Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tag: s20020706
Fetching contributors…

Cannot retrieve contributors at this time

file 921 lines (784 sloc) 25.707 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
* Copyright (c) 1999-2000 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT) && !defined(macintosh)
#ident "$Id: elab_expr.cc,v 1.61 2002/06/14 21:38:41 steve Exp $"
#endif

# include "config.h"


# include "pform.h"
# include "netlist.h"
# include "netmisc.h"
# include "util.h"

NetExpr* PExpr::elaborate_expr(Design*des, NetScope*, bool) const
{
      cerr << get_line() << ": internal error: I do not know how to elaborate"
<< " expression. " << endl;
      cerr << get_line() << ": : Expression is: " << *this
<< endl;
      des->errors += 1;
      return 0;
}

/*
* Elaborate binary expressions. This involves elaborating the left
* and right sides, and creating one of a variety of different NetExpr
* types.
*/
NetEBinary* PEBinary::elaborate_expr(Design*des, NetScope*scope, bool) const
{
      assert(left_);
      assert(right_);

      NetExpr*lp = left_->elaborate_expr(des, scope);
      NetExpr*rp = right_->elaborate_expr(des, scope);
      if ((lp == 0) || (rp == 0)) {
delete lp;
delete rp;
return 0;
      }


/* If either expression can be evaluated ahead of time, then
do so. This can prove helpful later. */
      { NetExpr*tmp;
        tmp = lp->eval_tree();
if (tmp) {
delete lp;
lp = tmp;
}

tmp = rp->eval_tree();
if (tmp) {
delete rp;
rp = tmp;
}
      }

      NetEBinary*tmp = elaborate_expr_base_(des, lp, rp);
      return tmp;
}

/*
* This is common elaboration of the operator. It presumes that the
* operands are elaborated as necessary, and all I need to do is make
* the correct NetEBinary object and connect the parameters.
*/
NetEBinary* PEBinary::elaborate_expr_base_(Design*des,
NetExpr*lp, NetExpr*rp) const
{
      bool flag;
      NetEBinary*tmp;

      switch (op_) {
default:
tmp = new NetEBinary(op_, lp, rp);
tmp->set_line(*this);
break;

case 'a':
case 'o':
tmp = new NetEBLogic(op_, lp, rp);
tmp->set_line(*this);
break;

case '*':
tmp = new NetEBMult(op_, lp, rp);
tmp->set_line(*this);
break;

case '/':
case '%':
tmp = new NetEBDiv(op_, lp, rp);
tmp->set_line(*this);
break;

case 'l':
case 'r':
tmp = new NetEBShift(op_, lp, rp);
tmp->set_line(*this);
break;

case '^':
case '&':
case '|':
case 'O':
case 'X':
tmp = new NetEBBits(op_, lp, rp);
tmp->set_line(*this);
break;

case '+':
case '-':
tmp = new NetEBAdd(op_, lp, rp);
tmp->set_line(*this);
break;

case 'e': /* == */
case 'E': /* === */
case 'n': /* != */
case 'N': /* !== */
case 'L': /* <= */
case 'G': /* >= */
case '<':
case '>':
tmp = new NetEBComp(op_, lp, rp);
tmp->set_line(*this);
flag = tmp->set_width(1);
if (flag == false) {
cerr << get_line() << ": internal error: "
"expression bit width of comparison != 1." << endl;
des->errors += 1;
}
break;
      }

      return tmp;
}

/*
* Given a call to a system function, generate the proper expression
* nodes to represent the call in the netlist. Since we don't support
* size_tf functions, make assumptions about widths based on some
* known function names.
*/
NetExpr* PECallFunction::elaborate_sfunc_(Design*des, NetScope*scope) const
{

/* Catch the special case that the system function is the
$signed function. This function is special, in that it does
not lead to executable code but takes the single parameter
and makes it into a signed expression. No bits are changed,
it just changes the interpretation. */
      if (strcmp(path_.peek_name(0), "$signed") == 0) {
if ((parms_.count() != 1) || (parms_[0] == 0)) {
cerr << get_line() << ": error: The $signed() function "
<< "takes exactly one(1) argument." << endl;
des->errors += 1;
return 0;
}

PExpr*expr = parms_[0];
NetExpr*sub = expr->elaborate_expr(des, scope, true);
sub->cast_signed(true);
return sub;
      }

