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ABSTRACT 

 
Epilepsy, a pervasive neurological disorder marked by unpredictable seizures, poses 

profound challenges for affected individuals, impacting their daily lives and overall well- 

being. Identifying seizures ahead of time is paramount for individuals coping with epilepsy 

to maintain a sense of control over their health. Through our project, we're delving into the 

realm of cutting-edge technology to enhance seizure prediction methodologies. By fine- 

tuning these approaches, our objective is to furnish more precise and dependable forecasts, 

thereby empowering swift responses that mitigate the disruptive repercussions of seizures. 

Our endeavor is driven by the overarching goal of improving the quality of life for those 

impacted by epilepsy, ensuring they have the tools and support necessary to navigate their 

condition with confidence and resilience. This project capitalizes on the intricacies of scalp 

EEG signals, integrating deep learning models, such as Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM), can automatically learn and extract 

features from EEG signals through layers of convolution and recurrent operations and 

ensemble learning methods for classification to create a sophisticated predictive model. 

Unlike traditional approaches, our system seeks to transcend the limitations of individual 

models by combining the strengths of diverse algorithms, including SVM, Random Forests, 

and XGBoost, to form a robust ensemble. Through rigorous training, validation and testing 

the developed model seeks to enhance the accuracy, specificity and sensitivity of seizure 

prediction. In practical terms, our innovative seizure prediction system has the potential to 

revolutionize epilepsy management for medical professionals. This proactive tool enhances 

patient safety, empowers medical professionals, and fosters improved outcomes and overall 

well-being in the challenging landscape of epilepsy. 

 
Keywords: Epileptic Seizures, Scalp EEG Signals, Deep Learning, Ensemble Learning 
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Chapter 1 Introduction 

 
1.1 Introduction 

 
Epilepsy, a neurological disorder affecting over 65 million people, is 

characterized by unpredictable seizures, presenting significant challenges to 

individuals' daily lives. The abrupt and unpredictable onset of these seizures can 

seriously upset a person's daily life. They can limit opportunities for typical 

activities, such as employment and driving, which can reduce a person's overall 

quality of life. The unpredictable nature of these seizures is a concern for physical 

safety, but it also has a significant impact on families, carers, and wider society 

as a whole. It impacts the ease and wellbeing of individuals with epilepsy, 

families, carers and the healthcare system, costs society and the economy. 

 
To this end, the objective of our project stands as follows: to develop a state-of- 

the-art EEG-based epileptic seizure prediction system, which provides predictive 

seizure forecasting in advance. This is essential in order to provide a critical 

period for possible intervention. By resorting to optimal integration of deep 

learning and ensemble learning, the efficiency, precision and effectiveness of the 

seizure forecasting model can be significantly enhanced, thereby considerably 

improving the lives of the epileptic population. 

 
Empowering individuals with epilepsy to anticipate and prepare for impending 

seizures is at the core of our research mission. This anticipatory approach 

addresses the stages of epilepsy: Interictal, referring to the period between 

seizures as the baseline state; Ictal, signifying the occurrence of a seizure; 

Postictal, the recovery phase following a seizure; and Preictal, indicating the 

period leading up to a seizure. Our approach incorporates CNNs for spatial 

pattern extraction and LSTM architectures for capturing temporal dependencies 

in EEG signals. This synergistic use of CNNs and LSTMs enhances the system's 

ability to autonomously extract both spatial and temporal features from EEG 

data, contributing to a nuanced understanding of the underlying neural patterns. 

 
Furthermore, our approach integrates ensemble learning, a powerful paradigm 

combining the strengths of multiple algorithms. The ensemble comprises three 

robust classifiers—Random Forest, Support Vector Machine, and XGBoost— 

each contributing distinct strengths to the predictive system. Random Forest, 

recognized for its flexibility and rapid convergence, enhances overall 

performance. SVM, a robust classifier, plays a pivotal role in effectively 

classifying EEG data into preictal and interictal states, thereby improving 

accuracy and reliability. Additionally, XGBoost, a sequential ensemble learning 

method, introduces efficient parallel processing, ensuring faster computation and 

further augmenting the predictive capabilities of our refined system. This 

comprehensive approach, from advanced feature extraction to ensemble 
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classification, positions our system at the forefront of innovation in the field of 

epileptic seizure prediction. This project extends beyond the development of a 

technological solution; it addresses a pressing societal need by contributing to 

early seizure prediction, patient safety, and better healthcare outcomes. 

 

1.2 Motivation of work 

 
Epilepsy is a serious neurological disorder that affects millions of people 

worldwide. It causes unpredictable seizures that can disrupt daily life for both the 

person with epilepsy and their loved ones. We're dedicated to creating a system 

that can predict when these seizures might happen using EEG technology. 

 
Our main goal is to make life easier for people with epilepsy. We want to give 

people with epilepsy and their carers an opportunity to be prepared for a seizure. 

They may be able to make lifestyle adjustments, take medication, or ask for help 

ahead of time. We are hopeful that such preparations can lead to a higher quality 

of life for them. 

 
We believe that we also have a responsibility to society at large to address the 

wider impact of epilepsy. The condition can affect more than just a person's health 

by also impacting their employment, and social interactions. A reliable prediction 

method will help to cut healthcare burdens, contribute to creating a safer working 

environment, and in many ways make society and the culture of inclusivity more 

welcoming to everyone with epilepsy. 

 
Our ultimate goal is to help predict seizures in people diagnosed with epilepsy. 

By doing so, we can predict when a seizure might happen, and those who are 

predicted to have a seizure can take proper preparation. We believe that our work 

can increase the self-confidence and freedom of individuals living with epilepsy. 
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1.3 Problem Statement 

 
The absence of a reliable and advanced epileptic seizure prediction system 

creates a pressing challenge for individuals with epilepsy, impacting their safety 

and overall quality of life. The unpredictable nature of seizures, coupled with the 

limitations of existing prediction methods, highlights the critical need for an 

innovative solution. This project aims to bridge this gap by leveraging deep 

learning techniques, including CNNs and LSTM architectures, in conjunction 

with ensemble learning methods. The objective is to enhance the accuracy and 

reliability of seizure prediction, providing a crucial window for timely 

intervention. The integration of diverse classifiers, such as Support Vector 

Machine, Random Forest, and XGBoost, promises a comprehensive approach to 

address the complex dynamics of epileptic seizures. By developing an advanced 

EEG-based system, this project seeks to empower individuals, caregivers, and 

healthcare professionals, ultimately improving the management of epilepsy and 

contributing to enhanced patient safety and well-being. 



4 
 

Chapter 2 Literature Survey 

 
2.1 Introduction 

 
Over 65 million individuals worldwide grapple with epilepsy, a neurological 

condition characterized by recurrent seizures stemming from the brain's aberrant 

firing of neurons in a hyper synchronized manner within the cerebral cortex. 

Epilepsy is one of the most common neural disorders in the world, with 

unpredictable seizures that can interfere with activities such as driving and 

working. These seizures often add significant burdens and stress on the patients 

and their families, manifesting in depression and other health issues. The social 

impact is also quite large, with caregivers also facing distress and the healthcare 

system across the board bearing the cost of care. Our project aims to develop an 

advanced system that leverages EEG data to predict epileptic seizures and 

provide timely intervention as well as an overall improvement in the life of 

individuals who suffer from epilepsy. EEG is an established tool in neurology 

that is used to study and diagnose a variety of brain disorders including epilepsy. 

Using the recording of the voltage oscillations resulting from the summed field 

potentials of brain neuronal activity, the EEG produces data that can be analyzed 

to diagnose and monitor neural disorders. At the same time, the process of EEG 

reading analysis can be slow and cumbersome and in the hands of a neurologist 

can be quite time-consuming. 

 
To tackle this problem, we present a solution that utilizes both deep learning and 

ensemble learning methods to predict seizures with high accuracy and systematic 

reliability. Our tool aims to contribute to the predictive capacity of early 

intervention, without which adverse consequences of seizures may continue to 

impair the quality of life of individuals with epilepsy. 

 
This literature survey presents an overview of recent survey papers of Epileptic 

Seizure Prediction based on EEG using deep learning and machine learning. 

 
2.2 Prediction of Epileptic Seizures 

 
" A Generalizable Model for Seizure Prediction Based on Deep Learning 

using CNN-LSTM Architecture " by Mohamad Shahbazi, Hamid Aghajan 

(2018) 

 
This paper presents a unique method for predicting epileptic seizures using deep 

learning on EEG information. Their model, which combines CNNs and LSTMs, 

surpasses earlier approaches by taking into account both frequency and temporal 

variables, with a sensitivity of 98.21% and a low false prediction rate of 0.13/h 

on the CHB-MIT dataset. Preprocessing consists of selecting segments and 
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converting them to 2D images using STFT. Each patient's information is used to 

train personalized models. The CNN-LSTM architecture detects spectral and 

temporal patterns, and post-processing minimizes incorrect predictions. This 

study represents a major breakthrough in seizure prediction accuracy, bringing 

hope for better patient care. 

 
“A Novel Multi-Scale Dilated 3D CNN for Epileptic Seizure Predictions” by 

Ziyu Wang, Jie Yang and Mohamad Sawan Wang (2021) 

 
Wang, Yang, and Sawan from Westlake University present a unique CNN model 

for precise epileptic seizure prediction, which is critical for patient safety. Their 

methodology uses multi-scale dilated convolution to evaluate EEG signals in 

time, frequency, and channel dimensions. The model captures more complete 

characteristics using three-dimensional (3D) kernels, resulting in flexibility in 

receptive fields. When evaluated on the CHB-MIT EEG database, the model 

outperforms previous approaches by 80.5% accuracy, 85.8% sensitivity, and 

75.1% specificity. The suggested approach overcomes the limits of existing 

machine learning approaches by automating feature extraction from raw EEG 

data, allowing for real-time applications. The study proves the effectiveness of 

their strategy through rigorous examination and comparison with other state-of- 

the-art models, obtaining a decrease in words by 57.6% while preserving 

important information. Overall, the proposed multi-scale dilated CNN model 

shows promise for enhancing epileptic seizure prediction and patient safety. 

