
Project 4

Group members: Yilin Liu, Pufeng Sun, Meng Zhou

Since Wt is a standard Wiener process, we can simulate dWt using standard normal distribution
with size L in Python.

And then we can simulate sum of |dWi| and sum of (dWi)^2 respectively.

To verify a) and b) numerically, we simulate them with different L and plot them with L varied
from 10 to 10000. There is also a table below showing the result.

L dt ∑|dW_t| ∑ d（W_t ^2）

20 0.1 5.509385036 2.108317365

100 0.02 11.77176284 2.112601318

200 0.01 15.72708098 1.870845178

1000 0.002 35.79839572 1.962149222

2000 0.001 113.2322233 2.019519564

10000 0.0002 159.1568192 2.001725873

100000 0.00002 358.0450032 2.007631438

As we can see from both plots and table, the sum of |Wi| keeps increasing when dt gets closer
to 0. Also, ∑ d（W_t ^2）converges around 2 with dt gets to 0.
Here is the complete code for Q1

2.Evaluate numerically the stochastic integrals

In this problem, we use Euler-Maruyama to simulate each process.

First, we divided [0,2] into N small distance equally.Then, we let W[i+1] = W[i] + *N(0,1),

So the integral result is

This is the result of numerical simulation calculations. Also by ito formula, we obtain the
analytical solution containing W (t), 0.5*w(t)^2-0.5*2. Then we get the error of the simulation.
After that, we change N and simulated more times to get the following results.

N simulation value Analytical value error

10 -0.81256 -0.58275 0.256045

100 -0.84758 -0.95886 0.111279

1000 -0.92139 -0.94253 0.021146

10000 -0.85187 -0.87564 0.023772

From the results, we clearly see that the keeps getting smaller as N gets larger, and the error
between the numerical solution obtained from our simulation and the true value is also
decreasing.

First, Similarly divided [0,2] into N small distance equally. let W[i+1] = W[i] + *N(0,1).

For the Stratonovich integral, integral result is

Also by Ito formula, we obtain the analytical solution 0.5*w(t)^2. Then we get the error of the
simulation.

After that, we change N and simulated more times to get the following results.

N simulation value Analytical value error

10 0.180045 0.102133 0.077912

100 0.378844 0.393502 -0.01466

1000 0.003387 0.005278 -0.00189

10000 0.033783 0.033797 -1.35E-05

From the results, we clearly see that the keeps getting smaller as N gets larger, the error
between the numerical solution obtained from our simulation and the true value is also
decreasing.

Following problem a, after obtaining the integral value, we will repeat the simulation n times(In
this question, we use n=1000) and take the average value. In this way we obtain the expectation
of the stochastic calculus.

And we know that w(t)~N(0,t), so the real value of 𝐸 [∫ 𝑊(𝑡)𝑑𝑊(𝑡)] equals to 0.

Compare the simulation with the real expectation, we get the following answer.

N expectation absolute error

10 0.058631 0.058631

100 -0.04589 0.045886

1000 -0.0118 0.011798

10000 -0.0004 0.0004

From the results, we clearly see that the keeps getting smaller as N gets larger, the error
between the numerical solution obtained from our simulation and the real value is also
decreasing.

Also, following problem a, after obtaining the integral value, we will square it repeat the
simulation n times(In this question, we use n=1000) and take the average value. In this way we
obtain the expectation of the stochastic calculus.

By Ito, we know that so the

Therefore,

Compare the simulation with the real expectation, we get the following answer.

N
expectati

on
absolute

error

10 1.880237 0.119763

100 1.941309 0.058691

1000 1.985103 0.014897

10000 1.931447 0.068553

From the results, we clearly see that the keeps getting smaller as N gets larger, the error
between the numerical solution obtained from our simulation and the real value is also
decreasing.

First, simulate this process. We let W[i+1] = W[i] + *N(0,1),

So the integral result is .

Then we repeat the simulation n times(In this question, we use n=1000) and take the average
value. In this way we obtain the expectation of the stochastic calculus.

Like the question d, we know the real value of

Compare the simulation with the real expectation, we get the following answer.

N expectation absolute error

10 1.770458 0.229542

100 1.86531 0.13469

1000 1.916359 0.083641

10000 2.028355 0.028355

From the results, we clearly see that the keeps getting smaller as N gets larger, the error
between the numerical solution obtained from our simulation and the real value is also
decreasing.

First we use the same simulation as in problem a and b, then adding a for loop to it, letting t take
values on the interval [02]. In this way we obtain a plot of the variation of the stochastic integral
g with respect to the upper limit of integration t.

