Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

813 lines (700 sloc) 26.585 kb
#ifndef __PExpr_H
#define __PExpr_H
/*
* Copyright (c) 1998-2000 Stephen Williams <steve@icarus.com>
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
#ident "$Id: PExpr.h,v 1.90 2007/06/04 19:14:06 steve Exp $"
#endif
# include <string>
# include <vector>
# include "netlist.h"
# include "verinum.h"
# include "LineInfo.h"
# include "pform_types.h"
class Design;
class Module;
class NetNet;
class NetExpr;
class NetScope;
/*
* The PExpr class hierarchy supports the description of
* expressions. The parser can generate expression objects from the
* source, possibly reducing things that it knows how to reduce.
*
* The elaborate_net method is used by structural elaboration to build
* up a netlist interpretation of the expression.
*/
class PExpr : public LineInfo {
public:
PExpr();
virtual ~PExpr();
virtual void dump(ostream&) const;
// This method tests the width that the expression wants to
// be. It is used by elaboration of assignments to figure out
// the width of the expression.
//
// The "min" is the width of the local context, so it the
// minimum width that this function should return. Initially
// this is the same as the lval width.
//
// The "lval" is the width of the destination where this
// result is going to go. This can be used to constrain the
// amount that an expression can reasonably expand. For
// example, there is no point expanding an addition to beyond
// the lval. This extra bit of information allows the
// expression to optimize itself a bit. If the lval==0, then
// the subexpression should not make l-value related
// optimizations.
//
// The unsigned_flag is set to true if the expression is
// unsized and therefore expandable. This happens if a
// sub-expression is an unsized literal. Some expressions make
// special use of that.
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&unsized_flag) const;
// Procedural elaboration of the expression. The expr_width is
// the width of the context of the expression (i.e. the
// l-value width of an assignment) or -1 if the expression is
// self-determinted. The sys_task_arg flag is true if
// expressions are allowed to be incomplete.
virtual NetExpr*elaborate_expr(Design*des, NetScope*scope,
int expr_width, bool sys_task_arg) const;
// Elaborate expressions that are the r-value of parameter
// assignments. This elaboration follows the restrictions of
// constant expressions and supports later overriding and
// evaluation of parameters.
virtual NetExpr*elaborate_pexpr(Design*des, NetScope*sc) const;
// This method elaborate the expression as gates, for use in a
// continuous assign or other wholly structural context.
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0 =Link::STRONG,
Link::strength_t drive1 =Link::STRONG)
const;
// This method elaborates the expression as gates, but
// restricted for use as l-values of continuous assignments.
virtual NetNet* elaborate_lnet(Design*des, NetScope*scope,
bool implicit_net_ok =false) const;
// This is similar to elaborate_lnet, except that the
// expression is evaluated to be bi-directional. This is
// useful for arguments to inout ports of module instances and
// ports of tran primitives.
virtual NetNet* elaborate_bi_net(Design*des, NetScope*scope) const;
// Expressions that can be in the l-value of procedural
// assignments can be elaborated with this method. If the
// is_force flag is true, then the set of valid l-value types
// is slightly modified to accomodate the Verilog force
// statement
virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;
// This attempts to evaluate a constant expression, and return
// a verinum as a result. If the expression cannot be
// evaluated, return 0.
virtual verinum* eval_const(Design*des, NetScope*sc) const;
// This method returns true if that expression is the same as
// this expression. This method is used for comparing
// expressions that must be structurally "identical".
virtual bool is_the_same(const PExpr*that) const;
// Return true if this expression is a valid constant
// expression. the Module pointer is needed to find parameter
// identifiers and any other module specific interpretations
// of expressions.