 
“Ensemble Classification for Epileptic Seizure Prediction” by N. Saranya, 

Dr. D. Karthika Renuka, R. Geetha Rajakumari (2021) 

 
The research discusses a technique for predicting epileptic fits by blending 

electroencephalogram (EEG) signals and machine learning algorithms. The 

model uses Random Forest and Back Propagation Neural Network (BPNN) as 

classification techniques to effectively detect seizure onset. Dynamic range and 

functioning of EEG signal are catered for by Finite Impulse Response (FIR) 

filtering. Feature extraction and noise elimination have been noted as concerns, 

with successful solutions being offered by FIR filters. In the paper, there was 

used open-source repositories to acquire EEG data while PCA was employed for 

dimensionality reduction and cross-validation for modeling validation. Random 

Forest achieves 95% accuracy on this dataset outperforming the rest of models. 

On the other hand, BPNN does not perform so well in comparison. This 

technological development could be integrated into a web application that would 

monitor epilepsy patients in real time in order to understand their health status 

thus enabling prompt interventions whenever necessary. Taken as a whole, this 

paper emphasizes on how effective machine learning is in seizure prediction as 

well as its possible role in enhancing healthcare outcomes. 
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“Epileptic Seizure Prediction using EEG Images” by Felix George, Alex 

Joseph, Bibin Baby, Alex John, Tonny John, Deepak M, Nithin G, and P.S. 

Sathidevi (2020) 

 
The research describes an automated approach for classifying EEG data into 

ictal, non-ictal, and pre-ictal categories in order to anticipate epileptic seizures. 

The model uses ResNET-50, a convolutional neural network (CNN) architecture, 

to convert 1D EEG input into 2D EEG images for categorization. This unique 

technique predicts seizures with an accuracy of 94.98%, proving the usefulness 

of deep residual networks in processing EEG data. The work solves previous 

approaches' drawbacks by providing a generic strategy that is applicable to all 

patients and capable of recognizing pre-seizure regions. The proposed method, 

if integrated into wearable devices, could allow for timely therapies for epilepsy 

patients, improving their quality of life. 

 
“Epileptic Seizures Prediction Based on Unsupervised Learning for Feature 

Extraction” by Ruyan Wang, Linhai Wang, Peng He, Yaping Cui, Dapeng 

Wu (2022). 

 
The paper introduces an unsupervised strategy for forecasting epileptic seizures 

that uses deep convolutional autoencoders (DCAEs) to learn features from EEG 

signals. Unlike standard supervised techniques, which require labeled data to 

extract features, DCAEs learn discriminative features directly from EEG data. 

The proposed method extracts key information from DCAEs using their 

hierarchical structure, allowing for more accurate classification of preictal and 

interictal phases. The approach's usefulness is demonstrated by its evaluation on 

the CHB-MIT dataset, which yields encouraging results with an accuracy rate of 

96.17% and a false alarm rate of only 0.015. These high percentages demonstrate 

the method's potential to improve epilepsy care by enabling timely intervention 

and individualized treatment options based on accurate seizure prediction. 

 
“Refine EEG Spectrogram Synthesized by Generative Adversarial Network 

for Improving the Prediction of Epileptic Seizures” by Tian Yu, Boyuan Cui 

(2023) 

 
The research describes an approach for improving the prediction of epileptic 

seizures, which is an important part of controlling epilepsy, a common 

neurological illness that affects a large proportion of the global population. 

Traditional seizure prediction algorithms encounter issues due to data paucity 

and imbalance, which reduces their effectiveness. To overcome these challenges, 

the paper suggests using Generative Adversarial Networks (GANs) for data 

augmentation, which would enable the development of synthetic EEG data. This 

synthesized data is then polished using a unique refining technique. By training 

a classifier on this enhanced dataset and evaluating it on real EEG data, the study 
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shows a significant improvement in seizure prediction performance, with an 

average 2.1% rise in Area Under the Curve (AUC) score compared to 

conventional techniques. The approach shows promise for addressing limited 

information and imbalance challenges in seizure prediction and other healthcare 

applications. The findings reveal a technique to improve patient outcomes by 

predicting seizures more accurately. 

 
“Semi-supervised Deep Learning System for Epileptic Seizures Onset 

Prediction” by Ahmed M. Abdelhameed and Magdy Bayoumi (2018) 

 
The research describes a new semi-supervised deep learning strategy for 

predicting epileptic seizure start using electroencephalogram (EEG) data. The 

system seeks to classify brain states as interictal (normal) or preictal (before to 

seizure) by integrating unsupervised and supervised techniques. It uses a two- 

dimensional deep convolutional autoencoder to extract discriminative spatial 

features from multichannel EEG data, as well as a Bidirectional Long Short- 

Term Memory (Bi-LSTM) recurrent neural network for temporal classification. 

Transfer learning is used to initialize patient-specific networks, which improves 

training efficiency. The experimental results show an average sensitivity of 

94.6% and a low false prediction rate of 0.04FP/h across many patients, 

outperforming existing approaches for seizure prediction accuracy. 

 
“Predicting Epileptic Seizures using Ensemble Method” by Prosper 

Chiemezuo Noble-Nnakenyi, Kehinde Adebola Olatunji, Oluwatoyin Bunmi 

Abiola (2022) 

 
The study described in this paper presents an ensemble model for forecasting 

epileptic seizures that employs deep learning techniques. To improve prediction 

accuracy, the proposed model incorporates long short-term memory (LSTM), 

convolutional neural network (CNN), and sparse autoencoder (SAE). The study 

overcomes the limits of current seizure prediction models by utilizing ensemble 

learning, which capitalizes on the strengths of individual models while reducing 

their drawbacks. 

The proposed methodology's key components include data collecting from EEG 

repositories, data preprocessing, feature extraction by signal mapping, and model 

fusion via majority voting. The ensemble model demonstrated good accuracy, 

sensitivity, and specificity in forecasting epileptic episodes. 

The results show that the ensemble model outperformed the individual models, 

with an average accuracy of 97.4%. This high level of accuracy shows that the 

proposed approach may be useful in real-world applications for early seizure 

prediction. 

 
“Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural 

Network Architecture” by Ramy Hussein, Soojin Lee, Rabab Ward and 
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Martin J. McKeown (2021) 

 
Semi-Dilated Convolutional Network (SDCN) is a newly described 

convolutional neural network architecture aimed at accurately predicting seizures 

using EEG data. Discriminative features are extracted from EEG scalograms 

using a new convolutional module called ‘semi-dilated convolution’ which is 

equipped in this design. A Sigmoid output and fully connected layers are resulted 

via parallel paths of 3x3 and 5x5 semi-dilated convolution blocks. The SDCN 

achieved sensitivity scores of 88.45% and 89.52%, respectively, on the American 

Epilepsy Society and Melbourne University EEG datasets, surpassing current 

state-of-the-art methods. Cost function used is binary cross-entropy, the 

optimizer used here is Adam while learning rate was set to be 0.001. In general, 

The SDCN proved to be superior for seizure prediction task giving a hint that 

semi dilation convolutions can effectively be employed for feature extraction as 

well as Classification on EEGs 

 
“Optimizing Seizure Prediction from Reduced Scalp EEG Channels Based 

on Spectral Features and MAML” by Anibal Romney; Vidya Manian (2021) 

 
The paper proposes a novel technique to seizure prediction in epilepsy by 

combining Model Agnostic Meta-Learning (MAML) with Deep Neural 

Networks (DNN) using patient-specific electrode channels. The goal is to reduce 

the number of EEG scalp electrode channels required for effective computational 

training of time-series signals. The study uses the CHB-MIT Dataset to optimize 

and choose the number of channels for each individual, with feature extraction 

performed using Ensemble Empirical Mode Decomposition (EEMD) and 

Sequential Feature Selection (SFS). The MAML model has a remarkable average 

sensitivity and specificity score of 91% and 90%, respectively, across 23 

individuals. This method shows promise for real-time seizure prediction with a 

few EEG scalp electrodes, potentially increasing the quality of life for epileptic 

sufferers. 
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Chapter 3 Proposed Methodology 

 
3.1 Introduction 

 
The proposed methodology for the EEG-based epileptic seizure prediction system 

is designed to comprehensively address the challenges associated with predicting 

seizures accurately and reliably. The starting point involves thoroughly collecting 

data from twenty-three patients, who were subjected to various EEG recordings 

using the international 10-20 System. The dataset was divided into training, 

validation, and testing sets, which ensured that there was a balance between the 

normal and seizure activities as well as maintaining the sequence of events. Then, 

feature scaling is done to normalize feature values and reshape data in order to make 

them fit with Convolutional Neural Network (CNN) and Long Short-Term Memory 

(LSTM) models. 

 
Feature extraction forms the core of the methodology mixing both CNN and LSTM 

paradigms for capturing spatial-temporal patterns in EEG signals. Time domain and 

frequency domain features are generated including mean, variance, skewness, 

kurtosis, power spectral density (PSD). These components provide an abundant 

description of EEG characteristics. These features are concatenated together to form 

a complete set of model input features. 

 
Model training employs diverse base models, including XGBoost, Support Vector 

Machine (SVM), and Random Forest (RF). The individual models are integrated 

into an ensemble classifier, utilizing a Majority Voting Strategy to combine their 

predictions. The ensemble classifier aims to enhance the robustness and 

generalization of the predictive model. Finally, an in-depth analysis of prediction 

results is conducted to evaluate the system's performance and effectiveness in 

seizure prediction. The system's performance is evaluated using accuracy, 

sensitivity, and specificity, with a focus on the binary outcomes—positive and 

negative predictions—to empower individuals with timely and reliable information 

about potential seizure occurrences. 

 

Figure 3.1: Four states of epileptic seizures from a 30s long segment of scalp EEG signal 
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3.2 Objectives 

 
The objectives of the proposed system are as follows: 

 
• To collect and preprocess chest EEG data: Gather a comprehensive 

dataset of EEG recordings from individuals with epilepsy, ensuring 

diversity in patient demographics and recording conditions. Identify 

epileptic periods from individual patients, extract ictal data, and preictal 

data equally from '.edf files, combine all the data from 24 patients into a 

single dataset (.csv), and retain data for only the 23 channels which are 

important for further analysis. 

 
• To develop a robust deep learning model for predicting seizures: 

Design and train deep learning architectures, including Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks, for feature extraction from EEG signals. Integrate diverse 

classifiers such as XGBoost, Support Vector Machine (SVM), and 

Random Forest for ensemble learning to enhance prediction robustness. 

