stephen Tell, and add
* system function parameter support to the IVL core.
*
* Revision 1.24 2000/05/04 03:37:58 steve
* Add infrastructure for system functions, move
* $time to that structure and add $random.
*
* Revision 1.23 2000/05/02 03:13:30 steve
* Move memories to the NetScope object.
*
* Revision 1.22 2000/05/02 00:58:11 steve
* Move signal tables to the NetScope class.
*
* Revision 1.21 2000/04/28 18:43:23 steve
* integer division in expressions properly get width.
*
* Revision 1.20 2000/03/29 04:06:28 steve
* Forgot to return elaborate result (Dan Nelsen)
*
* Revision 1.19 2000/03/20 16:57:22 steve
* select correct bit when reg has non-zero lsb.
*
* Revision 1.18 2000/03/12 18:22:11 steve
* Binary and unary operators in parameter expressions.
*
* Revision 1.17 2000/03/08 04:36:53 steve
* Redesign the implementation of scopes and parameters.
* I now generate the scopes and notice the parameters
* in a separate pass over the pform. Once the scopes
* are generated, I can process overrides and evalutate
* paremeters before elaboration begins.
*
* Revision 1.16 2000/02/23 02:56:54 steve
* Macintosh compilers do not support ident.
*
* Revision 1.15 2000/01/13 03:35:35 steve
* Multiplication all the way to simulation.
*
* Revision 1.14 2000/01/01 06:18:00 steve
* Handle synthesis of concatenation.
*
* Revision 1.13 1999/12/12 06:03:14 steve
* Allow memories without indices in expressions.
*
* Revision 1.12 1999/11/30 04:54:01 steve
* Match scope names as last resort.
*
* Revision 1.11 1999/11/28 23:42:02 steve
* NetESignal object no longer need to be NetNode
* objects. Let them keep a pointer to NetNet objects.
*
* Revision 1.10 1999/11/27 19:07:57 steve
* Support the creation of scopes.
*
* Revision 1.9 1999/11/21 17:35:37 steve
* Memory name lookup handles scopes.
*
* Revision 1.8 1999/11/10 02:52:24 steve
* Create the vpiMemory handle type.
*
* Revision 1.7 1999/10/18 00:02:21 steve
* Catch unindexed memory reference.
*
* Revision 1.6 1999/09/30 02:43:02 steve
* Elaborate ~^ and ~| operators.
*
* Revision 1.5 1999/09/30 00:48:49 steve
* Cope with errors during ternary operator elaboration.
*
* Revision 1.4 1999/09/29 22:57:10 steve
* Move code to elab_expr.cc
*
* Revision 1.3 1999/09/25 02:57:30 steve
* Parse system function calls.
*
* Revision 1.2 1999/09/21 00:13:40 steve
* Support parameters that reference other paramters.
*
* Revision 1.1 1999/09/20 02:21:10 steve
* Elaborate parameters in phases.
*
*/
Jump to Line
Something went wrong with that request. Please try again.