virtual bool is_constant(Module*) const;
private: // not implemented
PExpr(const PExpr&);
PExpr& operator= (const PExpr&);
};
ostream& operator << (ostream&, const PExpr&);
class PEConcat : public PExpr {
public:
PEConcat(const svector<PExpr*>&p, PExpr*r =0);
~PEConcat();
virtual verinum* eval_const(Design*des, NetScope*sc) const;
virtual void dump(ostream&) const;
virtual NetNet* elaborate_lnet(Design*des, NetScope*scope,
bool implicit_net_ok =false) const;
virtual NetNet* elaborate_bi_net(Design*des, NetScope*scope) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetExpr*elaborate_expr(Design*des, NetScope*,
int expr_width, bool sys_task_arg) const;
virtual NetEConcat*elaborate_pexpr(Design*des, NetScope*) const;
virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;
virtual bool is_constant(Module*) const;
private:
NetNet* elaborate_lnet_common_(Design*des, NetScope*scope,
bool implicit_net_ok,
bool bidirectional_flag) const;
private:
svector<PExpr*>parms_;
PExpr*repeat_;
};
/*
* Event expressions are expressions that can be combined with the
* event "or" operator. These include "posedge foo" and similar, and
* also include named events. "edge" events are associated with an
* expression, whereas named events simply have a name, which
* represents an event variable.
*/
class PEEvent : public PExpr {
public:
enum edge_t {ANYEDGE, POSEDGE, NEGEDGE, POSITIVE};
// Use this constructor to create events based on edges or levels.
PEEvent(edge_t t, PExpr*e);
~PEEvent();
edge_t type() const;
PExpr* expr() const;
virtual void dump(ostream&) const;
private:
edge_t type_;
PExpr *expr_;
};
/*
* This holds a floating point constant in the source.
*/
class PEFNumber : public PExpr {
public:
explicit PEFNumber(verireal*vp);
~PEFNumber();
const verireal& value() const;
/* The eval_const method as applied to a floating point number
gets the *integer* value of the number. This accounts for
any rounding that is needed to get the value. */
virtual verinum* eval_const(Design*des, NetScope*sc) const;
/* A PEFNumber is a constant, so this returns true. */
virtual bool is_constant(Module*) const;
virtual NetExpr*elaborate_expr(Design*des, NetScope*,
int expr_width, bool sys_task_arg) const;
virtual NetExpr*elaborate_pexpr(Design*des, NetScope*sc) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual void dump(ostream&) const;
private:
verireal*value_;
};
class PEIdent : public PExpr {
public:
explicit PEIdent(perm_string);
explicit PEIdent(const pform_name_t&);
~PEIdent();
// Add another name to the string of heirarchy that is the
// current identifier.
void append_name(perm_string);
virtual void dump(ostream&) const;
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&unsized_flag) const;
// Identifiers are allowed (with restrictions) is assign l-values.
virtual NetNet* elaborate_lnet(Design*des, NetScope*scope,
bool implicit_net_ok =false) const;
virtual NetNet* elaborate_bi_net(Design*des, NetScope*scope) const;
// Identifiers are also allowed as procedural assignment l-values.
virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;
// Structural r-values are OK.
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetExpr*elaborate_expr(Design*des, NetScope*,
int expr_width, bool sys_task_arg) const;
virtual NetExpr*elaborate_pexpr(Design*des, NetScope*sc) const;
// Elaborate the PEIdent as a port to a module. This method
// only applies to Ident expressions.
NetNet* elaborate_port(Design*des, NetScope*sc) const;
virtual bool is_constant(Module*) const;
verinum* eval_const(Design*des, NetScope*sc) const;
const pform_name_t& path() const { return path_; }
private:
pform_name_t path_;
private:
// Common functions to calculate parts of part/bit selects.