 

• To evaluate the performance of the model: Assess the predictive 

performance of the developed model using metrics such as accuracy, 

sensitivity, and specificity. Conduct thorough cross-validation and 

testing to ensure the model's reliability and generalization to unseen data. 

 
• To validate the model in real-world settings: Conduct thorough cross- 

validation and testing to ensure the model's reliability and generalization 

to unseen data. Gather feedback from healthcare professionals and 

individuals with epilepsy to assess the model's usability and effectiveness 

in practical applications. 

 
• To make the model accessible: Develop user-friendly interfaces or 

applications to make the seizure prediction model accessible to 

individuals with epilepsy, caregivers, and healthcare professionals. 

Provide documentation and support resources to facilitate the 

implementation and utilization of the model in various healthcare 

settings. 
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3.3 System Architecture 
 

 

 
 

 
Figure 3.2: Architecture of proposed model 
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3.3.1 Dataset Acquisition 

 
The EEG data which we used in our work was obtained from the CHB-MIT 

Database. The CHB-MIT dataset is one of the most widely used openly 

accessible EEG datasets for seizure identification and prediction. The CHB-MIT 

dataset is made up of 23 instances organized from continuous scalp EEG 

recordings of 22 juvenile patients. 23 EEG channels are recorded in most of the 

files, and all signals are captured at a resolution of 16 bits at 256 samples per 

second. The dataset contains annotations describing the beginning and 

conclusion of each seizure. Preictal stage is the term used by the prediction task 

to describe the temporal interval that precedes each onset. 

 

IEEE Dataport now hosts the pre-processed dataset. In the past, studies only used 

a small number of the patients' EEG data from the original database. The authors 

of this research summarized the dataset using 68 entire minutes of epileptic 

seizure durations from all of the patients, as well as 68 whole minutes of preictal 

time. 

 
We utilized a subset of the preprocessed CHB-MIT dataset for our EEG-Based 

Epileptic Seizure Prediction project, specifically selecting 20,000 rows out of the 

original 2 lakh rows. The preprocessing steps were conducted by Deepa B and 

Ramesh K (2021), involving the extraction of epileptic periods, filtering 

redundant electrode data, and labeling ictal and preictal states. The final 

preprocessed dataset, comprising 23 essential channels, provided the basis for 

our analysis. Notably, data cleaning and transformation were intentionally 

omitted to provide flexibility to researchers in selecting appropriate methods for 

training and testing models. This subset of the preprocessed dataset encompasses 

data from all 24 patients involved in the study. 

 
The following subsections describe the procedure used to pre-process the CHB- 

MIT scalp EEG database. 

 
• Step1: 

 
CHB MIT scalp EEG database provides data at physionet in 'edf' European data 

format. The data is supported with information regarding epileptic periods. 

The voltage levels from EEG electrodes are obtained from 'edf' files. 

 
• Step2: 

 
Information about the ictal state and equal preictal state is gathered from 'edf' 

files. Two files are maintained separate so that researchers can use data as 

needed. This also helps with labeling. 
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• Step3: 

 
Duplicate and inaccurate electrode data are produced by a thorough analysis 

of the dataset. The 96 data channels of the EEG are comprised of 23 

mandatory channels. We're going to keep these 23 channels. 

 
• Step4: 

 
The preictal and non-preictal state data are labeled with 0 and 1, respectively, 

in the last stage. The final pre-processed data is obtained by merging the two 

datasets. Five different files contain the data: two raw files for non-preictal 

and preictal data, two processed files with 23 important channels according 

to the 10-20 EEG placement system, and a final file with 136 minutes of 

combined non-preictal and preictal data with outcomes indicated as '0' for 

preictal and '1' for non-preictal (Deepa B and Ramesh K, 2021). 

 

 

 
 

Figure 3.3: Steps in Preprocessing 

 
 

3.3.2 Feature Extraction using CNN-LSTM Models 

 
Feature extraction is a pivotal step in the data preprocessing pipeline, focusing 

on deriving informative representations from raw data using a combination of 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) 

models. These models are designed to capture complex spatial and temporal 

patterns within the electroencephalogram (EEG) signals. 

 

3.3.2.1 CNN Feature Extraction: 

 
• The CNN component specializes in identifying spatial patterns within the 
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EEG data. 

 

• Convolutional layers with filters detect hierarchical features, 

recognizing spatial relationships across electrode channels. 

 
• Pooling layers condense information, emphasizing essential spatial 

characteristics while reducing dimensionality. 

 

3.3.2.2 LSTM Feature Extraction: 

 
• The LSTM component excels at capturing temporal dependencies in EEG 

signals. 

 

• Long Short-Term Memory units maintain memory of previous states, 

enabling the model to understand the sequential nature of EEG data. 

 

• LSTM layers learn temporal patterns over extended time intervals. 

 
 

3.3.2.3 Combining CNN and LSTM: 

 
• Outputs from the CNN and LSTM models are concatenated to create 

a comprehensive feature set. 

• This combined feature set captures both spatial and temporal aspects 

of EEG signals, providing a rich representation for subsequent 

classification tasks. 

• Feature extraction using CNN-LSTM models enhances the 

interpretability of EEG data, allowing the model to automatically learn 

discriminative features. The drawn-out functions work as high-level 

depictions that can properly separate in between typical and also seizure 

tasks, mapping out the structure for precise category. 

The result is a feature-rich depiction of EEG information including both spatial 

as well as temporal attributes. This depiction is essential for constructing designs 

that can determine complex patterns within EEG signals, adding to the 

performance of seizure discovery and also category. 

 

3.3.3 Feature Selection 

Judiciousness belongs to attribute choice in our job to boost our forecast designs' 

interpretability together with efficiency. We developed a solid attribute choice 

treatment by making use of the abilities of artificial intelligence strategies 

especially Random Forest Feature Importance. We assessed each function's 

importance in our information utilizing an arbitrary woodland classifier. After 

that relying on their significance positions the SelectFromModel method was 
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made use of to maintain just one of the most helpful attributes. This approach 

reduced the likelihood of overfitting as well as enhanced design generalization 

along with lowering the dimensionality of our function area. We ensured that our 

designs were learnt one of the most essential plus appreciable attributes by 

meticulously selecting them which eventually boosted the forecasted precision 

together with general efficiency of the version. 

 
3.3.4 Model Training 

 

In this stage, we teach our computer models to identify patterns in brain activity 

and anticipate seizures. We're using three types of models: XGBoost, Support 

Vector Machine (SVM), and Random Forest (RF). These models are like the 

brain of our prediction system. We'll explain how we're training them and why 

we chose them. 

 

3.3.4.1 Model Selection 

 
Any predictive system's effectiveness and dependability depend on the careful 

selection of its underlying models. Here, we explain the reasoning behind our 

selection of the models—XGBoost, Support Vector Machine (SVM), and 

Random Forest (RF)—and discuss their features, capabilities, and applicability 

to our epileptic seizure prediction system. 

 

1. XGBoost 

 
XGBoost, brief for eXtreme Slope Improving attracts attention as a crucial 

selection for our anticipating structure owing to its exceptional abilities in 

handling varied datasets along with catching detailed connections. At its 

significance XGBoost uses a set knowing structure mostly driven by increasing 

strategies allowing it to build extremely accurate anticipating versions by 

progressively combining weak students. This hidden formula skillfully lessens 

loss features while additionally punishing version intricacy, consequently 

accomplishing an optimum equilibrium in between prejudice along with 

difference. In addition, XGBoost's intrinsic durability versus overfitting as well 

as its capability to take care of missing out on information even more improve 

its appearance. Additionally, its scalability plus performance makes it 

appropriate for assessing large datasets effortlessly straightening with the 

demands of our seizure forecast system. 

 

2. Support Vector Machine 

 
Support Vector Machine (SVM) holds a prominent setting in the domain name 

of monitored knowing popular for its capability to manage high-dimensional 

attribute areas as well as give durable category. SVM's efficiency comes from its 
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adherence to the concept of architectural danger reduction guaranteeing its 

capability to generalize successfully to hidden information circumstances. By 

building an ideal hyperplane that takes full advantage of the margin in between 

various courses, SVM lusters in determining complex patterns within 

information also despite sound as well as high dimensionality. Furthermore, 

SVM's versatility expands to its ability to take care of non-linear connections 

with bit techniques, allowing it to outline intricate choice limits properly. Within 

the context of our seizure prediction system, SVM's resilience, scalability, and 

adeptness in managing high-dimensional feature spaces make it an indispensable 

tool for precise classification and prediction tasks. 

 

3. Random Forest 

 
Random Forest (RF) arises as a keystone in anticipating modeling jobs using 

unmatched convenience as well as scalability. Based in set understanding 

concepts, RF accumulates choice trees to produce a durable anticipating 

structure. Each choice tree within RF is educated on a part of the information and 

also their forecasts are combined with ballot or balancing systems. This varied 

set not just improves anticipating precision yet additionally safeguards versus 

overfitting and also difference. In addition, RF's natural capacity to deal with 

non-linear partnerships as well as attribute communications clothing it with 

premium discriminative power allowing accurate demarcation of intricate choice 

borders. In addition, RF's parallelizability expedites version training along with 

reason, straightening easily with real-time forecast demands. Within the domain 

name of our seizure forecast system RF attracts attention for its strength, 

interpretability, along with versatility throughout varied modeling circumstances. 

 
In recap each design brings its distinct toughness as well as abilities to the leading 

jointly boosting the anticipating expertise of our system plus leading the way for 

boosted person end results plus lifestyle. 

 

3.3.4.2 Model Training Procedure 

 
For each selected base model (XGBoost, SVM, and Random Forest): 

• Initialize the model with default parameters or parameters based on prior 

experimentation. 

• Train the model on the training dataset. 

• Use appropriate evaluation metrics (e.g., accuracy, F1-score, etc.) to 

monitor the model's performance during training. 

• Repeat the training process for each base model. 
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3.3.5 Ensemble Classifier 

 
In this phase, we combine the predictions generated by the base models, namely 

XGBoost, Support Vector Machine (SVM), and Random Forest (RF), using a 

Majority Voting Strategy to construct an ensemble classifier. Ensemble methods 

leverage the diversity among individual models to enhance prediction robustness 

and generalization, thereby improving overall performance. 

