Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
112 lines (93 sloc) 3.82 KB
# Copyright 2016 Niek Temme.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Predict a handwritten integer (MNIST beginners).
Script requires
1) saved model (model.ckpt file) in the same location as the script is run from.
(requried a model created in the MNIST beginners tutorial)
2) one argument (png file location of a handwritten integer)
Documentation at:
http://niektemme.com/ @@to do
"""
#import modules
import sys
import tensorflow as tf
from PIL import Image,ImageFilter
def predictint(imvalue):
"""
This function returns the predicted integer.
The input is the pixel values from the imageprepare() function.
"""
# Define the model (same as when creating the model file)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
"""
Load the model.ckpt file
file is stored in the same directory as this python script is started
Use the model to predict the integer. Integer is returend as list.
Based on the documentatoin at
https://www.tensorflow.org/versions/master/how_tos/variables/index.html
"""
with tf.Session() as sess:
sess.run(init_op)
saver.restore(sess, "model.ckpt")
#print ("Model restored.")
prediction=tf.argmax(y,1)
return prediction.eval(feed_dict={x: [imvalue]}, session=sess)
def imageprepare(argv):
"""
This function returns the pixel values.
The imput is a png file location.
"""
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), (255)) #creates white canvas of 28x28 pixels
if width > height: #check which dimension is bigger
#Width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0/width*height),0)) #resize height according to ratio width
if (nheight == 0): #rare case but minimum is 1 pixel
nheight = 1
# resize and sharpen
img = im.resize((20,nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round(((28 - nheight)/2),0)) #caculate horizontal pozition
newImage.paste(img, (4, wtop)) #paste resized image on white canvas
else:
#Height is bigger. Heigth becomes 20 pixels.
nwidth = int(round((20.0/height*width),0)) #resize width according to ratio height
if (nwidth == 0): #rare case but minimum is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth,20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round(((28 - nwidth)/2),0)) #caculate vertical pozition
newImage.paste(img, (wleft, 4)) #paste resized image on white canvas
#newImage.save("sample.png")
tv = list(newImage.getdata()) #get pixel values
#normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
tva = [ (255-x)*1.0/255.0 for x in tv]
return tva
#print(tva)
def main(argv):
"""
Main function.
"""
imvalue = imageprepare(argv)
predint = predictint(imvalue)
print (predint[0]) #first value in list
if __name__ == "__main__":
main(sys.argv[1])
You can’t perform that action at this time.