bool calculate_parts_(Design*, NetScope*, long&msb, long&lsb) const;
bool calculate_up_do_width_(Design*, NetScope*, unsigned long&wid) const;
private:
NetAssign_*elaborate_lval_net_word_(Design*, NetScope*, NetNet*) const;
bool elaborate_lval_net_part_(Design*, NetScope*, NetAssign_*) const;
bool elaborate_lval_net_idx_up_(Design*, NetScope*, NetAssign_*) const;
bool elaborate_lval_net_idx_do_(Design*, NetScope*, NetAssign_*) const;
private:
NetExpr*elaborate_expr_param(Design*des,
NetScope*scope,
const NetExpr*par,
NetScope*found,
const NetExpr*par_msb,
const NetExpr*par_lsb) const;
NetExpr*elaborate_expr_net(Design*des,
NetScope*scope,
NetNet*net,
NetScope*found,
bool sys_task_arg) const;
NetExpr*elaborate_expr_net_word_(Design*des,
NetScope*scope,
NetNet*net,
NetScope*found,
bool sys_task_arg) const;
NetExpr*elaborate_expr_net_part_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found) const;
NetExpr*elaborate_expr_net_idx_up_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found) const;
NetExpr*elaborate_expr_net_idx_do_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found) const;
NetExpr*elaborate_expr_net_bit_(Design*des,
NetScope*scope,
NetESignal*net,
NetScope*found) const;
public:
NetNet* elaborate_net_array_(Design*des, NetScope*scope,
NetNet*sig, unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
NetNet* elaborate_net_bitmux_(Design*des, NetScope*scope,
NetNet*sig,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
private:
NetNet* elaborate_lnet_common_(Design*des, NetScope*scope,
bool implicit_net_ok,
bool bidirectional_flag) const;
NetNet*make_implicit_net_(Design*des, NetScope*scope) const;
bool eval_part_select_(Design*des, NetScope*scope, NetNet*sig,
unsigned&midx, unsigned&lidx) const;
NetNet*process_select_(Design*des, NetScope*scope, NetNet*sig) const;
};
class PENumber : public PExpr {
public:
explicit PENumber(verinum*vp);
~PENumber();
const verinum& value() const;
virtual void dump(ostream&) const;
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&unsized_flag) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetEConst*elaborate_expr(Design*des, NetScope*,
int expr_width, bool) const;
virtual NetExpr*elaborate_pexpr(Design*des, NetScope*sc) const;
virtual NetAssign_* elaborate_lval(Design*des,
NetScope*scope,
bool is_force) const;
virtual verinum* eval_const(Design*des, NetScope*sc) const;
virtual bool is_the_same(const PExpr*that) const;
virtual bool is_constant(Module*) const;
private:
verinum*const value_;
};
/*
* This represents a string constant in an expression.
*
* The s parameter to the PEString constructor is a C string that this
* class instance will take for its own. The caller should not delete
* the string, the destructor will do it.
*/
class PEString : public PExpr {
public:
explicit PEString(char*s);
~PEString();
string value() const;
virtual void dump(ostream&) const;
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&unsized_flag) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetEConst*elaborate_expr(Design*des, NetScope*,
int expr_width, bool) const;
virtual NetEConst*elaborate_pexpr(Design*des, NetScope*sc) const;
verinum* eval_const(Design*, NetScope*) const;
virtual bool is_constant(Module*) const;
private:
char*text_;
};
class PEUnary : public PExpr {
public:
explicit PEUnary(char op, PExpr*ex);
~PEUnary();
virtual void dump(ostream&out) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetExpr*elaborate_expr(Design*des, NetScope*,
int expr_width, bool sys_task_arg) const;
virtual NetExpr*elaborate_pexpr(Design*des, NetScope*sc) const;
virtual verinum* eval_const(Design*des, NetScope*sc) const;
virtual bool is_constant(Module*) const;
private:
char op_;
PExpr*expr_;
};
class PEBinary : public PExpr {
public:
explicit PEBinary(char op, PExpr*l, PExpr*r);
~PEBinary();
virtual bool is_constant(Module*) const;
virtual void dump(ostream&out) const;
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&unsized_flag) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetEBinary*elaborate_expr(Design*des, NetScope*,
int expr_width, bool sys_task_arg) const;
virtual NetExpr*elaborate_pexpr(Design*des, NetScope*sc) const;
virtual verinum* eval_const(Design*des, NetScope*sc) const;
protected:
char op_;
PExpr*left_;
PExpr*right_;
NetEBinary*elaborate_expr_base_(Design*, NetExpr*lp, NetExpr*rp, int use_wid) const;
NetEBinary*elaborate_eval_expr_base_(Design*, NetExpr*lp, NetExpr*rp, int use_wid) const;
private:
NetNet* elaborate_net_add_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_bit_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_cmp_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_div_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_mod_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_log_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_mul_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
NetNet* elaborate_net_shift_(Design*des, NetScope*scope,
unsigned lwidth,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay) const;
};
/*
* Here are a few specilized classes for handling specific binary
* operators.