Figure 3.4: How does Ensemble Learning Work? 

 

3.3.5.1 Majority Voting Strategy 

 
The Majority Voting Strategy aggregates the predictions from multiple base models 

and assigns the final class label based on the majority prediction. The ensemble 

classifier predicts the class that receives the greatest number of votes, with each 

base model prediction having equal weight. By reducing the possibility of 

individual model biases and errors, this method produces forecasts that are more 

accurate and dependable. 

 

3.3.5.2 Implementation 

 
To apply the set classifier making use of the Majority Voting Method we comply 

with these actions: 

 
1. Create Predictions: Utilize the educated base designs (XGBoost, SVM, RF) to 

produce forecasts on the recognition or screening information collection. 

 
2. Integrate Predictions: Aggregate the forecasts from each base design right into 

a solitary set forecast matrix where each row matches an information circumstance 

as well as each column stands for the anticipated course tag from a base version. 
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3. Voting Mechanism: For each information circumstances establish the bulk 

course tag amongst the forecasts produced by the base versions. Designate this bulk 

course tag as the last forecast for the equivalent information circumstances in the 

set classifier's outcome. 

4. Evaluation: Evaluate the performance of the ensemble classifier using 

appropriate evaluation metrics such as accuracy, sensitivity, specificity, and 

area under the ROC curve (AUC). Compare the ensemble classifier's performance 

against individual base models to assess its effectiveness in enhancing prediction 

robustness and generalization. 

 

3.3.5.3 Benefits of Ensemble Classification 

 
• Improved Robustness: By combining predictions from diverse models, the 

ensemble classifier mitigates the risk of individual model biases and errors, 

leading to more robust predictions. 

 
• Enhanced Generalization: Ensemble methods exploit the complementary 

strengths of different models, allowing for better generalization to unseen 

data instances. 

 
• Increased Accuracy: The ensemble classifier leverages the wisdom of 

crowds, often achieving higher accuracy than any individual base model 

alone. 

 
3.3.6 Analyze Prediction Results 

 
We analyze the prediction results of our ensemble classifier on both the validation 

set and testing set. We evaluate various metrics to assess the performance of the 

model and gain insights into its behavior. 

 

3.3.6.1 Ensemble Classifier Performance 

 
Validation Set: 

• Accuracy: The ensemble classifier achieves an accuracy of approximately 

94.77% on the validation set, indicating that it correctly classifies the 

majority of instances. 

• Precision and Recall: The precision and recall for both classes (0 and 1) 

are high, indicating that the model effectively identifies both non-seizure 

(0) and seizure (1) instances. The precision and recall values are balanced, 

contributing to the model's overall effectiveness. 

• F1-Score: The F1-score, which considers both precision and recall, is 
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approximately 95% for both classes. This balanced F1-score indicates 

robust performance across both classes. 

• Confusion Matrix: The confusion matrix reveals that the model correctly 

predicts the majority of instances, with a relatively low number of false 

positives and false negatives. 

Testing Set: 

 
• Accuracy: The ensemble classifier maintains a high accuracy of 

approximately 94.73% on the testing set, consistent with its performance on 

the validation set. 

 
• Precision and Recall: Similar to the validation set, the precision and recall 

values for both classes are high on the testing set, indicating the model's 

ability to effectively discriminate between seizure and non-seizure 

instances. 

 
• F1-Score: The F1-score remains balanced on the testing set, reflecting the 

model's consistent performance in terms of precision and recall. 

 

3.3.6.2 Additional Metrics and Insights 

 
• Specificity: The specificity of the model is approximately 97.26% on the 

testing set, indicating its ability to correctly identify non-seizure instances 

(true negatives) with high accuracy. 

 
• False Positive Rate (FPR): The FPR is relatively low, indicating a minimal 

rate of false alarms or misclassifications of non-seizure instances as seizure 

instances. 

 
• False Negative Rate (FNR): The FNR is also low, indicating a small 

proportion of seizure instances being missed or misclassified as non-seizure 

instances. 

 
• AUC-ROC Score: The Area Under the Receiver Operating Characteristic 

(ROC) Curve is approximately 94.68%, indicating good discriminative 

power and model performance across different threshold values. 

 
• Average Precision (AP): The AP score, which measures the average 

precision-recall tradeoff, is approximately 93.19%, reflecting the model's 

precision across different recall levels. 
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The analysis of prediction results demonstrates the robust performance of the ensemble 

classifier in predicting epileptic seizures. The model exhibits high accuracy, precision, 

recall, and balanced F1-scores on both the validation and testing sets. The low false 

positive and false negative rates further indicate the model's effectiveness in 

distinguishing between seizure and non-seizure instances. 
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Chapter 4 Requirement Analysis 

 
4.1 Introduction 

 
Requirement Engineering is a fundamental process that plays a vital role in 

software development. It includes the recognition meaning, and also 

administration of the system needs essential to satisfy the customer's 

assumptions. These needs make up of functions, features plus restrictions that 

the system should fulfill. 

 
The procedure of Requirement Engineering makes up of 2 vital tasks, 

specifically demand elicitation and also evaluation. Demand elicitation includes 

the collection as well as paperwork of the customer's needs utilizing numerous 

strategies such as studies, meetings, monitoring and also workshops. The primary 

purpose is to generate a comprehensive plus precise system requirements that the 

customer can recognize as well as accept. 

 
When the needs have actually been collected the following action includes 

evaluating as well as refining them to develop an evaluation design that designers 

can translate plus usage to make as well as carry out the system. This phase 

requires determining any kind of disparities, unpredictability or spaces in the 

demands coupled with resolving them via conversations with the customer as 

well as various other stakeholders. 

 
A need is a declaration that explains the anticipated capability of the suggested 

system either clearly or unconditionally. Demands can be classified as practical, 

which explains what the system have to do, or non-functional, which defines 

exactly how well the system ought to execute. 

 
Requirements can be divided into two major categories: 

1. Functional Requirements. 

2. Non-Functional Requirements. 
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4.2 Functional Requirements 

 
Functional requirements are specific actions and behaviors that a software 

system mustperform to meet users' needs. They define the system's capabilities 

and features and areexpressed in terms of input, processing, and output. To 

ensure accuracy, they must be defined clearly and validated. The functional 

requirements for the proposed system areas follows: 

 
• Data Partitioning: Our dataset is characterized by its balanced 

composition, comprising 10,000 rows for each class under consideration. 

The dataset is partitioned into distinct subsets: a training set 

encompassing 70% of the data, and separate validation and testing sets 

each comprising 15% of the data. 

 
• Data Preparation: In data preparation, the CHB MIT scalp EEG 

database in 'edf' format provides voltage levels from EEG electrodes, 

supported with information on epileptic periods. Separate files for ictal 

and preictal states aid in labeling and flexibility for researchers. Only 23 

essential channels retained. Final preprocessing involves labeling ictal 

and preictal states as 1 and 0, respectively. 

 
• Feature Extraction: Feature extraction in EEG-based seizure prediction 

utilizes CNN and LSTM models to capture spatial and temporal patterns. 

CNNs identify spatial patterns, while LSTMs capture temporal 

dependencies. Outputs from these models are combined to create a 

comprehensive feature set. Additionally, time-domain and frequency- 

domain features like mean, variance, PSD, and relative power are 

computed. 

 
• Classification: The system must be able to accurately predict the onset 

of seizure into one of the two classes: Preictal and Interictal. 

 
• Result Visualization: The system must visualize the classification 

results in anintuitive and user-friendly manner. 
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4.3 Non-Functional Requirements 

 
Non-functional requirements are the criteria that define the system's 

performance, quality, and behavior, rather than its specific functionality. These 

requirements describethe system's characteristics, such as its reliability, security, 

usability, performance, scalability, and maintainability, and are essential for 

ensuring that the system meets the user’s expectations and needs. The non- 

functional requirements for the proposed systemare as follows: 

 
• Accuracy: The model should demonstrate high accuracy in 

distinguishing between seizures and non-seizures. 

 
• Performance: The model should efficiently and quickly classify the 

seizures. 

 
• Robustness: The system should demonstrate resilience to variations in 

EEG signals and environmental factors, ensuring reliable seizure 

prediction across diverse conditions. 

 
• Scalability: The system should be scalable to accommodate larger 

datasets and potential integration with real-time monitoring systems, 

ensuring its applicability in broader clinical settings and future 

expansions. 

 
4.4 Technical Requirements 

 
The technical requirements for this project are mentioned below: 

1. Hardware Requirements 

2. Software Requirements 

 
4.4.1 Hardware Requirements 

 
• Processor: The processor needs to be fast enough to handle the training of 

a deeplearning model with a large dataset. A high-end processor, such as 

Intel Core i7or i9 or an equivalent AMD processor, is recommended. 

 
• Graphics Processing Unit (GPU): A powerful GPU with high memory 

capacityis required to accelerate the training process of deep learning 

models. NVIDIA GPUs are commonly used for deep learning tasks. 

 
• RAM: Deep learning models require a significant amount of memory to 

hold theweights and biases of the model during training. At least 8 GB of 

RAM is recommended. 
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• Storage: The dataset and model checkpoints can take up a large amount 

of diskspace. It is recommended to have at least 500 GB of storage 

available. 

 
4.4.2 Software Requirements 

 
• Python Programming Language: Python is an interpreted, high-level, 

general-purpose programming language. It is widely used in data science, 

machine learning, and artificial intelligence. It is necessary for the 

implementation of theproject. 

 
• TensorFlow or Keras Deep Learning Libraries: TensorFlow and 

Keras are two popular deep learning libraries. They provide a high-level 

API for buildingand training deep learning models. 

 
• Scikit-Learn Library: Scikit-Learn is a popular machine learning 

library. It provides a wide range of machine learning algorithms and 

tools. Stratified Shuffle Split method is a cross-validation method that is 

used for evaluation of machine learning models. Scikit-Learn library is 

necessary for the implementation of this method and also for accuracy 

calculation metrics. 

 
• MNE Library: MNE-Python is an open-source Python module for 

processing, analysis, and visualization of functional neuroimaging data 

(EEG, MEG, sEEG, ECoG, and fNIRS). 

 
• Numpy and Pandas Libraries: Numpy and Pandas are popular libraries 

for datamanipulation. They provide tools for handling arrays, matrices, 

and dataframes.They are necessary for the implementation of the project. 

