
i

EEG-BASED EPILEPTIC SEIZURE PREDICTION

USING ENSEMBLE LEARNING

A Project report submitted in fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted by

R. Nikhila (320126510116) B. Gowthami (320126510071)

R. G. S. Sai Vanaja (320126510115) P. Mounika (320126510111)

Under the guidance of

Mrs. G. Gowri Pushpa

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)
(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa, Bheemili Mandal, Visakhapatnam dist. (AP)

2020-2024

ii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa, Bheemili Mandal, Visakhapatnam dist. (A.P)

CERTIFICATE

This is to certify that the project report entitled “EEG-BASED EPILEPTIC SEIZURE

PREDICTION USING ENSEMBLE LEARNING” submitted by Rokkam Nikhila

(320126510116), Bonula Gowthami (320126510071), Reddipalli Gruha Satya Sai

Vanaja (320126510115), Pidugu Mounika (320126510111) in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer

Science and Engineering of Anil Neerukonda Institute of Technology and Sciences,

Visakhapatnam is a record of bonafide work carried out under my guidance and

supervision.

Project Guide Head of the Department

Mrs. G. Gowri Pushpa, M.Tech, (Ph.D.) Dr. M. Ramakrishna Murthy, M.Tech, Ph.D.

Assistant Professor Professor

Department of CSE Department of CSE

ANITS ANITS

iii

DECLARATION

We, R. Nikhila (320126510116), B. Gowthami (320126510071), R. G. S. Sai

Vanaja (320126510115), P. Mounika (320126510111), of final semester B.Tech., in the

department of Computer Science and Engineering from ANITS, Visakhapatnam, hereby

declare that the project work entitled is “EEG-Based Epileptic Seizure Prediction using

Ensemble Learning” carried out by us and submitted in partial fulfillment of the

requirements for the award of Bachelor of Technology in Computer Science and

Engineering, under Anil Neerukonda Institute of Technology & Sciences during the

academic year 2020-2024 and has not been submitted to any other university for the award

of any kind of degree.

R. Nikhila 320126510116

B. Gowthami

320126510071

R. G. S. Sai Vanaja

320126510115

P. Mounika

320126510111

iv

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Mrs. G. Gowri Pushpa,

Department of Computer Science and Engineering, ANITS, for her guidance with

unsurpassed knowledge and immense encouragement. We are grateful to Dr. M.

Ramakrishna, Head of the Department, Computer Science and Engineering, for

providing us with the required facilities for the completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa, for

their encouragement and cooperation to carry out this work.

We express our thanks to the Project Coordinator Mrs. G. Pranitha, for her continuous

support and encouragement. We thank all the teaching faculty of the Department of CSE,

whose suggestions during reviews helped us in accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last, but not the least, we thank everyone for supporting

us directly or indirectly in completing this project successfully.

PROJECT STUDENTS

R. Nikhila (320126510116)

B. Gowthami (320126510071)

R. G. S. Sai Vanaja (320126510115)

P. Mounika (320126510111)

v

ABSTRACT

Epilepsy, a pervasive neurological disorder marked by unpredictable seizures, poses

profound challenges for affected individuals, impacting their daily lives and overall well-

being. Identifying seizures ahead of time is paramount for individuals coping with epilepsy

to maintain a sense of control over their health. Through our project, we're delving into the

realm of cutting-edge technology to enhance seizure prediction methodologies. By fine-

tuning these approaches, our objective is to furnish more precise and dependable forecasts,

thereby empowering swift responses that mitigate the disruptive repercussions of seizures.

Our endeavor is driven by the overarching goal of improving the quality of life for those

impacted by epilepsy, ensuring they have the tools and support necessary to navigate their

condition with confidence and resilience. This project capitalizes on the intricacies of scalp

EEG signals, integrating deep learning models, such as Convolutional Neural Networks

(CNNs) and Long Short-Term Memory (LSTM), can automatically learn and extract

features from EEG signals through layers of convolution and recurrent operations and

ensemble learning methods for classification to create a sophisticated predictive model.

Unlike traditional approaches, our system seeks to transcend the limitations of individual

models by combining the strengths of diverse algorithms, including SVM, Random Forests,

and XGBoost, to form a robust ensemble. Through rigorous training, validation and testing

the developed model seeks to enhance the accuracy, specificity and sensitivity of seizure

prediction. In practical terms, our innovative seizure prediction system has the potential to

revolutionize epilepsy management for medical professionals. This proactive tool enhances

patient safety, empowers medical professionals, and fosters improved outcomes and overall

well-being in the challenging landscape of epilepsy.