For 1/2*, because this integral is a deterministic integral, the change in its integral value shows
a straight line as the upper limit of integration t increases, as shown in the following figure

For,

we first divided [0,2] into 20 small distance equally. Then we ran the program and got the
following results

Then we first divided [0,2] into 100 small distances equally

From the above results, we observe that as the upper limit of integration t increases in the
interval [0,2], the probability that the value of our simulated stochastic integrals becomes larger
increases as well.

Here is the code for questions a through f in order

3).Consider the following SDE:𝑑𝑋(𝑡)=𝜇𝑋(𝑡)𝑑𝑡+𝜎𝑋(𝑡)𝑑𝑊(𝑡), 𝑋(0)=3, 𝜇=2, 𝜎=0.10
Where 𝑡∈ [0,1].
a) Show that the Euler Maruyama method has weak order of convergence equal to
one. That is |𝐸[𝑋1] − 𝐸[𝑋(1)]| = 𝐶Δ𝑡. Here 𝑋(1) is the exact solution at time 1 and 𝑋1 is the
computed solution at time 1.

In this problem The Euler-Maruyama method for this SDE is given by:
X_{n+1} = X_n + μ X_n Δt + σ X_n ΔW_n
where ΔW_n = W_{(n+1)Δt} - W_{nΔt} is the increment of a Wiener process over the time
step Δt. Let X(t) be the exact solution to the SDE. Then we have:
X(Δt) = X(0) + μ X(0) Δt + σ X(0) ΔW_0 + O(Δt^2)
Then we plug it in to the python, and calculate the weak error.
Here is the code

Firstly, we set up the initial condition, here lambda is mu, mu is sigma.

Then we compute the the true exponential expected value for the x, which we can use ito sde that the dw
part of the function is elimilated. Which is equal to Xzero * exp(mu * T)
Then we rearrange the dt into 5 discrate points. And use the Euler-Maruyama method to calculate the
X. After that we take the Expected value. Compute the weak error as the absolute difference between the
expected values
Xweak_err[p] = abs(np.mean(Xnumerical) - Xtrue_exp)

In the end, we plug it into a diagram, we compare it with the loglog function of convergence of 1,
which is indicated the slope of the function.

In this case, we get q_weak=1.190814851813077
resid= 0.8437258168797771 for m=1000
If m = 10000
q_weak=0.9296334317340579
resid=0.040153380941455714

If m =100

q_weak=1.9282709369144726
resid=3.3539035579572283 which is too big to use this data

And we change the dt, as N goes bigger, the subtraction goes to 0

As result, we can see that as more time of simulation of the fcunton, the mean of the function is
closer to the analitical mean. And the Euler Maruyama method has weak order of
convergence equal to one.

b) Show that the Euler Maruyama method has strong order of convergence equal to one
half. That is
𝐸|𝑋1 − 𝑋(1)| = 𝐶Δ𝑡0.5. Here 𝑋(1) is the exact solution at time 1 and 𝑋1 is the computed
solution at time 1.

To show that the Euler-Maruyama method has strong order of convergence equal to 0.5, we
need to show that the expected error between the numerical solution and the exact solution is
proportional to the square root of the time step size Δt.

Using the same notation as in part a), the exact solution at t = 1 is given by:X(1) = X(0) exp[(μ -
σ^2/2)t + σ W_t] where W_t is a Wiener process with mean zero and variance t. The numerical
solution at t = 1 using the Euler-Maruyama method is given by: X_1 = X_0 exp[(μ - σ^2/2)Δt + σ
ΔW_0] where ΔW_0 is the increment of the Wiener process over the time interval [0, Δt].
In the end, we just need to use 𝐸|𝑋1 − 𝑋(1)| = 𝐶Δ𝑡0.5

Firstly, we set up the initial condition, here lambda is mu, mu is sigma.

Then we compute the the true exponential expected value for the x, which we can use ito sde Which is
equal to Xzero * np.exp((mu - 0.5 * sigma ** 2) * (L * Dt) + sigma * W[R * L - 1])

Then we rearrange the dt into 5 discrate points. And use the Euler-Maruyama method to calculate the
X. then we get the difference between the two methods. After that we take the Expected value.
Compute the weak error as the absolute difference between the expected values

In the end, we plug it into a diagram, we compare it with the loglog function of convergence of
0.5, which is indicated the slope of the function. But here something wired happened.