 
• SciPy: SciPy provides algorithms for optimization, integration, 

interpolation, eigenvalue problems, algebraic equations, differential 

equations, statistics and many other classes of problems. The algorithms 

and data structures provided by SciPy are broadly applicable across 

domains. 

 
• Matplotlib: Matplotlib is a Python plotting library used to create static, 

animated,and interactive visualizations in Python. It can be used for a 

variety of tasks such as creating line plots, scatter plots, bar plots, 

histograms, and more. Matplotlib provides a wide range of customization 

options, including the ability to add titles,labels, and annotations to your 

plots. 
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Chapter 5 Modules Division 

 
5.1 Feature Extraction and Selection 

 
In this phase, feature extraction is achieved through the utilization of CNN-

LSTM architectures, capable of capturing intricate patterns and dependencies 

within the data. These models excel in extracting features, providing a 

comprehensive representation of the dataset. It's imperative to ensure efficient 

storage of these extracted features to facilitate subsequent modeling processes 

effectively. Furthermore, if deemed necessary, feature selection techniques are 

applied to discern the most pertinent features, optimizing the dataset for 

improved model performance. Evaluating the impact of feature selection on 

model performance offers critical insights into the efficacy of the chosen 

features, guiding further iterations and refinements in the modeling approach. 

 

5.2 Seizure Prediction 

 
One of the main tasks in this module division is to classify EEG results as either 

suggestive of a seizure or not. Three base machine learning models, Random 

Forest, Support Vector Machine, and XGBoost are used to accomplish this. By 

combining these models, an ensemble model is produced that improves the 

robustness and accuracy of the seizure detection procedure. Through the analysis 

and categorization of the EEG results, each base model aids in the decision- 

making process. In order to run the ensemble model and provide predictions 

based on fresh EEG readings obtained from the EEG Data Input Module, the 

module uses an inference engine. By ensuring a thorough and dependable 

classification of seizures, this ensemble approach improves the efficacy of the 

seizure detection system. 
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5.3 Model Evaluation 

 
Assessing the performance of the ensemble classifier using various metrics such 

as accuracy, precision, recall, F1-score, and area under the ROC curve. 

 

Figure 5.1: Model Evaluation Metrics 

 
5.4 Output 

 
This module displays the model's result, which is a prediction of an upcoming 

epileptic episode. It displays the findings of the seizure detection process to the 

user in text format. The categorization is binary, with two possible outcomes: 

"Preictal" indicating that the patient is expected to have a seizure and "Non 

preictal" indicating that no seizure is anticipated. The output shows these 

categorization findings on the screen, indicating whether a seizure is expected or 

not. Furthermore, the model ensures that the output is continuously updated in 

real time as the system processes and classifies fresh EEG values, allowing for 

rapid and responsive seizure risk monitoring. This model can be utilized by 

healthcare professionals to diagnose and treat patients accordingly. 
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Chapter 6 Techniques 

 
6.1 Random Forest Algorithm 

 
Random Forest is a versatile and powerful ensemble learning method widely 

used for both classification and regression tasks in machine learning. It operates 

by constructing multiple decision trees during training and outputting the mode 

of the classes for classification tasks or the mean prediction for regression tasks. 

It consists of a collection of decision trees, each trained on a random subset of 

the training data and a random subset of the features. This randomness and 

diversity among the trees contribute to the robustness and effectiveness of the 

Random Forest algorithm. 

 

 

 
Figure 6.1: Random Forest 

 
Random Forests have several key components: 

 
• Decision Trees: The basic building blocks of Random Forests are 

decision trees, which make binary decisions at each node based on feature 

values. 

 
• Voting Mechanism: In classification tasks, Random Forest combines the 

predictions of multiple decision trees through a voting mechanism, where 
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the class with the most votes becomes the final prediction. In regression 

tasks, it averages the predictions of individual trees. 

 
• Random Feature Selection: At each node of the decision tree, 

Random Forest selects a random subset of features to consider for 

splitting, which helps to decorrelate the trees and improve 

generalization. 

6.1.1 Importance of Random Forest Algorithm 

 
Random Forests offer several advantages that make them important in various 

machine learning tasks: 

 
• High Accuracy: Random Forests typically provide high accuracy in both 

classification and regression tasks, making them suitable for a wide range 

of applications. 

 
• Robustness to Overfitting: The ensemble nature of Random Forests 

helps to mitigate overfitting, making them less sensitive to noise and 

outliers in the data compared to individual decision trees. 

 
• Feature Importance: Random Forests can provide insights into feature 

importance, helping users understand which features are most relevant 

for prediction. 

 

 
6.1.2 Limitations of Random Forest Algorithm 

 
Despite their many advantages, Random Forests also have limitations that 

should be considered: 

 
• Interpretability: Random Forests can be challenging to interpret, 

especially when dealing with a large number of trees and features. 

Understanding how individual trees contribute to the overall prediction 

can be complex. 

 
• Computational Complexity: Training a Random Forest model can be 

computationally expensive, especially with a large number of trees and 

features. Additionally, hyperparameter tuning may require extensive 

computational resources. 

 
• Biased Toward Majority Classes: In classification tasks with 

imbalanced class distributions, Random Forests may be biased toward 

the majority classes, leading to suboptimal performance for minority 

classes, organizations or individuals with limited resources. 
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6.2 Support Vector Machine 

 
Support Vector Machine (SVM) is a powerful supervised learning algorithm 

used for classification, regression, and outlier detection tasks. It works by finding 

the hyperplane that best separates the classes in the feature space while 

maximizing the margin between the classes. SVMs are particularly effective in 

high-dimensional spaces and are widely used in applications such as image 

classification, text classification, and bioinformatics. 
 

 
 

 

 
Figure 6.2: Kernel Trick for Support Vector Machine 

 
SVM have several key components: 

 
• Hyperplane: In SVM, the hyperplane is the decision boundary that 

separates the classes in the feature space. For binary classification, the 

hyperplane is defined as the line that maximizes the margin between the 

closest data points of different classes, known as support vectors. 

 
• Kernel Trick: SVM can efficiently handle nonlinear classification tasks 

by mapping the input features into a higher-dimensional space using a 

kernel function. This allows SVM to find a linear decision boundary in 

the transformed feature space, even if the original feature space is 

nonlinear. 

 

• Support Vectors: Support vectors are the data points that lie closest to 

the decision boundary and determine the position of the hyperplane. 

These are the critical points that influence the margin and the decision 

boundary. 
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6.2.1 Importance of Support Vector Machine 

 
Support Vector Machines offer several advantages that make them important in 

various machine learning tasks: 

 
• Effective in High-Dimensional Spaces: SVMs perform well in high- 

dimensional spaces, making them suitable for tasks with a large number 

of features, such as text classification and image recognition. 

 
• Robustness to Overfitting: SVMs are less prone to overfitting compared 

to other classifiers, such as decision trees, especially when using a proper 

regularization parameter. 

 
• Versatility: SVMs can be used for both linear and nonlinear 

classification tasks by choosing an appropriate kernel function. This 

flexibility allows SVMs to handle a wide range of data types and 

distributions. 

 
6.2.2 Limitations of Support Vector Machine 

 
Despite their advantages, Support Vector Machines also have limitations that 

should be considered: 

 
• Sensitivity to Parameter Tuning: SVM performance is sensitive to the 

choice of hyperparameters, such as the regularization parameter (C) and 

the choice of kernel function. Proper parameter tuning is essential for 

achieving optimal performance. 

 
•  Limited Interpretability in Nonlinear Cases: SVMs with nonlinear 

kernels can produce complex decision boundaries that are difficult to 

interpret, especially in high-dimensional feature spaces. Understanding 

the model's behavior may require additional techniques, such as feature 

importance analysis. 

 
• Difficulty Handling Large Datasets: SVM training time increases 

significantly with the size of the dataset, making them less suitable for 

very large datasets compared to other algorithms such as gradient 

boosting machines. 

 

6.3 XGBoost Algorithm 

 
XGBoost (Extreme Gradient Boosting) is a scalable and efficient machine 

learning algorithm used for supervised learning tasks, including classification, 
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regression, and ranking problems. It belongs to the family of gradient boosting 

algorithms and has gained widespread popularity for its performance and 

flexibility in various machine learning competitions and real-world applications. 

XGBoost builds a predictive model by combining the predictions of multiple 

weak learners, typically decision trees, in an additive manner. It iteratively 

improves the model's performance by minimizing a loss function and adding new 

trees that complement the existing ones. 

 

 

 

 
Figure 6.3: Gradient Boosting process used in XGBoost 

 
Key components of XGBoost include: 

 

• Weak Learners: XGBoost uses decision trees as weak learners by 

default, although it can also incorporate other types of base learners. Each 

tree is trained to predict the residuals (errors) of the previous trees, 

allowing XGBoost to correct mistakes made by earlier trees. 

 
•  Gradient Boosting: XGBoost employs a gradient boosting framework, 

where each new tree is trained to minimize the gradient of the loss 

function with respect to the model's predictions. This approach enables 

XGBoost to effectively handle complex nonlinear relationships in the 

data. 

 
• Regularization: XGBoost includes several regularization techniques to 

prevent overfitting and improve generalization performance. These 

techniques include shrinkage (learning rate), tree depth regularization, 

and feature subsampling. 
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6.3.1 Importance of XGBoost Algorithm 

 
XGBoost offers several advantages that make it an important tool in machine 

learning: 

 
• High Performance: XGBoost consistently achieves state-of-the-art 

performance on a wide range of machine learning tasks, including 

classification, regression, and ranking. Its ensemble approach and 

regularization techniques help prevent overfitting and improve predictive 

accuracy. 

 
• Flexibility: XGBoost supports various objective functions and evaluation 

metrics, allowing users to customize the model's behavior based on the 

specific task and dataset. It can handle both categorical and numerical 

features and is robust to missing data. 

 

• Interpretability: Despite its complexity, XGBoost provides insights into 

feature importance and model behavior through built-in visualization 

tools and feature importance scores. This transparency helps users 

understand the model's decision-making process and identify key factors 

driving predictions. 