Keywords: Epileptic Seizures, Scalp EEG Signals, Deep Learning, Ensemble Learning

vi

Table of Contents

ABSTRACT v

LIST OF FIGURES x

LIST OF ABBREVATIONS xi

Chapter 1 Introduction

1.1 Introduction 1

1.2 Motivation of work 2

1.3 Problem Statement 3

Chapter 2 Literature Survey

2.1 Introduction 4

2.2 Prediction of Epileptic Seizures 4

Chapter 3 Proposed Methodology

3.1 Introduction 9

3.2 Objectives 10

3.3 System Architecture 11

3.3.1 Dataset Acquisition 12

3.3.2 Feature Extraction using CNN-LSTM models 13

3.3.2.1 CNN Feature Extraction 13

3.3.2.2 LSTM Feature Extraction 14

3.3.2.3 Combining CNN and LSTM 14

3.3.3 Feature Selection 14

3.3.4 Model Training 15

3.3.4.1 Model Selection 15

3.3.4.2 Model Training Procedure 16

3.3.5 Ensemble Classifier 17

3.3.5.1 Majority Voting Strategy 17

3.3.5.2 Implementation 17

3.3.5.3 Benefits of Ensemble Classification 18

3.3.6 Analyze Prediction Results 18
3.3.6.1 Ensemble Classifier Performance 18

vii

3.3.6.2 Additional Metrics and Insights 19

Chapter 4 Requirement Analysis

4.1 Introduction 21

4.2 Functional Requirements 22

4.3 Non-Functional Requirements 23

4.4 Technical Requirements 23

4.4.1 Hardware Requirements 23

4.4.2 Software Requirements 24

Chapter 5 Modules Division

5.1 Feature Extraction and Selection 25

5.2 Seizure Prediction 25

5.3 Model Evaluation 26

5.4 Output 26

Chapter 6 Techniques

6.1 Random Forest Algorithm 27

6.1.1 Importance of Random Forest Algorithm 28

6.1.2 Limitations of Random Forest Algorithm 28

6.2 Support Vector Machine 29

6.2.1 Importance of Support Vector Machine 30

6.2.2 Limitations of Support Vector Machine 30

6.3 XGBoost Algorithm 30

6.3.1 Importance of XGBoost Algorithm 32

6.3.2 Limitations of XGBoost Algorithm 32

6.4 Majority Voting Algorithm 33

6.4.1 Importance of Majority Voting Algorithm 33

6.4.2 Limitations of Majority Voting Algorithm 34

Chapter 7 UML Diagrams

7.1 Use Case Diagram 35

7.1.1 Purpose of Use Case Diagram 35

7.2 Class Diagram 36

7.2.1 Purpose of Class Diagram 36

7.3 Sequence Diagram 37

7.3.1 Purpose of Sequence Diagram 37

7.4 Activity Diagram 38

7.4.1 Purpose of Activity Diagram 38

viii

Chapter 8 Dataset Details

8.1 CHB-MIT Dataset 40

8.2 Dataset Splitting 41

Chapter 9 Codes

9.1 Code for Data Acquisition 42

9.2 Code for Feature Extraction 44

9.3 Code for Model Training and Evaluation 46

9.4 Code for web application 48

Chapter 10 Experimental Analysis and Results

10.1 Evaluation Metrics 51

Chapter 11 Installation

11.1 Introduction 56

11.2 Tools Used 56

11.2.1 Jupyter Notebook 56

11.2.2 Spyder 57

11.3 Libraries Used 57

11.3.1 Numpy 57

11.3.2 Pandas 57

11.3.3 Matplotlib 57

11.3.4 Seaborn 57

11.3.5 Sklearn 58

11.3.6 Keras 58

11.3.7 Tensorflow 58

11.3.8 MNE 58

Chapter 12 Conclusion and Future Scope

12.1 Conclusion 59

12.2 Future Scope 59

References 60

Base Paper 62

ix

LIST OF FIGURES

Figure Number Figure Name Page No.

3.1

Four states of epileptic seizures from a 30s

long segment of scalp EEG signal

9

3.2 Architecture of proposed model 11

3.3 Steps in preprocessing 13

3.4

How does Ensemble Learning Work?

17

5.1 Model Evaluation Metrics 26

6.1 Random Forest 27

6.2 Kernel Trick for Support Vector Machine 29

6.3 Gradient Boosting process used in XGBoost 31

6.4 Majority Voting 33

7.1 Use Case Diagram 35

7.2 Class Diagram 36

7.3 Sequence Diagram 37

7.4 Activity Diagram 39

8.1 Distribution of Preictal and Non-Preictal classes 40

8.2 Dataset Splitting 41

x

List of ABBREVIATIONS

EEG Electroencephalogram

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

SVM Support Vector Machine

RF Random Forest

XGBoost Extreme Gradient Boost

CHB-MIT Children's Hospital Boston Massachusetts Institute of Technology

PSD Power Spectral Density

ROC Receiver Operating Characteristic

AUC Area Under the Curve

RAM Random Access Memory

EDF European Data Format

UML Unified Modeling Language

IDE Integrated Development Environment

MATLAB MATrix LABoratory

CNTK Microsoft Cognitive Toolkit

AP Average Precision

1

Chapter 1 Introduction

1.1 Introduction

Epilepsy, a neurological disorder affecting over 65 million people, is

characterized by unpredictable seizures, presenting significant challenges to

individuals' daily lives. The abrupt and unpredictable onset of these seizures can

seriously upset a person's daily life. They can limit opportunities for typical

activities, such as employment and driving, which can reduce a person's overall

quality of life. The unpredictable nature of these seizures is a concern for physical

safety, but it also has a significant impact on families, carers, and wider society

as a whole. It impacts the ease and wellbeing of individuals with epilepsy,

families, carers and the healthcare system, costs society and the economy.