Here is the graph

And here is the data
Strong order of convergence (q): 0.9767603160492175
Residual: 0.017732618142960038
Which indicate that the Strong order of convergence of the function is 1 rather than 0.5.

This is the examination:

To figuring out why this is not 0.5 convergence, we do several trials with different parameter.
if we change the sigma to 1 rather than 0.1:

Strong order of convergence (q): 0.5182110094916422
Residual: 0.03703552713324291
Now, the Strong order of convergence of the function is 0.5.

If the sigma is 0.5

Strong order of convergence (q): 0.7683998515733361
Residual: 0.10992691302697705

If we change sigma=4

Strong order of convergence (q): 0.4253321766311653
Residual: 0.6168491143113144

sigma Strong order of convergence Residual

0.1 0.977 0.018

0.5 0.768 0.110

1.0 0.518 0.037

4.0 0.425 0.616

From above observation, as sigma increases, Strong order of convergence decrease.

If we fix sigma, increase the mu,
mu=6
Strong order of convergence (q): 0.8843782873321784
Residual: 0.08871003340662138

mu=12
Strong order of convergence (q): 0.6793623977412382
Residual: 0.21031375499224111

We may conclude that as mu increases, Strong order of convergence decreases.

And b) We choose different values for theta (=0.1, 0.5, 0.9) to simulate using the implicit
method. Here are three graphs compared with the analytical solution.
￼

￼

￼￼

c).￼We use the following code to calculate the second moment and simulate with different mu
and delta.H

Here are three different cases, and we can find that mu should always be negative to make sure
the SDE is mean-square stable.

d).￼

Using this implicit method to simulate and then calculate the E[X(t)²].
First, we let u>0(actually we let u+½*sigma^2>0) and change the theta.

u=2, sigma = 0.01

We find that it is not mean-square stable.
Then we let u<0(actually we let u+½*sigma^2<0) and change the theta.

We find that it is mean-square stable when theta is in [0 0.5]. When theta is bigger than 0.5, It is
still not mean-square stable.

Code：

e)To determine the values of 𝜇 and 𝜎 for which the SDE is asymptotically stable
numerically, we can use Monte Carlo simulations. The basic idea is to generate many
sample paths of the SDE and observe their behavior as time goes to infinity.

Then we put different values of 𝜇 and 𝜎 to verify if μ − 0.5 δ2 < 0 is the condition.

When μ = -1, δ = 0.5,E[X(t)] and Var[X(t)] are both going to 0 when t goes to zero, which
means SDE is asymptotically stable.

f).￼ For what values of 𝜃 is the Implicit method asymptotically stable.

Using implicit method to simulate and then calculate theE[ln(|α + βεi|)]
First, we let u>0(actually we let u-½*sigma^2>0) and change the theta.

u=2, sigma = 0.01

We find that it is not asymptotically stable.
Then we let u<0(actually we let u+½*sigma^2<0) and change the theta.

u=-2, sigma = 0.01

We find that it is asymptotically stable when theta is in [0 0.5]. When theta is bigger than 0.5, It
is still not asymptotically stable.
Code：

5).
Consider the following SDE: 𝑑𝑋(𝑡)=𝜇𝑋(𝑡)𝑑𝑡+𝜎𝑋(𝑡)𝑑𝑊(𝑡), 𝑋(0)=2,
Let 𝑎=0.5 𝑎𝑛𝑑 𝑏=3.
Compute the mean exit time function 𝑣(𝑥) 𝑓𝑜𝑟 𝑥∈ [0.5, 3]

For this question, firstly, we need to consider The script first calculates the mean exit time function v(x)
using the finite difference method, then uses Monte Carlo simulation to estimate the mean exit time for an
initial condition x0 = 2.
Here we need to figure out the exit time X += mu * X * dt + sigma * X * dW(dt)for n loop. We are
consider the riemann sum method to add the movement of x in each dt. Do several trials and get the
expected value of them.
And compare them with the analytical solution as below.
ea=(1 / (0.5 * sigma**2 - mu)) * (log(X0 / a) - np.log(b / a) * (1 - (X0 / a)**(1 - 2 * mu / sigma**2)) / (1 -
(b / a)**(1 - 2 * mu / sigma**2)))

Here is the code

We set up the initial condition for the question:

Then, we need to get the simulation of the SDE, by having the 𝑑𝑋(𝑡)=𝜇𝑋(𝑡)𝑑𝑡+𝜎𝑋(𝑡)𝑑𝑊(𝑡)
Dwt is just the cumulative sum of n N(0,1) times dt^0.5.