 

6.3.2 Limitations of XGBoost Algorithm 

 
Despite its many advantages, XGBoost also has some limitations to consider: 

 
•  Hyperparameter Tuning: XGBoost requires careful tuning of 

hyperparameters such as tree depth, learning rate, and regularization 

parameters to achieve optimal performance. 

 
• Computational Resources: Training XGBoost models can be resource- 

intensive, particularly when using large ensembles of trees or complex 

feature engineering. It may require significant computational resources 

and memory, especially for distributed training on clusters. 

 

• Overfitting: Like other ensemble learning methods, XGBoost is 

susceptible to overfitting, especially when using large ensembles of trees 

or high-dimensional feature spaces. 
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6.4 Majority Voting Algorithm 

 
Majority Voting Algorithm is a simple yet effective ensemble learning method. 

Ensemble learning involves combining the predictions of multiple models to create 

a more robust and reliable final prediction. In Majority Voting, a group of diverse 

machine learning models is trained on the same dataset, each employing unique 

algorithms or techniques. When it's time to make a prediction, each model casts its 

vote for the outcome, and the final prediction is determined by the majority's 

decision. 
 

Figure 6.4: Majority Voting 

 

 

6.4.1 Importance of Majority Voting Algorithm 

 

The Majority Voting Algorithm offers several benefits and finds applications in 

various domains: 

• The primary advantage of the Majority Voting Algorithm is its ability to 

improve prediction accuracy. Combining the predictions from multiple models 

leverages the strengths and compensates for the weaknesses of individual 

models. The aggregated prediction tends to be more reliable and robust, 

resulting in enhanced overall accuracy. 

• Different machine learning models may have inherent biases due to their 

design or training data. By utilizing the Majority Voting Algorithm, these 

biases can be mitigated or even eliminated to a certain extent. The algorithm 

ensures that predictions are based on a diverse set of models, reducing the 

influence of individual biases and promoting fair and unbiased decision- 

making. 

• The Majority Voting Algorithm enhances the robustness of machine learning 

systems. It reduces the risk of making incorrect predictions caused by the 

instability or limitations of individual models. By combining predictions, the 

algorithm creates a more stable and reliable decision-making framework that 

can handle diverse data patterns and adapt to different scenarios. 

• In situations where individual models produce conflicting predictions or have 
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uncertainties, the Majority Voting Algorithm provides a mechanism to handle 

such uncertainties effectively. It considers the collective opinion of multiple 

models, which helps in making more informed decisions and reducing the 

impact of individual model variations or outliers. 

• The Majority Voting Algorithm is flexible and compatible with various 

machine learning models and algorithms. It can be applied to both 

classification and regression problems, accommodating a wide range of 

applications. This versatility makes it suitable for diverse domains and allows 

integration with existing machine-learning pipelines. 

 

6.4.2 Limitations of Majority Voting Algorithm 

 

The majority voting algorithm, which combines the predictions of multiple base 

classifiers to make a final decision, has several disadvantages: 

 

• Sensitivity to Imbalanced Data: Majority voting can be biased towards the 

majority class in imbalanced datasets. If one class heavily outweighs the 

others, the majority voting scheme may tend to predict that class more 

frequently, leading to poor performance on minority classes. 

 

• Equal Weighting of Classifiers: In majority voting, each base classifier is 

typically given equal weight regardless of its individual performance. This 

can be problematic if some classifiers are consistently more accurate or 

reliable than others. In such cases, the influence of weaker classifiers may 

negatively impact the final decision. 

 

• Inefficiency with Large Number of Classes: As the number of classes 

increases, the probability of ties in the voting process also increases. 

Resolving ties can become computationally expensive and may require 

additional measures to break ties effectively. 

 

• Lack of Probabilistic Interpretation: Majority voting does not provide a 

probabilistic interpretation of the final decision. Instead, it simply outputs the 

most frequent class label without indicating the confidence or uncertainty 

associated with the prediction. This lack of probabilistic information may be 

crucial in certain applications where understanding the confidence level of 

predictions is essential. 
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Chapter 7 UML Diagrams 

 
7.1 Use Case Diagram 

 
A use case diagram is used to represent the dynamic behavior of a system. It 

encapsulates the system's functionality by incorporating use cases, actors, and 

their relationships. It models the tasks, services, and functions required by a 

system/subsystem of an application. It depicts the high-level functionality of a 

system and also tells how the user handles a system. 

 
7.1.1 Purpose of Use Case Diagram 

 
The main purpose of a use case diagram is to portray the dynamic aspect of a 

system. Itaccumulates the system's requirement, which includes both internal as 

well as external influences. It invokes persons, use cases, and several things that 

invoke the actors and elements accountable for the implementation of use case 

diagrams. It represents how anentity from the external environment can interact 

with a part of the system. 

 
Following are the purposes of a use case diagram given below: 

• It gathers the system's needs. 

• It depicts the external view of the system. 

• It represents the interaction between the actors. 
 

 
 

 

Figure 7.1: Use Case Diagram 
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7.2 Class Diagram 

 
Class diagram is a static diagram. It represents the static view of an application. 

Class diagram is not only used for visualizing, describing, and documenting 

different aspectsof a system but also for constructing executable code of the 

software application. 

 
Class diagram describes the attributes and operations of a class and also the 

constraintsimposed on the system. The class diagrams are widely used in the 

modelling of object-oriented systems because they are the only UML diagrams, 

which can be mapped directly with languages. 

 
Class diagrams can also include other elements, such as interfaces, abstract 

classes, andpackages, which help to further organize and clarify the relationships 

between classes in a software system. 

 
7.2.1 Purpose of Class Diagram 

 
The purpose of class diagram is to model the static view of an application. Class 

diagrams are the only diagrams which can be directly mapped with object- 

oriented languages and thus widely used at the time of construction. 

UML diagrams like activity diagram, sequence diagram can only give the 

sequence flowof the application, however class diagram is a bit different. It is the 

most popular UMLdiagram in the coder community. 

 
The Purpose of the class diagram can be summarized as: 

 
1. Describe responsibilities of a system. 

2. Base for component and deployment diagrams. 

3. Forward and reverse engineering. 
 

 
 

 
Figure 7.2: Class Diagram 
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7.3 Sequence Diagram 

 
Sequence diagram is an event diagram. It reveals the circulation of messages in 

between various things or elements with time plus is commonly made use of to 

design the habits of a solitary usage instance. They work for developing as well 

as connecting the circulation of messages in between items in a software program 

system plus for recognizing possible issues or traffic jams in the system's actions. 

 
In a series diagram the items are stood for as upright lifelines which diminish the 

size of the representation. Messages in between things are stood for as 

arrowheads that attach the lifelines with the message name as well as 

specifications composed over the arrowhead. 

 
The order of the messages is revealed by their placement on the representation, 

with earlier messages on top plus later on messages near the bottom. Time is 

revealed horizontally with the left side of the representation standing for the 

beginning of the series plus the ideal side standing for the end. 

 

7.3.1 Purpose of Sequence Diagram 

 
The purpose of a sequence diagram is to visualize the interactions between 

objects in asoftware system over time. It shows the order in which messages are 

exchanged betweenobjects or components in a system, and can be used to model 

the behavior of a single use case or scenario. 

 
Following are the purposes of a sequence diagram given below: 

• Designing and modelling the behavior of a software system. 

• Communicating system behavior to stakeholders. 

• Testing and debugging. 

 

 
 

Figure 7.3: Sequence Diagram 
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7.4 Activity Diagram 

 
Activity diagrams are a type of diagram used in software engineering and 

business process modeling to visualize the flow of activities involved in a system 

or process. These representations are for analyzing, creating, and recording 

processes as well as for communicating complex procedures to stakeholders. 

 

The task templates are composed of nodes and edges. Nodes may stand for 

activities, decisions or other events in the system or process being modeled while 

edges represent the control flow between these nodes. 

 

Tasks can be represented with different kinds of nodes, such as: 

 
 

1. Initial node: Represents a starting point of the process or a system. 

2. Activity node: Represents an activity or work that is performed as part of 

the process. 

3. Decision node: Represents a place where one follows another depending 

on certain condition(s) only. 

4. Join node: One place in which more than one path in the process come 

together again into a single path 

5. Final node: Represents end point for either system or process 

 
 

In task diagrams edges can be object flows or control flows. Control flow denotes 

how control moves between nodes while object flows denote how data or things 

move from one node to another 

 

7.4.1 Purpose of Activity Diagram 

 
The purpose of an activity diagram is to provide a visual representation of a 

system or process, making it easier to understand and analyze. 

 
Here are some key points about the purpose of activity diagrams: 

• Visualizing complex processes and workflows 

• Improving communication and collaboration among stakeholders 

• Analyzing the efficiency of a process and identifying potential 

bottlenecks orareas for improvement 

• Designing new systems or processes by testing different scenarios 

andidentifying the best approach 
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• Documenting existing systems or processes to make it easier to 

maintain andupdate them over time. 
 

 
 

Figure 7.4: Activity Diagram 
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Chapter 8 Dataset Details 

 
8.1 CHBMIT Dataset 

 
The EEG data for training models in this study was obtained from the CHB-MIT 

Database. One of the most popular freely available EEG datasets for seizure 

detection and prediction is the CHB-MIT dataset. The CHB-MIT dataset consists 

of 22 pediatric patients' continuous scalp EEG recordings arranged into 23 cases. 

All signals are recorded at a resolution of 16 bits at 256 samples per second and 

the majority of the files contain recordings of 23 EEG channels. Annotations 

detailing the start and end of each seizure are included in the dataset. The 

prediction task typically views the period of time preceding each onset as the 

preictal stage. The Electroencephalography (EEG) dataset can be accessed by 

navigating through the directory. The dataset consists of raw EEG recordings 

saved in EDF format. 

First, preprocessing involved extracting data from the CHB-MIT Scalp EEG 

Database, which was made available via PhysioNet in the European data format 

edf. Compatibility and accessibility are guaranteed by this format, which also 

includes metadata regarding epileptic periods in the dataset. The edf files were 

carefully used to extract the voltage levels from the EEG electrodes, which served 

as the basis for further preprocessing procedures. The process of annotating and 

classifying ictal and preictal states was carried out using the comprehensive data 

included in the edf files, guaranteeing that both states were fairly represented. To 

enable accurate labelling and further analysis, separate files were kept for the 

ictal and preictal periods. 