To this end, the objective of our project stands as follows: to develop a state-of-

the-art EEG-based epileptic seizure prediction system, which provides predictive

seizure forecasting in advance. This is essential in order to provide a critical

period for possible intervention. By resorting to optimal integration of deep

learning and ensemble learning, the efficiency, precision and effectiveness of the

seizure forecasting model can be significantly enhanced, thereby considerably

improving the lives of the epileptic population.

Empowering individuals with epilepsy to anticipate and prepare for impending

seizures is at the core of our research mission. This anticipatory approach

addresses the stages of epilepsy: Interictal, referring to the period between

seizures as the baseline state; Ictal, signifying the occurrence of a seizure;

Postictal, the recovery phase following a seizure; and Preictal, indicating the

period leading up to a seizure. Our approach incorporates CNNs for spatial

pattern extraction and LSTM architectures for capturing temporal dependencies

in EEG signals. This synergistic use of CNNs and LSTMs enhances the system's

ability to autonomously extract both spatial and temporal features from EEG

data, contributing to a nuanced understanding of the underlying neural patterns.

Furthermore, our approach integrates ensemble learning, a powerful paradigm

combining the strengths of multiple algorithms. The ensemble comprises three

robust classifiers—Random Forest, Support Vector Machine, and XGBoost—

each contributing distinct strengths to the predictive system. Random Forest,

recognized for its flexibility and rapid convergence, enhances overall

performance. SVM, a robust classifier, plays a pivotal role in effectively

classifying EEG data into preictal and interictal states, thereby improving

accuracy and reliability. Additionally, XGBoost, a sequential ensemble learning

method, introduces efficient parallel processing, ensuring faster computation and

further augmenting the predictive capabilities of our refined system. This

comprehensive approach, from advanced feature extraction to ensemble

2

classification, positions our system at the forefront of innovation in the field of

epileptic seizure prediction. This project extends beyond the development of a

technological solution; it addresses a pressing societal need by contributing to

early seizure prediction, patient safety, and better healthcare outcomes.

1.2 Motivation of work

Epilepsy is a serious neurological disorder that affects millions of people

worldwide. It causes unpredictable seizures that can disrupt daily life for both the

person with epilepsy and their loved ones. We're dedicated to creating a system

that can predict when these seizures might happen using EEG technology.

Our main goal is to make life easier for people with epilepsy. We want to give

people with epilepsy and their carers an opportunity to be prepared for a seizure.

They may be able to make lifestyle adjustments, take medication, or ask for help

ahead of time. We are hopeful that such preparations can lead to a higher quality

of life for them.

We believe that we also have a responsibility to society at large to address the

wider impact of epilepsy. The condition can affect more than just a person's health

by also impacting their employment, and social interactions. A reliable prediction

method will help to cut healthcare burdens, contribute to creating a safer working

environment, and in many ways make society and the culture of inclusivity more

welcoming to everyone with epilepsy.

Our ultimate goal is to help predict seizures in people diagnosed with epilepsy.

By doing so, we can predict when a seizure might happen, and those who are

predicted to have a seizure can take proper preparation. We believe that our work

can increase the self-confidence and freedom of individuals living with epilepsy.

3

1.3 Problem Statement

The absence of a reliable and advanced epileptic seizure prediction system

creates a pressing challenge for individuals with epilepsy, impacting their safety

and overall quality of life. The unpredictable nature of seizures, coupled with the

limitations of existing prediction methods, highlights the critical need for an

innovative solution. This project aims to bridge this gap by leveraging deep

learning techniques, including CNNs and LSTM architectures, in conjunction

with ensemble learning methods. The objective is to enhance the accuracy and

reliability of seizure prediction, providing a crucial window for timely

intervention. The integration of diverse classifiers, such as Support Vector

Machine, Random Forest, and XGBoost, promises a comprehensive approach to

address the complex dynamics of epileptic seizures. By developing an advanced

EEG-based system, this project seeks to empower individuals, caregivers, and

healthcare professionals, ultimately improving the management of epilepsy and

contributing to enhanced patient safety and well-being.

4

Chapter 2 Literature Survey

2.1 Introduction

Over 65 million individuals worldwide grapple with epilepsy, a neurological

condition characterized by recurrent seizures stemming from the brain's aberrant

firing of neurons in a hyper synchronized manner within the cerebral cortex.

Epilepsy is one of the most common neural disorders in the world, with

unpredictable seizures that can interfere with activities such as driving and

working. These seizures often add significant burdens and stress on the patients

and their families, manifesting in depression and other health issues. The social

impact is also quite large, with caregivers also facing distress and the healthcare

system across the board bearing the cost of care. Our project aims to develop an

advanced system that leverages EEG data to predict epileptic seizures and

provide timely intervention as well as an overall improvement in the life of

individuals who suffer from epilepsy. EEG is an established tool in neurology

that is used to study and diagnose a variety of brain disorders including epilepsy.