/* Interpret the internal $sizeof system function to return
the bit width of the sub-expression. The value of the
sub-expression is not used, so the expression itself can be
deleted. */
      if ((strcmp(path_.peek_name(0), "$sizeof") == 0)
|| (strcmp(path_.peek_name(0), "$bits") == 0)) {
if ((parms_.count() != 1) || (parms_[0] == 0)) {
cerr << get_line() << ": error: The $bits() function "
<< "takes exactly one(1) argument." << endl;
des->errors += 1;
return 0;
}

if (strcmp(path_.peek_name(0), "$sizeof") == 0)
cerr << get_line() << ": warning: $sizeof is deprecated."
<< " Use $bits() instead." << endl;

PExpr*expr = parms_[0];
NetExpr*sub = expr->elaborate_expr(des, scope, true);
verinum val (sub->expr_width(), sizeof(unsigned));
delete sub;

sub = new NetEConst(val);
sub->set_line(*this);

return sub;
      }

      unsigned wid = 32;

      if (strcmp(path_.peek_name(0), "$time") == 0)
wid = 64;
      if (strcmp(path_.peek_name(0), "$stime") == 0)
wid = 32;


/* How many parameters are there? The Verilog language allows
empty parameters in certain contexts, so the parser will
allow things like func(1,,3). It will also cause func() to
be interpreted as a single empty parameter.

Functions cannot really take empty parameters, but the
case ``func()'' is the same as no parmaters at all. So
catch that special case here. */
      unsigned nparms = parms_.count();
      if ((nparms == 1) && (parms_[0] == 0))
nparms = 0;

      NetESFunc*fun = new NetESFunc(path_.peek_name(0), wid, nparms);

/* Now run through the expected parameters. If we find that
there are missing parameters, print an error message.

While we're at it, try to evaluate the function parameter
expression as much as possible, and use the reduced
expression if one is created. */

      unsigned missing_parms = 0;
      for (unsigned idx = 0 ; idx < nparms ; idx += 1) {
PExpr*expr = parms_[idx];
if (expr) {
NetExpr*tmp1 = expr->elaborate_expr(des, scope, true);
if (NetExpr*tmp2 = tmp1->eval_tree()) {
delete tmp1;
fun->parm(idx, tmp2);
} else {
fun->parm(idx, tmp1);
}

} else {
missing_parms += 1;
fun->parm(idx, 0);
}
      }

      if (missing_parms > 0) {
cerr << get_line() << ": error: The function "
<< path_.peek_name(0)
<< " has been called with empty parameters." << endl;
cerr << get_line() << ": : Verilog doesn't allow "
<< "passing empty parameters to functions." << endl;
des->errors += 1;
      }

      return fun;
}

NetExpr* PECallFunction::elaborate_expr(Design*des, NetScope*scope, bool) const
{
      if (path_.peek_name(0)[0] == '$')
return elaborate_sfunc_(des, scope);

      NetFuncDef*def = des->find_function(scope, path_);
      if (def == 0) {
cerr << get_line() << ": error: No function " << path_ <<
" in this context (" << scope->name() << ")." << endl;
des->errors += 1;
return 0;
      }
      assert(def);

      NetScope*dscope = def->scope();
      assert(dscope);

      if (! check_call_matches_definition_(des, dscope))
return 0;

      unsigned parms_count = parms_.count();
      if ((parms_count == 1) && (parms_[0] == 0))
parms_count = 0;

      

      svector<NetExpr*> parms (parms_count);

/* Elaborate the input expressions for the function. This is
done in the scope of the function call, and not the scope
of the function being called. The scope of the called
function is elaborated when the definition is elaborated. */

      unsigned missing_parms = 0;
      for (unsigned idx = 0 ; idx < parms.count() ; idx += 1) {
PExpr*tmp = parms_[idx];
if (tmp) {
parms[idx] = tmp->elaborate_expr(des, scope);

} else {
missing_parms += 1;
parms[idx] = 0;
}
      }

      if (missing_parms > 0) {
cerr << get_line() << ": error: The function " << path_
<< " has been called with empty parameters." << endl;
cerr << get_line() << ": : Verilog doesn't allow "
<< "passing empty parameters to functions." << endl;
des->errors += 1;
      }