During the last stage of preprocessing, discrete states were defined for further 

analysis by carefully labelling data points that represented preictal and non pre 

ictal states with '0' and '1' respectively. 

 

Figure 8.1: Distribution of Preictal and Non-Preictal classes 
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8.2 Dataset Splitting 

 
Training Set (70%): Enriched with a diverse range of EEG patterns, including 

both normal and seizure activities, the training set forms the foundation for the 

model to learn and generalize. 

Validation Set (15%): This set acts as an intermediate checkpoint during the 

training process. Models are evaluated on this dataset to gauge their performance 

and make adjustments, preventing overfitting to the training data. 

Testing Set (15%): Kept entirely separate until the model is fully trained, the 

testing set serves as an unbiased benchmark to assess the model's real-world 

predictive capabilities. It provides insights into the model's ability to generalize to 

unseen data, especially concerning seizure detection. 

 

 

 

 
 

Figure 8.2: Dataset Splitting 
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Chapter 9 Codes 

 
9.1 Code for Data Acquisition 

LOADING THE DATASET 

#In[1]: 

import mne 

import os 

patient_folder = 'C:/Users/Admin/Desktop/Major Project/Final-Year-Project- 

ML/Dataset/'combined_fif_path = os.path.join(patient_folder, 

'Combined_eeg.fif') 

if os.path.exists(combined_fif_path): 

try: 

raw_data_combined = mne.io.read_raw_fif(combined_fif_path, 
preload=True) 

print("Combined data loaded into memory successfully.") 

 

except Exception as e: 

print(f"Error loading combined file: {e}") 

else: 

print(f"Combined file not found at: {combined_fif_path}. Please check the 

file path.") 

 
 

#Out[1]: 

 

 

#In[2]: 

 
info_combined = raw_data_combined.info 

print(info_combined) 

 

raw_data_combined.plot(n_channels=30, duration=20, scalings={'eeg': 50e-6}) 

plt.show() 
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#Out[2]: 
 

#In[3]: 

 

raw_data_combined.plot_psd(fmax=50, average=True) 

plt.show() 

 

#Out[3]: 
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#In[4]: 

 
# Mark channels as bad 

raw_data_combined.info['bads'] = ['SPO2', 'HR', 'MK'] 

 

# Plot PSD 

raw_data_combined.plot_psd(fmax=50, average=True) 

plt.show() 

 
#Out[4]: 

 

 

 

 

9.2 Code for Feature Extraction 

#In[5]: 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from keras.models import Sequential 

from keras.layers import Conv1D, MaxPooling1D, LSTM, Dense, Flatten 

 
# Load the CSV dataset 

dataset = pd.read_csv('D:/Project/new.csv') 

X = dataset.iloc[:, :-1].values # Features 

y = dataset.iloc[:, -1].values # Outcome 

 
# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 
# Standardize the features 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 
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# Reshape the features for CNN input (assuming each sample has 23 channels) 

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) 

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) 

 
# Define the CNN-LSTM model 

model = Sequential() 

 
# Convolutional layers 

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', 

input_shape=(X_train.shape[1], 1))) 

model.add(MaxPooling1D(pool_size=2)) 

model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) 

model.add(MaxPooling1D(pool_size=2)) 

 

# LSTM layer 

model.add(LSTM(units=50, return_sequences=True)) 

model.add(LSTM(units=50)) 

 
# Dense layers 

model.add(Dense(units=64, activation='relu')) 

model.add(Dense(units=1, activation='sigmoid')) 

 
# Compile the model 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

 
# Train the model 

model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, 

y_test)) 

 
# Evaluate the model 

loss, accuracy = model.evaluate(X_test, y_test) 

print(f'Test Loss: {loss}, Test Accuracy: {accuracy}') 

 
# Extract features using the trained model 

feature_extractor = Sequential(model.layers[:-1]) # Exclude the output layer 

X_train_features = feature_extractor.predict(X_train) 

X_test_features = feature_extractor.predict(X_test) 

 
# Now you can use the extracted features for further analysis or classification tasks 

#Out[5]: 
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9.3 Code for Model Training and Evaluation 
 

#In[6]: 
 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.svm import SVC 

from xgboost import XGBClassifier 

from sklearn.feature_selection import SelectFromModel 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

# Load the CSV dataset 

dataset = pd.read_csv('D:/Project/all.csv') 

# Handling missing values 

dataset.dropna(inplace=True) # Drop rows with missing values 

# Assuming 'data.csv' contains your dataset 

X = dataset.iloc[:, :-1].values # Features 

y = dataset.iloc[:, -1].values # Outcome 

# Split the dataset into training, validation, and testing sets 

X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, 

random_state=42) 

X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, 

random_state=42) 

# Feature selection using Random Forest Feature Importance 

feat_selector = SelectFromModel(RandomForestClassifier(n_estimators=100, 

random_state=42)) 

X_train_selected = feat_selector.fit_transform(X_train, y_train) 

X_val_selected = feat_selector.transform(X_val) 

X_test_selected = feat_selector.transform(X_test) 

# Individual classifiers 

rf_clf = RandomForestClassifier(n_estimators=100, random_state=42) 

svm_clf = SVC(kernel='rbf', gamma='scale') 

xgb_clf = XGBClassifier() 

# Train the models 

rf_clf.fit(X_train_selected, y_train) 

svm_clf.fit(X_train_selected, y_train) 

xgb_clf.fit(X_train_selected, y_train) 

# Predictions on validation set 

rf_val_pred = rf_clf.predict(X_val_selected) 

svm_val_pred = svm_clf.predict(X_val_selected) 

xgb_val_pred = xgb_clf.predict(X_val_selected) 

# Combine predictions using weighted average voting 

ensemble_preds_val = np.array([rf_val_pred, svm_val_pred, xgb_val_pred]) 

# Define weights for each classifier 
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weights = np.array([0.4, 0.3, 0.5]) # Example weights, you can adjust as needed 

weights = weights.reshape(-1, 1) # Reshape weights to match 

ensemble_preds_val shape 

# Calculate weighted average for validation set 

weighted_sum_val = np.sum(ensemble_preds_val * weights, axis=0) 

# Round the weighted sum to the nearest integer to get the majority vote 

majority_vote_val = np.round(weighted_sum_val).astype(int) 

# Calculate accuracy on validation set 

ensemble_accuracy_val = accuracy_score(y_val, majority_vote_val) 

print(f'Ensemble Accuracy on Validation Set: {ensemble_accuracy_val}') 

# Predictions on testing set 

rf_test_pred = rf_clf.predict(X_test_selected) 

svm_test_pred = svm_clf.predict(X_test_selected) 

xgb_test_pred = xgb_clf.predict(X_test_selected) 

# Combine predictions using weighted average voting for testing set 

ensemble_preds_test = np.array([rf_test_pred, svm_test_pred, xgb_test_pred]) 

# Calculate weighted average for testing set 

weighted_sum_test = np.sum(ensemble_preds_test * weights, axis=0) 

# Round the weighted sum to the nearest integer to get the majority vote 

majority_vote_test = np.round(weighted_sum_test).astype(int) 

# Calculate accuracy on testing set 

ensemble_accuracy_test = accuracy_score(y_test, majority_vote_test) 

print(f'Ensemble Accuracy on Testing Set: {ensemble_accuracy_test}') 

# Classification report and confusion matrix for ensemble classifier on testing set 

print("Ensemble Classifier Metrics on Testing Set:") 

print(classification_report(y_test, majority_vote_test)) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, majority_vote_test)) 

 
 

#Out[6]: 
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9.4   Code for Web Application 
 

#In[15]: 

import streamlit as st 

import pickle 

import numpy as np 

model = pickle.load(open('EE_model.pkl', 'rb')) 

def risk_potability_prediction(input_data): 

input_as_array = np.array(input_data).reshape(1,-1) 

prediction = model.predict(input_as_array)[0] 

return prediction 

def main(): 

st.set_page_config(page_title='EEG - Based Epileptic Seizure Prediction', 

page_icon=':potable_water:') 

st.title('EEG - Based Epileptic Seizure Prediction') 

st.write('This app predicts Epileptic Seizure Prediction') 

st.subheader('Epileptic Seizure Prediction') 

mar = st.number_input('# FP1-F7', format="%.7f", min_value=0.0, 

max_value=100.0, value=7.0, step=0.1) 

deb = st.number_input('C3-P3', format="%.7f", min_value=0.0, value=50.0, 

step=1.0) 

dis = st.number_input('P3-O1', format="%.7f", min_value=0.0, value=50.0, 

step=1.0) 

gen = st.number_input('P4-O2', format="%.7f", min_value=-0.0000303, 

value=50.0, step=1.0) 

crs = st.number_input('P7-O1', format="%.7f", min_value=0.0, 

max_value=1000.0, step=1.0) 

gdp = st.number_input('P7-T7', format="%.7f", min_value=-0.0000303, 

value=50.0, step=1.0) 

pqg = st.number_input('T8-P8-0', format="%.7f", min_value=0.0, value=50.0, 

step=1.0) 

pqg1 = st.number_input('T8-P8-1', format="%.7f", min_value=0.0, value=50.0, 

step=1.0) 

try: 

prediction = risk_potability_prediction(input_data) 

if prediction == 0: 

st.error('The Patient is affected by Epileptic Seizure.') 

else: 

st.success('The Patient is not affected by Epileptic Seizure.') 

except Exception as e: 

st.error(f"An error occurred: {str(e)}") 

st.write('---')
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if  name == ' main ': 

main() 

 

#Out[16]: 
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Chapter 10 Experimental Analysis and Results 

 
10.1 Evaluation Metrics 

 
#In[7]: 

 

print("Ensemble Classifier Metrics on Validation Set:") 

print(classification_report(y_val, majority_vote_val)) 

print("Confusion Matrix:") 

print(confusion_matrix(y_val, majority_vote_val)) 

 
#Out[7]: 

 

 

 
#In[8]: 

 
from sklearn.metrics import accuracy_score, precision_score, recall_score, 

f1_score, confusion_matrix 

# Accuracy 

accuracy = accuracy_score(y_test, majority_vote_test) 

print(f'Accuracy: {accuracy}') 

# Precision 

precision = precision_score(y_test, majority_vote_test) 

print(f'Precision: {precision}') 