Using the recording of the voltage oscillations resulting from the summed field

potentials of brain neuronal activity, the EEG produces data that can be analyzed

to diagnose and monitor neural disorders. At the same time, the process of EEG

reading analysis can be slow and cumbersome and in the hands of a neurologist

can be quite time-consuming.

To tackle this problem, we present a solution that utilizes both deep learning and

ensemble learning methods to predict seizures with high accuracy and systematic

reliability. Our tool aims to contribute to the predictive capacity of early

intervention, without which adverse consequences of seizures may continue to

impair the quality of life of individuals with epilepsy.

This literature survey presents an overview of recent survey papers of Epileptic

Seizure Prediction based on EEG using deep learning and machine learning.

2.2 Prediction of Epileptic Seizures

" A Generalizable Model for Seizure Prediction Based on Deep Learning

using CNN-LSTM Architecture " by Mohamad Shahbazi, Hamid Aghajan

(2018)

This paper presents a unique method for predicting epileptic seizures using deep

learning on EEG information. Their model, which combines CNNs and LSTMs,

surpasses earlier approaches by taking into account both frequency and temporal

variables, with a sensitivity of 98.21% and a low false prediction rate of 0.13/h

on the CHB-MIT dataset. Preprocessing consists of selecting segments and

5

converting them to 2D images using STFT. Each patient's information is used to

train personalized models. The CNN-LSTM architecture detects spectral and

temporal patterns, and post-processing minimizes incorrect predictions. This

study represents a major breakthrough in seizure prediction accuracy, bringing

hope for better patient care.

“A Novel Multi-Scale Dilated 3D CNN for Epileptic Seizure Predictions” by

Ziyu Wang, Jie Yang and Mohamad Sawan Wang (2021)

Wang, Yang, and Sawan from Westlake University present a unique CNN model

for precise epileptic seizure prediction, which is critical for patient safety. Their

methodology uses multi-scale dilated convolution to evaluate EEG signals in

time, frequency, and channel dimensions. The model captures more complete

characteristics using three-dimensional (3D) kernels, resulting in flexibility in

receptive fields. When evaluated on the CHB-MIT EEG database, the model

outperforms previous approaches by 80.5% accuracy, 85.8% sensitivity, and

75.1% specificity. The suggested approach overcomes the limits of existing

machine learning approaches by automating feature extraction from raw EEG

data, allowing for real-time applications. The study proves the effectiveness of

their strategy through rigorous examination and comparison with other state-of-

the-art models, obtaining a decrease in words by 57.6% while preserving

important information. Overall, the proposed multi-scale dilated CNN model

shows promise for enhancing epileptic seizure prediction and patient safety.

“Ensemble Classification for Epileptic Seizure Prediction” by N. Saranya,

Dr. D. Karthika Renuka, R. Geetha Rajakumari (2021)

The research discusses a technique for predicting epileptic fits by blending

electroencephalogram (EEG) signals and machine learning algorithms. The

model uses Random Forest and Back Propagation Neural Network (BPNN) as

classification techniques to effectively detect seizure onset. Dynamic range and

functioning of EEG signal are catered for by Finite Impulse Response (FIR)

filtering. Feature extraction and noise elimination have been noted as concerns,

with successful solutions being offered by FIR filters. In the paper, there was

used open-source repositories to acquire EEG data while PCA was employed for

dimensionality reduction and cross-validation for modeling validation. Random

Forest achieves 95% accuracy on this dataset outperforming the rest of models.

On the other hand, BPNN does not perform so well in comparison. This

technological development could be integrated into a web application that would

monitor epilepsy patients in real time in order to understand their health status

thus enabling prompt interventions whenever necessary. Taken as a whole, this

paper emphasizes on how effective machine learning is in seizure prediction as

well as its possible role in enhancing healthcare outcomes.

6

“Epileptic Seizure Prediction using EEG Images” by Felix George, Alex

Joseph, Bibin Baby, Alex John, Tonny John, Deepak M, Nithin G, and P.S.

Sathidevi (2020)

The research describes an automated approach for classifying EEG data into

ictal, non-ictal, and pre-ictal categories in order to anticipate epileptic seizures.

The model uses ResNET-50, a convolutional neural network (CNN) architecture,

to convert 1D EEG input into 2D EEG images for categorization. This unique

technique predicts seizures with an accuracy of 94.98%, proving the usefulness

of deep residual networks in processing EEG data. The work solves previous

approaches' drawbacks by providing a generic strategy that is applicable to all

patients and capable of recognizing pre-seizure regions. The proposed method,

if integrated into wearable devices, could allow for timely therapies for epilepsy

patients, improving their quality of life.

“Epileptic Seizures Prediction Based on Unsupervised Learning for Feature

Extraction” by Ruyan Wang, Linhai Wang, Peng He, Yaping Cui, Dapeng

Wu (2022).