*/
class PEBComp : public PEBinary {
public:
explicit PEBComp(char op, PExpr*l, PExpr*r);
~PEBComp();
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&flag) const;
NetEBinary* elaborate_expr(Design*des, NetScope*scope,
int expr_width, bool sys_task_arg) const;
};
class PEBShift : public PEBinary {
public:
explicit PEBShift(char op, PExpr*l, PExpr*r);
~PEBShift();
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval, bool&flag) const;
};
/*
* This class supports the ternary (?:) operator. The operator takes
* three expressions, the test, the true result and the false result.
*/
class PETernary : public PExpr {
public:
explicit PETernary(PExpr*e, PExpr*t, PExpr*f);
~PETernary();
virtual bool is_constant(Module*) const;
virtual void dump(ostream&out) const;
virtual unsigned test_width(Design*des, NetScope*scope,
unsigned min, unsigned lval,
bool&unsized_flag) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetETernary*elaborate_expr(Design*des, NetScope*,
int expr_width, bool sys_task_arg) const;
virtual NetETernary*elaborate_pexpr(Design*des, NetScope*sc) const;
virtual verinum* eval_const(Design*des, NetScope*sc) const;
private:
PExpr*expr_;
PExpr*tru_;
PExpr*fal_;
};
/*
* This class represents a parsed call to a function, including calls
* to system functions. The parameters in the parms list are the
* expressions that are passed as input to the ports of the function.
*/
class PECallFunction : public PExpr {
public:
explicit PECallFunction(const pform_name_t&n, const svector<PExpr *> &parms);
// Call of system function (name is not heirarchical)
explicit PECallFunction(perm_string n, const svector<PExpr *> &parms);
explicit PECallFunction(perm_string n);
~PECallFunction();
virtual void dump(ostream &) const;
virtual NetNet* elaborate_net(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
virtual NetExpr*elaborate_expr(Design*des, NetScope*scope,
int expr_wid, bool sys_task_arg) const;
private:
pform_name_t path_;
svector<PExpr *> parms_;
bool check_call_matches_definition_(Design*des, NetScope*dscope) const;
NetExpr* elaborate_sfunc_(Design*des, NetScope*scope) const;
NetNet* elaborate_net_sfunc_(Design*des, NetScope*scope,
unsigned width,
const NetExpr* rise,
const NetExpr* fall,
const NetExpr* decay,
Link::strength_t drive0,
Link::strength_t drive1) const;
};
/*
* $Log: PExpr.h,v $
* Revision 1.90 2007/06/04 19:14:06 steve
* Build errors in picky GCC compilers.
*
* Revision 1.89 2007/06/04 02:19:07 steve
* Handle bit/part select of array words in nets.
*
* Revision 1.88 2007/05/24 04:07:11 steve
* Rework the heirarchical identifier parse syntax and pform
* to handle more general combinations of heirarch and bit selects.
*
* Revision 1.87 2007/01/16 05:44:14 steve
* Major rework of array handling. Memories are replaced with the
* more general concept of arrays. The NetMemory and NetEMemory
* classes are removed from the ivl core program, and the IVL_LPM_RAM
* lpm type is removed from the ivl_target API.
*
* Revision 1.86 2006/11/10 04:54:26 steve
* Add test_width methods for PETernary and PEString.
*
* Revision 1.85 2006/11/04 06:19:24 steve
* Remove last bits of relax_width methods, and use test_width
* to calculate the width of an r-value expression that may
* contain unsized numbers.
*
* Revision 1.84 2006/10/30 05:44:49 steve
* Expression widths with unsized literals are pseudo-infinite width.
*
* Revision 1.83 2006/06/18 04:15:50 steve
* Add support for system functions in continuous assignments.
*
* Revision 1.82 2006/06/02 04:48:49 steve
* Make elaborate_expr methods aware of the width that the context
* requires of it. In the process, fix sizing of the width of unary
* minus is context determined sizes.
*
* Revision 1.81 2006/04/28 04:28:35 steve
* Allow concatenations as arguments to inout ports.