/* Look for the return value signal for the called
function. This return value is a magic signal in the scope
of the function, that has the name of the function. The
function code assigns to this signal to return a value.

dscope, in this case, is the scope of the function, so the
return value is the name within that scope. */

      NetNet*res = dscope->find_signal(dscope->basename());
      if (res == 0) {
cerr << get_line() << ": internal error: Unable to locate "
"function return value for " << path_ << " in " <<
def->name() << "." << endl;
des->errors += 1;
return 0;
      }

      assert(res);
      NetESignal*eres = new NetESignal(res);
      assert(eres);
      NetEUFunc*func = new NetEUFunc(dscope, eres, parms);
      return func;
}


NetExpr* PEConcat::elaborate_expr(Design*des, NetScope*scope, bool) const
{
      NetExpr* repeat = 0;

/* If there is a repeat expression, then evaluate the constant
value and set the repeat count. */
      if (repeat_) {
NetExpr*tmp = elab_and_eval(des, scope, repeat_);
assert(tmp);
NetEConst*rep = dynamic_cast<NetEConst*>(tmp);

if (rep == 0) {
cerr << get_line() << ": error: "
"concatenation repeat expression cannot be evaluated."
<< endl;
cerr << get_line() << ": : The expression is: "
<< *tmp << endl;
des->errors += 1;
}

repeat = rep;
      }

/* Make the empty concat expression. */
      NetEConcat*tmp = new NetEConcat(parms_.count(), repeat);
      tmp->set_line(*this);

      unsigned wid_sum = 0;

/* Elaborate all the parameters and attach them to the concat node. */
      for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) {
assert(parms_[idx]);
NetExpr*ex = elab_and_eval(des, scope, parms_[idx]);
if (ex == 0) continue;

ex->set_line(*parms_[idx]);

if (! ex->has_width()) {
cerr << ex->get_line() << ": error: operand of "
<< "concatenation has indefinite width: "
<< *ex << endl;
des->errors += 1;
}

wid_sum += ex->expr_width();
tmp->set(idx, ex);
      }

      tmp->set_width(wid_sum * tmp->repeat());

      return tmp;
}

NetExpr* PEFNumber::elaborate_expr(Design*des, NetScope*scope, bool) const
{
      long val = value_->as_long();
      return new NetEConst(verinum(val));
}

/*
* Elaborate an identifier in an expression. The identifier can be a
* parameter name, a signal name or a memory name. It can also be a
* scope name (Return a NetEScope) but only certain callers can use
* scope names. However, we still support it here.
*
* Function names are not handled here, they are detected by the
* parser and are elaborated by PECallFunction.
*
* The signal name may be escaped, but that affects nothing here.
*/
NetExpr* PEIdent::elaborate_expr(Design*des, NetScope*scope,
bool sys_task_arg) const
{
      assert(scope);

// If the identifier name is a parameter name, then return
// a reference to the parameter expression.
      if (const NetExpr*ex = des->find_parameter(scope, path_)) {
NetExpr*tmp;
if (dynamic_cast<const NetExpr*>(ex))
tmp = ex->dup_expr();
else
tmp = new NetEParam(des, scope, path_);

if (msb_ && lsb_) {
/* If the parameter has a part select, we support
it by pulling the right bits out and making a
sized unsigned constant. This code assumes the
lsb of a parameter is 0 and the msb is the
width of the parameter. */

verinum*lsn = lsb_->eval_const(des, scope);
verinum*msn = msb_->eval_const(des, scope);
if ((lsn == 0) || (msn == 0)) {
cerr << get_line() << ": error: "
"Part select expresions must be "
"constant expressions." << endl;
des->errors += 1;
return 0;
}

long lsb = lsn->as_long();
long msb = msn->as_long();
if ((lsb < 0) || (msb < lsb)) {
cerr << get_line() << ": error: invalid part "
<< "select: " << path_
<< "["<<msb<<":"<<lsb<<"]" << endl;
des->errors += 1;
return 0;
}

NetEConst*le = dynamic_cast<NetEConst*>(tmp);
assert(le);

verinum result (verinum::V0, msb-lsb+1, true);
verinum exl = le->value();