The paper introduces an unsupervised strategy for forecasting epileptic seizures

that uses deep convolutional autoencoders (DCAEs) to learn features from EEG

signals. Unlike standard supervised techniques, which require labeled data to

extract features, DCAEs learn discriminative features directly from EEG data.

The proposed method extracts key information from DCAEs using their

hierarchical structure, allowing for more accurate classification of preictal and

interictal phases. The approach's usefulness is demonstrated by its evaluation on

the CHB-MIT dataset, which yields encouraging results with an accuracy rate of

96.17% and a false alarm rate of only 0.015. These high percentages demonstrate

the method's potential to improve epilepsy care by enabling timely intervention

and individualized treatment options based on accurate seizure prediction.

“Refine EEG Spectrogram Synthesized by Generative Adversarial Network

for Improving the Prediction of Epileptic Seizures” by Tian Yu, Boyuan Cui

(2023)

The research describes an approach for improving the prediction of epileptic

seizures, which is an important part of controlling epilepsy, a common

neurological illness that affects a large proportion of the global population.

Traditional seizure prediction algorithms encounter issues due to data paucity

and imbalance, which reduces their effectiveness. To overcome these challenges,

the paper suggests using Generative Adversarial Networks (GANs) for data

augmentation, which would enable the development of synthetic EEG data. This

synthesized data is then polished using a unique refining technique. By training

a classifier on this enhanced dataset and evaluating it on real EEG data, the study

7

shows a significant improvement in seizure prediction performance, with an

average 2.1% rise in Area Under the Curve (AUC) score compared to

conventional techniques. The approach shows promise for addressing limited

information and imbalance challenges in seizure prediction and other healthcare

applications. The findings reveal a technique to improve patient outcomes by

predicting seizures more accurately.

“Semi-supervised Deep Learning System for Epileptic Seizures Onset

Prediction” by Ahmed M. Abdelhameed and Magdy Bayoumi (2018)

The research describes a new semi-supervised deep learning strategy for

predicting epileptic seizure start using electroencephalogram (EEG) data. The

system seeks to classify brain states as interictal (normal) or preictal (before to

seizure) by integrating unsupervised and supervised techniques. It uses a two-

dimensional deep convolutional autoencoder to extract discriminative spatial

features from multichannel EEG data, as well as a Bidirectional Long Short-

Term Memory (Bi-LSTM) recurrent neural network for temporal classification.

Transfer learning is used to initialize patient-specific networks, which improves

training efficiency. The experimental results show an average sensitivity of

94.6% and a low false prediction rate of 0.04FP/h across many patients,

outperforming existing approaches for seizure prediction accuracy.

“Predicting Epileptic Seizures using Ensemble Method” by Prosper

Chiemezuo Noble-Nnakenyi, Kehinde Adebola Olatunji, Oluwatoyin Bunmi

Abiola (2022)

The study described in this paper presents an ensemble model for forecasting

epileptic seizures that employs deep learning techniques. To improve prediction

accuracy, the proposed model incorporates long short-term memory (LSTM),

convolutional neural network (CNN), and sparse autoencoder (SAE). The study

overcomes the limits of current seizure prediction models by utilizing ensemble

learning, which capitalizes on the strengths of individual models while reducing

their drawbacks.

The proposed methodology's key components include data collecting from EEG

repositories, data preprocessing, feature extraction by signal mapping, and model

fusion via majority voting. The ensemble model demonstrated good accuracy,

sensitivity, and specificity in forecasting epileptic episodes.

The results show that the ensemble model outperformed the individual models,

with an average accuracy of 97.4%. This high level of accuracy shows that the

proposed approach may be useful in real-world applications for early seizure

prediction.

“Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural

Network Architecture” by Ramy Hussein, Soojin Lee, Rabab Ward and

8

Martin J. McKeown (2021)

Semi-Dilated Convolutional Network (SDCN) is a newly described

convolutional neural network architecture aimed at accurately predicting seizures

using EEG data. Discriminative features are extracted from EEG scalograms

using a new convolutional module called ‘semi-dilated convolution’ which is

equipped in this design. A Sigmoid output and fully connected layers are resulted

via parallel paths of 3x3 and 5x5 semi-dilated convolution blocks. The SDCN

achieved sensitivity scores of 88.45% and 89.52%, respectively, on the American

Epilepsy Society and Melbourne University EEG datasets, surpassing current

state-of-the-art methods. Cost function used is binary cross-entropy, the

optimizer used here is Adam while learning rate was set to be 0.001. In general,

The SDCN proved to be superior for seizure prediction task giving a hint that

semi dilation convolutions can effectively be employed for feature extraction as

well as Classification on EEGs

“Optimizing Seizure Prediction from Reduced Scalp EEG Channels Based

on Spectral Features and MAML” by Anibal Romney; Vidya Manian (2021)

The paper proposes a novel technique to seizure prediction in epilepsy by

combining Model Agnostic Meta-Learning (MAML) with Deep Neural

Networks (DNN) using patient-specific electrode channels. The goal is to reduce

the number of EEG scalp electrode channels required for effective computational

training of time-series signals. The study uses the CHB-MIT Dataset to optimize

and choose the number of channels for each individual, with feature extraction

performed using Ensemble Empirical Mode Decomposition (EEMD) and

Sequential Feature Selection (SFS). The MAML model has a remarkable average

sensitivity and specificity score of 91% and 90%, respectively, across 23

individuals. This method shows promise for real-time seizure prediction with a

few EEG scalp electrodes, potentially increasing the quality of life for epileptic

sufferers.