*
* Revision 1.80 2006/04/16 00:54:04 steve
* Cleanup lval part select handling.
*
* Revision 1.79 2006/04/16 00:15:43 steve
* Fix part selects in l-values.
*
* Revision 1.78 2006/03/25 02:36:26 steve
* Get rid of excess PESTring:: prefix within class declaration.
*
* Revision 1.77 2006/02/02 02:43:57 steve
* Allow part selects of memory words in l-values.
*
* Revision 1.76 2006/01/02 05:33:19 steve
* Node delays can be more general expressions in structural contexts.
*
* Revision 1.75 2005/12/07 04:04:23 steve
* Allow constant concat expressions.
*
* Revision 1.74 2005/11/27 17:01:56 steve
* Fix for stubborn compiler.
*
* Revision 1.73 2005/11/27 05:56:20 steve
* Handle bit select of parameter with ranges.
*
* Revision 1.72 2005/11/10 13:28:11 steve
* Reorganize signal part select handling, and add support for
* indexed part selects.
*
* Expand expression constant propagation to eliminate extra
* sums in certain cases.
*
* Revision 1.71 2005/10/04 04:09:25 steve
* Add support for indexed select attached to parameters.
*
* Revision 1.70 2005/08/06 17:58:16 steve
* Implement bi-directional part selects.
*
* Revision 1.69 2005/07/07 16:22:49 steve
* Generalize signals to carry types.
*
* Revision 1.68 2005/01/09 20:16:00 steve
* Use PartSelect/PV and VP to handle part selects through ports.
*
* Revision 1.67 2004/12/29 23:55:43 steve
* Unify elaboration of l-values for all proceedural assignments,
* including assing, cassign and force.
*
* Generate NetConcat devices for gate outputs that feed into a
* vector results. Use this to hande gate arrays. Also let gate
* arrays handle vectors of gates when the outputs allow for it.
*
* Revision 1.66 2004/10/04 01:10:51 steve
* Clean up spurious trailing white space.
*
* Revision 1.65 2003/02/08 19:49:21 steve
* Calculate delay statement delays using elaborated
* expressions instead of pre-elaborated expression
* trees.
*
* Remove the eval_pexpr methods from PExpr.
*
* Revision 1.64 2003/01/30 16:23:07 steve
* Spelling fixes.
*
* Revision 1.63 2002/11/09 19:20:48 steve
* Port expressions for output ports are lnets, not nets.
*
* Revision 1.62 2002/08/12 01:34:58 steve
* conditional ident string using autoconfig.
*
* Revision 1.61 2002/06/04 05:38:43 steve
* Add support for memory words in l-value of
* blocking assignments, and remove the special
* NetAssignMem class.
*
* Revision 1.60 2002/05/23 03:08:51 steve
* Add language support for Verilog-2001 attribute
* syntax. Hook this support into existing $attribute
* handling, and add number and void value types.
*
* Add to the ivl_target API new functions for access
* of complex attributes attached to gates.
*
* Revision 1.59 2002/04/23 03:53:59 steve
* Add support for non-constant bit select.
*
* Revision 1.58 2002/04/14 03:55:25 steve
* Precalculate unary - if possible.
*
* Revision 1.57 2002/04/13 02:33:17 steve
* Detect missing indices to memories (PR#421)
*
* Revision 1.56 2002/03/09 04:02:26 steve
* Constant expressions are not l-values for task ports.
*
* Revision 1.55 2002/03/09 02:10:22 steve
* Add the NetUserFunc netlist node.
*
* Revision 1.54 2001/12/30 21:32:03 steve
* Support elaborate_net for PEString objects.
*
* Revision 1.53 2001/12/03 04:47:14 steve
* Parser and pform use hierarchical names as hname_t
* objects instead of encoded strings.
*
* Revision 1.52 2001/11/08 05:15:50 steve
* Remove string paths from PExpr elaboration.
*
* Revision 1.51 2001/11/07 04:26:46 steve
* elaborate_lnet uses scope instead of string path.
*
* Revision 1.50 2001/11/07 04:01:59 steve
* eval_const uses scope instead of a string path.
*/
#endif
Jump to Line
Something went wrong with that request. Please try again.