/* Pull the bits from the parameter, one at a
time. If the bit is within the range, simply
copy it to the result. If the bit is outside
the range, we sign extend signed unsized
numbers, zero extend unsigned unsigned numbers,
and X extend sized numbers. */
for (long idx = lsb ; idx <= msb ; idx += 1) {
if (idx < exl.len())
result.set(idx-lsb, exl.get(idx));
else if (exl.is_string())
result.set(idx-lsb, verinum::V0);
else if (exl.has_len())
result.set(idx-lsb, verinum::Vx);
else if (exl.has_sign())
result.set(idx-lsb, exl.get(exl.len()-1));
else
result.set(idx-lsb, verinum::V0);
}

/* If the input is a string, and the part select
is working on byte boundaries, then the result
can be made into a string. */
if (exl.is_string()
&& (lsb%8 == 0)
&& (result.len()%8 == 0))
result = verinum(result.as_string());

delete tmp;
tmp = new NetEConst(result);

} else if (msb_) {
/* Handle the case where a parameter has a bit
select attached to it. Generate a NetESelect
object to select the bit as desired. */
NetExpr*mtmp = msb_->elaborate_expr(des, scope);
if (! dynamic_cast<NetEConst*>(mtmp)) {
NetExpr*re = mtmp->eval_tree();
if (re) {
delete mtmp;
mtmp = re;
}
}

/* Let's first try to get constant values for both
the parameter and the bit select. If they are
both constant, then evaluate the bit select and
return instead a single-bit constant. */

NetEConst*le = dynamic_cast<NetEConst*>(tmp);
NetEConst*re = dynamic_cast<NetEConst*>(mtmp);
if (le && re) {

verinum lv = le->value();
verinum rv = re->value();
verinum::V rb = verinum::Vx;

long ridx = rv.as_long();
if ((ridx >= 0) && (ridx < lv.len())) {
rb = lv[ridx];

} else if ((ridx >= 0) && (!lv.has_len())) {
if (lv.has_sign())
rb = lv[lv.len()-1];
else
rb = verinum::V0;
}

NetEConst*re = new NetEConst(verinum(rb, 1));
delete tmp;
delete mtmp;
tmp = re;

} else {

NetESelect*stmp = new NetESelect(tmp, mtmp, 1);
tmp->set_line(*this);
tmp = stmp;
}
}


tmp->set_line(*this);
return tmp;
      }

// If the identifier names a signal (a register or wire)
// then create a NetESignal node to handle it.
      if (NetNet*net = des->find_signal(scope, path_)) {

// If this is a part select of a signal, then make a new
// temporary signal that is connected to just the
// selected bits. The lsb_ and msb_ expressions are from
// the foo[msb:lsb] expression in the original.
if (lsb_) {
assert(msb_);
verinum*lsn = lsb_->eval_const(des, scope);
verinum*msn = msb_->eval_const(des, scope);
if ((lsn == 0) || (msn == 0)) {
cerr << get_line() << ": error: "
"Part select expresions must be "
"constant expressions." << endl;
des->errors += 1;
return 0;
}

assert(lsn);
assert(msn);

/* The indices of part selects are signed
integers, so allow negative values. However,
the width that they represent is
unsigned. Remember that any order is possible,
i.e. [1:0], [-4,6], etc. */

long lsv = lsn->as_long();
long msv = msn->as_long();
unsigned long wid = 1 + ((msv>lsv)? (msv-lsv) : (lsv-msv));
if (wid > net->pin_count()) {
cerr << get_line() << ": error: part select ["
<< msv << ":" << lsv << "] out of range."
<< endl;
des->errors += 1;
delete lsn;
delete msn;
return 0;
}
assert(wid <= net->pin_count());

if (net->sb_to_idx(msv) < net->sb_to_idx(lsv)) {
cerr << get_line() << ": error: part select ["
<< msv << ":" << lsv << "] out of order."
<< endl;
des->errors += 1;
delete lsn;
delete msn;
return 0;
}


if (net->sb_to_idx(msv) >= net->pin_count()) {
cerr << get_line() << ": error: part select ["
<< msv << ":" << lsv << "] out of range."
<< endl;
des->errors += 1;
delete lsn;
delete msn;
return 0;
}