9

Chapter 3 Proposed Methodology

3.1 Introduction

The proposed methodology for the EEG-based epileptic seizure prediction system

is designed to comprehensively address the challenges associated with predicting

seizures accurately and reliably. The starting point involves thoroughly collecting

data from twenty-three patients, who were subjected to various EEG recordings

using the international 10-20 System. The dataset was divided into training,

validation, and testing sets, which ensured that there was a balance between the

normal and seizure activities as well as maintaining the sequence of events. Then,

feature scaling is done to normalize feature values and reshape data in order to make

them fit with Convolutional Neural Network (CNN) and Long Short-Term Memory

(LSTM) models.

Feature extraction forms the core of the methodology mixing both CNN and LSTM

paradigms for capturing spatial-temporal patterns in EEG signals. Time domain and

frequency domain features are generated including mean, variance, skewness,

kurtosis, power spectral density (PSD). These components provide an abundant

description of EEG characteristics. These features are concatenated together to form

a complete set of model input features.

Model training employs diverse base models, including XGBoost, Support Vector

Machine (SVM), and Random Forest (RF). The individual models are integrated

into an ensemble classifier, utilizing a Majority Voting Strategy to combine their

predictions. The ensemble classifier aims to enhance the robustness and

generalization of the predictive model. Finally, an in-depth analysis of prediction

results is conducted to evaluate the system's performance and effectiveness in

seizure prediction. The system's performance is evaluated using accuracy,

sensitivity, and specificity, with a focus on the binary outcomes—positive and

negative predictions—to empower individuals with timely and reliable information

about potential seizure occurrences.

Figure 3.1: Four states of epileptic seizures from a 30s long segment of scalp EEG signal

10

3.2 Objectives

The objectives of the proposed system are as follows:

• To collect and preprocess chest EEG data: Gather a comprehensive

dataset of EEG recordings from individuals with epilepsy, ensuring

diversity in patient demographics and recording conditions. Identify

epileptic periods from individual patients, extract ictal data, and preictal

data equally from '.edf files, combine all the data from 24 patients into a

single dataset (.csv), and retain data for only the 23 channels which are

important for further analysis.

• To develop a robust deep learning model for predicting seizures:

Design and train deep learning architectures, including Convolutional

Neural Networks (CNNs) and Long Short-Term Memory (LSTM)

networks, for feature extraction from EEG signals. Integrate diverse

classifiers such as XGBoost, Support Vector Machine (SVM), and

Random Forest for ensemble learning to enhance prediction robustness.

• To evaluate the performance of the model: Assess the predictive

performance of the developed model using metrics such as accuracy,

sensitivity, and specificity. Conduct thorough cross-validation and

testing to ensure the model's reliability and generalization to unseen data.

• To validate the model in real-world settings: Conduct thorough cross-

validation and testing to ensure the model's reliability and generalization

to unseen data. Gather feedback from healthcare professionals and

individuals with epilepsy to assess the model's usability and effectiveness

in practical applications.

• To make the model accessible: Develop user-friendly interfaces or

applications to make the seizure prediction model accessible to

individuals with epilepsy, caregivers, and healthcare professionals.

Provide documentation and support resources to facilitate the

implementation and utilization of the model in various healthcare

settings.

11

3.3 System Architecture

Figure 3.2: Architecture of proposed model

12

3.3.1 Dataset Acquisition

The EEG data which we used in our work was obtained from the CHB-MIT

Database. The CHB-MIT dataset is one of the most widely used openly

accessible EEG datasets for seizure identification and prediction. The CHB-MIT

dataset is made up of 23 instances organized from continuous scalp EEG

recordings of 22 juvenile patients. 23 EEG channels are recorded in most of the

files, and all signals are captured at a resolution of 16 bits at 256 samples per

second. The dataset contains annotations describing the beginning and

conclusion of each seizure. Preictal stage is the term used by the prediction task

to describe the temporal interval that precedes each onset.

IEEE Dataport now hosts the pre-processed dataset. In the past, studies only used

a small number of the patients' EEG data from the original database. The authors

of this research summarized the dataset using 68 entire minutes of epileptic

seizure durations from all of the patients, as well as 68 whole minutes of preictal

time.

We utilized a subset of the preprocessed CHB-MIT dataset for our EEG-Based

Epileptic Seizure Prediction project, specifically selecting 20,000 rows out of the

original 2 lakh rows. The preprocessing steps were conducted by Deepa B and

Ramesh K (2021), involving the extraction of epileptic periods, filtering

redundant electrode data, and labeling ictal and preictal states. The final

preprocessed dataset, comprising 23 essential channels, provided the basis for

our analysis. Notably, data cleaning and transformation were intentionally

omitted to provide flexibility to researchers in selecting appropriate methods for

training and testing models. This subset of the preprocessed dataset encompasses

data from all 24 patients involved in the study.