After setting up the function, we can plug them into the function we drive above

exit_times = [simulate_SDE(X0, mu, sigma, dt, a, b) for _ in
range(num_simulations)]
ea=(1 / (0.5 * sigma**2 - mu)) * (np.log(X0 / a) - np.log(b / a) * (1 - (X0 /
a)**(1 - 2 * mu / sigma**2)) / (1 - (b / a)**(1 - 2 * mu / sigma**2)))

This is how to get the analytical solution of the expected exit time.

In the end, we get the error between two methods and plot it.

dt=0.001
Mean Exit Time (Simulation): 2.1625030999999053
Mean Exit Time (ana): 2.148159512404766
Mean Exit Time (error): 0.014343587595139429

If dt= 0.01

Mean Exit Time (Simulation): 2.2118439999999895
Mean Exit Time (analytical): 2.148159512404766
Mean Exit Time (error): 0.0636844875952236

If dt=0.1
Mean Exit Time (Simulation): 2.1259000000000006
Mean Exit Time (ana): 2.148159512404766
Mean Exit Time (error): 0.022259512404765314

dt Mean Exit Time (Simulation) Mean Exit Time (analytical) Mean Exit Time (error)

0.1 2.1259 2.148159512 0.022259512

0.01 2.164844 2.148159512 0.016684488

0.001 2.1625031 2.148159512 0.014343588

Thus, we can indicate that as dt=>0, the Mean Exit Time (Simulation) will be equal to
Mean Exit Time (ana), and for this question, Mean Exit Time should be close to
2.148159512404766

Then what we want to do is to Calculate mean exit times for different starting points
(simulation)
Similar to what we have done above, we have to compare the simulation to the theoretical
solution: (1 / (0.5 * sigma**2 - mu)) * (log(x / a) - log(b / a) * (1 - (x / a)**(1 - 2 * mu / sigma**2)) /
(1 - (b / a)**(1 - 2 * mu / sigma**2))).

Here is the code:
The initial part is same as above.
x_values = np.linspace(0.5, 3, 100)

Calculate mean exit times for different starting points (simulation)
simulated_mean_exit_times = []
for x in x_values:

exit_times = [simulate_SDE(x, mu, sigma, dt, a, b) for _ in
range(num_simulations)]

mean_exit_time = np.mean(exit_times)
simulated_mean_exit_times.append(mean_exit_time)

Calculate mean exit times for different starting points (analytical solution)
analytical_mean_exit_times = [analytical_v(x, mu, sigma, a, b) for x in
x_values]
error=abs(simulated_mean_exit_times-analytical_mean_exit_times)

Plot mean exit time function v(x) for both simulation and analytical solution
plt.plot(x_values, simulated_mean_exit_times, label='Simulation',
linestyle='--', marker='o')
plt.plot(x_values, analytical_mean_exit_times, label='Analytical',
linestyle='-', marker='s')
plt.xlabel("x (Starting Point)")
plt.ylabel("Mean Exit Time")
plt.title("Mean Exit Time Function v(x)")
plt.legend()

plt.show()

plt.plot(x_values,error,label='error')
plt.xlabel("x (Starting Point)")
plt.ylabel("Mean Exit Time")
plt.title("compare v(x)")
plt.legend()
plt.show()

In the end, I compare the error between the two method with the same starting point X.

Here is the graph, we can see that it’s like a right skewed normal distribution, and the mean exit
time is below 9.

To check how good is the simulation. We the calculated the error between them and residuals .
analytical_mean_exit_times = [analytical_v(x, mu, sigma, a, b) for x in
x_values]

error=[]
for i in range(len(simulated_mean_exit_times)):

error.append(abs(simulated_mean_exit_times[i] -
analytical_mean_exit_times[i]))
plt.plot(x_values,error,label='error')
plt.xlabel("x (Starting Point)")
plt.ylabel("Mean Exit Time")
plt.title("compare v(x)")
plt.legend()
plt.show()

residuals = np.array(analytical_mean_exit_times) -
np.array(simulated_mean_exit_times)

Plot residuals
plt.plot(x_values, residuals, linestyle='-', marker='o')
plt.xlabel("x (Starting Point)")
plt.ylabel("Residual (Analytical - Simulation)")
plt.title("Residuals of Mean Exit Time Function v(x)")
plt.axhline(0, color='gray', linestyle='--')
plt.show()

Here is the graph

we can tell that as x increase, the analytical and numerical solution are perfectly agreed.

.

.

.

Here is the residual numbers that we get as x approach to 3. We can see taht as it close to the
end. It converge to 0.