NetESignal*tmp = new NetESignal(net,
net->sb_to_idx(msv),
net->sb_to_idx(lsv));
tmp->set_line(*this);

return tmp;
}

// If the bit select is constant, then treat it similar
// to the part select, so that I save the effort of
// making a mux part in the netlist.
verinum*msn;
if (msb_ && (msn = msb_->eval_const(des, scope))) {
assert(idx_ == 0);
unsigned long msv = msn->as_ulong();
unsigned idx = net->sb_to_idx(msv);

if (idx >= net->pin_count()) {
cerr << get_line() << ": internal error: "
<< "bit " << msv << " out of range of net "
<< net->name() << "[" << net->msb()
<< ":" << net->lsb() << "]." << endl;
return 0;
}

NetESignal*tmp = new NetESignal(net, idx, idx);
tmp->set_line(*this);

return tmp;
}

NetESignal*node = new NetESignal(net);
assert(idx_ == 0);

// Non-constant bit select? punt and make a subsignal
// device to mux the bit in the net.
if (msb_) {
NetExpr*ex = msb_->elaborate_expr(des, scope);
NetEBitSel*ss = new NetEBitSel(node, ex);
ss->set_line(*this);
return ss;
}

// All else fails, return the signal itself as the
// expression.
assert(msb_ == 0);
return node;
      }

// If the identifier names a memory, then this is a
// memory reference and I must generate a NetEMemory
// object to handle it.
      if (NetMemory*mem = des->find_memory(scope, path_)) {
if (msb_ == 0) {

// If this memory is an argument to a system task,
// then it is OK for it to not have an index.
if (sys_task_arg) {
NetEMemory*node = new NetEMemory(mem);
node->set_line(*this);
return node;
}

// If it is not a simple system task argument,
// this a missing index is an error.
cerr << get_line() << ": error: memory " << mem->name()
<< " needs an index in this context." << endl;
des->errors += 1;
return 0;
}

assert(msb_ != 0);
if (lsb_) {
cerr << get_line() << ": error: part select of a memory: "
<< mem->name() << endl;
des->errors += 1;
return 0;
}

assert(lsb_ == 0);
assert(idx_ == 0);
NetExpr*i = msb_->elaborate_expr(des, scope);
if (msb_ && i == 0) {
cerr << get_line() << ": error: Unable to exaborate "
"index expression `" << *msb_ << "'" << endl;
des->errors += 1;
return 0;
}

NetEMemory*node = new NetEMemory(mem, i);
node->set_line(*this);
return node;
      }

// Finally, if this is a scope name, then return that. Look
// first to see if this is a name of a local scope. Failing
// that, search globally for a heirarchical name.
      if ((path_.peek_name(1) == 0))
if (NetScope*nsc = scope->child(path_.peek_name(0))) {
NetEScope*tmp = new NetEScope(nsc);
tmp->set_line(*this);
return tmp;
}

// NOTE: This search pretty much assumes that text_ is a
// complete hierarchical name, since there is no mention of
// the current scope in the call to find_scope.
      if (NetScope*nsc = des->find_scope(path_)) {
NetEScope*tmp = new NetEScope(nsc);
tmp->set_line(*this);
return tmp;
      }

// I cannot interpret this identifier. Error message.
      cerr << get_line() << ": error: Unable to bind wire/reg/memory "
"`" << path_ << "' in `" << scope->name() << "'" << endl;
      des->errors += 1;
      return 0;
}

NetEConst* PENumber::elaborate_expr(Design*des, NetScope*, bool) const
{
      assert(value_);
      NetEConst*tmp = new NetEConst(*value_);
      tmp->set_line(*this);
      return tmp;
}

NetEConst* PEString::elaborate_expr(Design*des, NetScope*, bool) const
{
      NetEConst*tmp = new NetEConst(value());
      tmp->set_line(*this);
      return tmp;
}

/*
* Elaborate the Ternary operator. I know that the expressions were
* parsed so I can presume that they exist, and call elaboration
* methods. If any elaboration fails, then give up and return 0.
*/
NetETernary*PETernary::elaborate_expr(Design*des, NetScope*scope, bool) const
{
      assert(expr_);
      assert(tru_);
      assert(fal_);

      NetExpr*con = expr_->elaborate_expr(des, scope);
      if (con == 0)
return 0;