The following subsections describe the procedure used to pre-process the CHB-

MIT scalp EEG database.

• Step1:

CHB MIT scalp EEG database provides data at physionet in 'edf' European data

format. The data is supported with information regarding epileptic periods.

The voltage levels from EEG electrodes are obtained from 'edf' files.

• Step2:

Information about the ictal state and equal preictal state is gathered from 'edf'

files. Two files are maintained separate so that researchers can use data as

needed. This also helps with labeling.

13

• Step3:

Duplicate and inaccurate electrode data are produced by a thorough analysis

of the dataset. The 96 data channels of the EEG are comprised of 23

mandatory channels. We're going to keep these 23 channels.

• Step4:

The preictal and non-preictal state data are labeled with 0 and 1, respectively,

in the last stage. The final pre-processed data is obtained by merging the two

datasets. Five different files contain the data: two raw files for non-preictal

and preictal data, two processed files with 23 important channels according

to the 10-20 EEG placement system, and a final file with 136 minutes of

combined non-preictal and preictal data with outcomes indicated as '0' for

preictal and '1' for non-preictal (Deepa B and Ramesh K, 2021).

Figure 3.3: Steps in Preprocessing

3.3.2 Feature Extraction using CNN-LSTM Models

Feature extraction is a pivotal step in the data preprocessing pipeline, focusing

on deriving informative representations from raw data using a combination of

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)

models. These models are designed to capture complex spatial and temporal

patterns within the electroencephalogram (EEG) signals.

3.3.2.1 CNN Feature Extraction:

• The CNN component specializes in identifying spatial patterns within the

14

EEG data.

• Convolutional layers with filters detect hierarchical features,

recognizing spatial relationships across electrode channels.

• Pooling layers condense information, emphasizing essential spatial

characteristics while reducing dimensionality.

3.3.2.2 LSTM Feature Extraction:

• The LSTM component excels at capturing temporal dependencies in EEG

signals.

• Long Short-Term Memory units maintain memory of previous states,

enabling the model to understand the sequential nature of EEG data.

• LSTM layers learn temporal patterns over extended time intervals.

3.3.2.3 Combining CNN and LSTM:

• Outputs from the CNN and LSTM models are concatenated to create

a comprehensive feature set.

• This combined feature set captures both spatial and temporal aspects

of EEG signals, providing a rich representation for subsequent

classification tasks.

• Feature extraction using CNN-LSTM models enhances the

interpretability of EEG data, allowing the model to automatically learn

discriminative features. The drawn-out functions work as high-level

depictions that can properly separate in between typical and also seizure

tasks, mapping out the structure for precise category.

The result is a feature-rich depiction of EEG information including both spatial

as well as temporal attributes. This depiction is essential for constructing designs

that can determine complex patterns within EEG signals, adding to the

performance of seizure discovery and also category.

3.3.3 Feature Selection

Judiciousness belongs to attribute choice in our job to boost our forecast designs'

interpretability together with efficiency. We developed a solid attribute choice

treatment by making use of the abilities of artificial intelligence strategies

especially Random Forest Feature Importance. We assessed each function's

importance in our information utilizing an arbitrary woodland classifier. After

that relying on their significance positions the SelectFromModel method was

15

made use of to maintain just one of the most helpful attributes. This approach

reduced the likelihood of overfitting as well as enhanced design generalization

along with lowering the dimensionality of our function area. We ensured that our

designs were learnt one of the most essential plus appreciable attributes by

meticulously selecting them which eventually boosted the forecasted precision

together with general efficiency of the version.

3.3.4 Model Training

In this stage, we teach our computer models to identify patterns in brain activity

and anticipate seizures. We're using three types of models: XGBoost, Support

Vector Machine (SVM), and Random Forest (RF). These models are like the

brain of our prediction system. We'll explain how we're training them and why

we chose them.

3.3.4.1 Model Selection

Any predictive system's effectiveness and dependability depend on the careful

selection of its underlying models. Here, we explain the reasoning behind our

selection of the models—XGBoost, Support Vector Machine (SVM), and

Random Forest (RF)—and discuss their features, capabilities, and applicability

to our epileptic seizure prediction system.

1. XGBoost

XGBoost, brief for eXtreme Slope Improving attracts attention as a crucial

selection for our anticipating structure owing to its exceptional abilities in

handling varied datasets along with catching detailed connections. At its

significance XGBoost uses a set knowing structure mostly driven by increasing

strategies allowing it to build extremely accurate anticipating versions by

progressively combining weak students. This hidden formula skillfully lessens

loss features while additionally punishing version intricacy, consequently

accomplishing an optimum equilibrium in between prejudice along with

difference. In addition, XGBoost's intrinsic durability versus overfitting as well

as its capability to take care of missing out on information even more improve

its appearance. Additionally, its scalability plus performance makes it

appropriate for assessing large datasets effortlessly straightening with the

demands of our seizure forecast system.