# Recall (Sensitivity) 

recall = recall_score(y_test, majority_vote_test) 

print(f'Recall: {recall}') 

# F1 Score 

f1 = f1_score(y_test, majority_vote_test) 

print(f'F1 Score: {f1}') 

# Confusion Matrix 

conf_matrix = confusion_matrix(y_test, majority_vote_test) 

print('Confusion Matrix:') 
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print(conf_matrix) 

 

#Out[8]: 

 

 

 

#In[9]: 

 

# Specificity 

specificity = conf_matrix[0, 0] / (conf_matrix[0, 0] + conf_matrix[0, 1]) 

print(f'Specificity: {specificity}') 

 
 

#Out[9]: 

 

 

 
#In[10]: 

 

# False Positive Rate (FPR) 

fpr = conf_matrix[0, 1] / (conf_matrix[0, 1] + conf_matrix[0, 0]) 

print(f'False Positive Rate (FPR): {fpr}') 

 
 

#Out[10]: 

 

 
#In[11]: 

 

# False Negative Rate (FNR) 

fnr = conf_matrix[1, 0] / (conf_matrix[1, 0] + conf_matrix[1, 1]) 

print(f'False Negative Rate (FNR): {fnr}') 

 
 

#Out[11]: 
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#In[12]: 

 
from sklearn.metrics import roc_curve, auc 

import matplotlib.pyplot as plt 

 
# Compute ROC curve and ROC area for each class 

fpr, tpr, _ = roc_curve(y_test, majority_vote_test) 

roc_auc = auc(fpr, tpr) 

 

# Plot ROC curve 

plt.figure() 

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % 

roc_auc) 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver Operating Characteristic (ROC) Curve') 

plt.legend(loc='lower right') 

plt.show() 

 
# Print AUC-ROC score 

print(f'AUC-ROC Score: {roc_auc}') 

 
 

#Out[12]: 
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#In[13]: 

 
from sklearn.metrics import precision_recall_curve, average_precision_score 

# Compute precision-recall curve and AP score for each class 

precision, recall, _ = precision_recall_curve(y_test, majority_vote_test) 

ap = average_precision_score(y_test, majority_vote_test) 

# Plot precision-recall curve 

plt.figure() 

plt.step(recall, precision, color='b', alpha=0.2, where='post') 

plt.fill_between(recall, precision, step='post', alpha=0.2, color='b') 

plt.xlabel('Recall') 

plt.ylabel('Precision') 

plt.ylim([0.0, 1.05]) 

plt.xlim([0.0, 1.0]) 

plt.title('Precision-Recall Curve') 

plt.show() 

# Print Average Precision (AP) score 

print(f'Average Precision (AP): {ap}') 

 

#Out[13]: 
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#In[14]: 

 
import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.metrics import confusion_matrix 

 
# Compute confusion matrix 

conf_matrix = confusion_matrix(y_test, majority_vote_test) 

 
# Plot confusion matrix 

plt.figure(figsize=(8, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted Labels') 

plt.ylabel('True Labels') 

plt.show() 

 

#Out[14]: 
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Chapter 11 Installations 

 
11.1 Introduction 

 
The implementation phase is a crucial stage in the software development life 

cycle. Thisphase involves the actual implementation of the project plan that was 

developed during the previous stages, such as the requirement gathering and 

analysis phase and the designphase. In other words, it is the phase where the 

project plan is put into action. 

 
The execution stage usually begins when a substantial part of the code for the 

program has actually been composed. Now the group in charge of execution 

concentrates on equating the needs defined in the need stage right into a sensible 

framework that can be applied in a program’s language. This includes creating 

code together with creating formulas that fulfill the requirements detailed in the 

job strategy. 

 
In our task, we have actually chosen to take advantage of both Jupyter Notebook 

as well as Spyder as our Integrated Development Environments (IDEs) for 

coding jobs. Jupyter Notebook supplies an easy-to-use user interface for code 

make-up as well as implementation, promoting smooth partnership within our 

group. Additionally, Spyder an open-source IDE customized for clinical shows 

in Python, enhances our toolkit with its effective functions as well as abilities. 

By using both Jupyter Notebook as well as Spyder we guarantee adaptability 

together with effectiveness in our growth operations encouraging our group to 

take on varied difficulties easily. 

 

11.2 Tools Used 

 
11.2.1 Jupyter Notebook 

 
Our Integrated Development Environment (IDE) was Jupyter Notebook. A web- 

based environment used frequently in data science and machine learning projects 

is Jupyter Notebook. With its help, anyone can create and share documents with 

code samples, formulas, illustrations, and explanatory text. Moreover, Python, 

R, Julia, and other programming languages are supported by Jupyter Notebook. 

The interface isuser-friendly and features a web browser-based editor that makes 

it easy to write and execute code. The notebook layout consists of cells that hold 

either code or text allowing for an organization of code, into sections. Jupyter 

Notebook includes integrated features for visualizing data through tools like 

Matplotlib and Seaborn simplifying the creation of charts and graphs, within the 

notebook itself. 
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11.2.2 Spyder 

 
Spyder is an environment that's available, for free and open source. It is created 

in Python by scientists, engineers and data analysts for their use. The platform 

offers a blend of editing, analysis, debugging and profiling tools similar to those 

found in development software. Additionally, it provides features for data 

exploration, interactive execution, deep inspection and visually appealing data 

visualization. Making it a versatile tool, for work. 

 

11.3 Libraries Used 

 
11.3.1 Numpy 

 
NumPy, short, for python is a Python library used for computing and handling 

arrays with dimensions or just one dimension. It's an open-source Python library 

known as Numerical Python. It is designed to perform complex mathematical, 

image processing, quantum computing, and statistical operations, etc., on 

matrices and multidimensional arrays. 

 

11.3.2 Pandas 

 
Pandas is a Python library used for working with data sets. It has functions for 

analyzing, cleaning, exploring, and manipulating data. Pandas allows us to 

analyze big data and make conclusions based on statistical theories. Pandas can 

clean messy data sets, and make them readable and relevant. Relevant data is 

very important in data science. 

 
11.3.3 Matplotlib 

 
Matplotlib is an amazing visualization library in Python for 2D plots of arrays. 

Matplotlib is a multi-platform data visualization library built on NumPy arrays 

and designed to work with the broader SciPy stack. Matplotlib is a cross- 

platform, data visualization and graphical plotting library for Python and its 

numerical extension NumPy. As such, it offers a viable open-source alternative 

to MATLAB. Developers can also use matplotlib's APIs (Application 

Programming Interfaces) to embed plots inGUI applications. 

 

11.3.4 Seaborn 

 
Seaborn is a library that uses Matplotlib underneath to plot graphs. It will be used 

to visualize random distributions. Seaborn is a library for making statistical 

graphics in Python. It builds on top of matplotlib and integrates closely with 

pandas data structures.Seaborn helps you explore and understand your data. 
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11.3.5 Sklearn 

 
Scikit-learn (Sklearn) is the most useful and robust library for machine learning 

in Python. It offers a variety of tools, for machine learning and statistical 

analysis, such as classification, regression, clustering and dimensionality 

reduction through an interface, in Python. 

 

11.3.6 Keras 

 
Keras is a high-level neural network API developed in Python that may be used 

with TensorFlow, CNTK, or Theano. It offers a simple interface for creating deep 

learning models and enables quick and easy experimentation. Keras includes a 

large number of pre-built layers, loss functions, and optimizers that may be 

simply coupled to create a custom deep learning model. 

 
11.3.7 Tensorflow 

 
TensorFlow is an open-source software library that supports dataflow and 

differentiable programming across a variety of activities. It is utilized in machine 

and deep learning applications like as neural networks, natural language 

processing, and computer vision. TensorFlow offers both a low-level API for 

creating custom deep learning models and high-level APIs like Keras, which 

make it easier to construct and train deep learning models. 

 

11.3.8 MNE 

 
MNE-Python is an open-source Python package that processes, analyzes, and 

visualizes functional neuroimaging data (EEG, MEG, sEEG, ECoG, and fNIRS). 

Depending on your analytic requirements, you may choose to install a number 

of related or compatible software programs. 
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Chapter 12 Conclusion and Future Score 

12.1 Conclusion 

 
In conclusion, our project has successfully developed an advanced epileptic 

seizure prediction system leveraging ensemble learning techniques applied to 

EEG signals. Utilizing a diverse preprocessed dataset sourced from the CHB- 

MIT database, our approach combined deep learning models such as CNN and 

LSTM with traditional classifiers including XGBoost, SVM, and RF. The 

ensemble classifier exhibited robust performance, achieving notable results on 

both the validation and testing sets: an accuracy of approximately 94.77% on the 

validation set and 94.73% on the testing set. Precision, recall, and F1-scores 

remained consistently high for both seizure and non-seizure instances. This 

model's accurate prediction of impending seizures provides a crucial opportunity 

for timely intervention, empowering individuals with epilepsy to take necessary 

precautions. Through meticulous analysis and evaluation of prediction results, 

we have gained valuable insights into the model's behavior and identified areas 

for potential improvement. Overall, our ensemble-based seizure prediction 

method shows potential for improving the quality of life for people with epilepsy, 

contributing to better healthcare outcomes, and meeting an urgent societal need. 

 

12.2 Future Scope 

 
Within the domain of epilepsy intervention, our ensemble-based epileptic seizure 

prediction model represents a major intermediate step towards further development 

and generalization with yet unexplored barriers and prospects. In hindsight, the 

following areas of potential exploration and improvement can be pinpointed. 

Making the model capable of real-time predictions can be a major step towards 

patient-centric healthcare, as it could be implemented with wearable EEG devices 

and smartphone apps for immediate notification and possible emergency actions for 

the individual. Alternative techniques of feature engineering such as multi-modal 

data integration and individual model formulation also appear to be a possibility. 

Clinical validation and integration with the help of healthcare professionals are 

particularly important for regulatory approval and broader adoption. In addition, a 

commitment to the highest levels of interpretability and explainability of the 

model’s predictions will result in greater transparency and acceptance by clinicians 

and patients. Efforts dedicated to ensuring the model is improved continually and 

expanded globally are critical for the future of epilepsy and health equity 

worldwide. Thus, by supporting various ways to innovate and collaborate, we can 

achieve further progress in epilepsy management and significantly improve the 

lives of those living with epilepsy. 
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