      NetExpr*tru = tru_->elaborate_expr(des, scope);
      if (tru == 0) {
delete con;
return 0;
      }

      NetExpr*fal = fal_->elaborate_expr(des, scope);
      if (fal == 0) {
delete con;
delete tru;
return 0;
      }

      NetETernary*res = new NetETernary(con, tru, fal);
      return res;
}

NetExpr* PEUnary::elaborate_expr(Design*des, NetScope*scope, bool) const
{
      NetExpr*ip = expr_->elaborate_expr(des, scope);
      if (ip == 0) return 0;

      /* Should we evaluate expressions ahead of time,
* just like in PEBinary::elaborate_expr() ?
*/

      NetExpr*tmp;
      switch (op_) {
default:
tmp = new NetEUnary(op_, ip);
tmp->set_line(*this);
break;

case '-':
if (NetEConst*ipc = dynamic_cast<NetEConst*>(ip)) {
verinum val = ipc->value();
verinum zero (verinum::V0, val.len(), val.has_len());
val = zero - val;
val.has_sign(ipc->has_sign());
tmp = new NetEConst(val);
delete ip;
} else {
tmp = new NetEUnary(op_, ip);
tmp->set_line(*this);
}
break;

case '+':
tmp = ip;
break;

case '!': // Logical NOT
/* If the operand to unary ! is a constant, then I can
evaluate this expression here and return a logical
constant in its place. */
if (NetEConst*ipc = dynamic_cast<NetEConst*>(ip)) {
verinum val = ipc->value();
unsigned v1 = 0;
unsigned vx = 0;
for (unsigned idx = 0 ; idx < val.len() ; idx += 1)
switch (val[idx]) {
case verinum::V0:
break;
case verinum::V1:
v1 += 1;
break;
default:
vx += 1;
break;
}

verinum::V res;
if (v1 > 0)
res = verinum::V0;
else if (vx > 0)
res = verinum::Vx;
else
res = verinum::V1;

verinum vres (res, 1, true);
tmp = new NetEConst(vres);
tmp->set_line(*this);
delete ip;
} else {
tmp = new NetEUReduce(op_, ip);
tmp->set_line(*this);
}
break;

case '&': // Reduction AND
case '|': // Reduction OR
case '^': // Reduction XOR
case 'A': // Reduction NAND (~&)
case 'N': // Reduction NOR (~|)
case 'X': // Reduction NXOR (~^)
tmp = new NetEUReduce(op_, ip);
tmp->set_line(*this);
break;

case '~':
tmp = new NetEUBits(op_, ip);
tmp->set_line(*this);
break;
      }

      return tmp;
}

/*
* $Log: elab_expr.cc,v $
* Revision 1.61 2002/06/14 21:38:41 steve
* Fix expression width for repeat concatenations.
*
* Revision 1.60 2002/05/24 00:44:54 steve
* Add support for $bits (SystemVerilog)
*
* Revision 1.59 2002/05/06 02:30:27 steve
* Allow parameters in concatenation of widths are defined.
*
* Revision 1.58 2002/05/05 21:11:49 steve
* Put off evaluation of concatenation repeat expresions
* until after parameters are defined. This allows parms
* to be used in repeat expresions.
*
* Add the builtin $signed system function.
*
* Revision 1.57 2002/04/27 05:03:46 steve
* Preserve stringiness string part select and concatenation.
*
* Revision 1.56 2002/04/27 02:38:04 steve
* Support selecting bits from parameters.
*
* Revision 1.55 2002/04/25 05:04:31 steve
* Evaluate constant bit select of constants.
*
* Revision 1.54 2002/04/14 21:16:48 steve
* Evaluate logical not at elaboration time.
*
* Revision 1.53 2002/04/14 03:55:25 steve
* Precalculate unary - if possible.
*
* Revision 1.52 2002/04/13 02:33:17 steve
* Detect missing indices to memories (PR#421)
*
* Revision 1.51 2002/03/09 02:10:22 steve
* Add the NetUserFunc netlist node.
*
* Revision 1.50 2002/01/28 00:52:41 steve
* Add support for bit select of parameters.
* This leads to a NetESelect node and the
* vvp code generator to support that.
*
* Revision 1.49 2002/01/11 05:25:45 steve
* The stime system function is 32bits.
*/
Something went wrong with that request. Please try again.