2. Support Vector Machine

Support Vector Machine (SVM) holds a prominent setting in the domain name

of monitored knowing popular for its capability to manage high-dimensional

attribute areas as well as give durable category. SVM's efficiency comes from its

16

adherence to the concept of architectural danger reduction guaranteeing its

capability to generalize successfully to hidden information circumstances. By

building an ideal hyperplane that takes full advantage of the margin in between

various courses, SVM lusters in determining complex patterns within

information also despite sound as well as high dimensionality. Furthermore,

SVM's versatility expands to its ability to take care of non-linear connections

with bit techniques, allowing it to outline intricate choice limits properly. Within

the context of our seizure prediction system, SVM's resilience, scalability, and

adeptness in managing high-dimensional feature spaces make it an indispensable

tool for precise classification and prediction tasks.

3. Random Forest

Random Forest (RF) arises as a keystone in anticipating modeling jobs using

unmatched convenience as well as scalability. Based in set understanding

concepts, RF accumulates choice trees to produce a durable anticipating

structure. Each choice tree within RF is educated on a part of the information and

also their forecasts are combined with ballot or balancing systems. This varied

set not just improves anticipating precision yet additionally safeguards versus

overfitting and also difference. In addition, RF's natural capacity to deal with

non-linear partnerships as well as attribute communications clothing it with

premium discriminative power allowing accurate demarcation of intricate choice

borders. In addition, RF's parallelizability expedites version training along with

reason, straightening easily with real-time forecast demands. Within the domain

name of our seizure forecast system RF attracts attention for its strength,

interpretability, along with versatility throughout varied modeling circumstances.

In recap each design brings its distinct toughness as well as abilities to the leading

jointly boosting the anticipating expertise of our system plus leading the way for

boosted person end results plus lifestyle.

3.3.4.2 Model Training Procedure

For each selected base model (XGBoost, SVM, and Random Forest):

• Initialize the model with default parameters or parameters based on prior

experimentation.

• Train the model on the training dataset.

• Use appropriate evaluation metrics (e.g., accuracy, F1-score, etc.) to

monitor the model's performance during training.

• Repeat the training process for each base model.

17

3.3.5 Ensemble Classifier

In this phase, we combine the predictions generated by the base models, namely

XGBoost, Support Vector Machine (SVM), and Random Forest (RF), using a

Majority Voting Strategy to construct an ensemble classifier. Ensemble methods

leverage the diversity among individual models to enhance prediction robustness

and generalization, thereby improving overall performance.

Figure 3.4: How does Ensemble Learning Work?

3.3.5.1 Majority Voting Strategy

The Majority Voting Strategy aggregates the predictions from multiple base models

and assigns the final class label based on the majority prediction. The ensemble

classifier predicts the class that receives the greatest number of votes, with each

base model prediction having equal weight. By reducing the possibility of

individual model biases and errors, this method produces forecasts that are more

accurate and dependable.

3.3.5.2 Implementation

To apply the set classifier making use of the Majority Voting Method we comply

with these actions:

1. Create Predictions: Utilize the educated base designs (XGBoost, SVM, RF) to

produce forecasts on the recognition or screening information collection.

2. Integrate Predictions: Aggregate the forecasts from each base design right into

a solitary set forecast matrix where each row matches an information circumstance

as well as each column stands for the anticipated course tag from a base version.

18

3. Voting Mechanism: For each information circumstances establish the bulk

course tag amongst the forecasts produced by the base versions. Designate this bulk

course tag as the last forecast for the equivalent information circumstances in the

set classifier's outcome.

4. Evaluation: Evaluate the performance of the ensemble classifier using

appropriate evaluation metrics such as accuracy, sensitivity, specificity, and

area under the ROC curve (AUC). Compare the ensemble classifier's performance

against individual base models to assess its effectiveness in enhancing prediction

robustness and generalization.

3.3.5.3 Benefits of Ensemble Classification

• Improved Robustness: By combining predictions from diverse models, the

ensemble classifier mitigates the risk of individual model biases and errors,

leading to more robust predictions.

• Enhanced Generalization: Ensemble methods exploit the complementary

strengths of different models, allowing for better generalization to unseen

data instances.

• Increased Accuracy: The ensemble classifier leverages the wisdom of

crowds, often achieving higher accuracy than any individual base model

alone.

3.3.6 Analyze Prediction Results

We analyze the prediction results of our ensemble classifier on both the validation

set and testing set. We evaluate various metrics to assess the performance of the

model and gain insights into its behavior.

3.3.6.1 Ensemble Classifier Performance

Validation Set:

• Accuracy: The ensemble classifier achieves an accuracy of approximately

94.77% on the validation set, indicating that it correctly classifies the

majority of instances.

• Precision and Recall: The precision and recall for both classes (0 and 1)

are high, indicating that the model effectively identifies both non-seizure

(0) and seizure (1) instances. The precision and recall values are balanced,

contributing to the model's overall effectiveness.

• F1-Score: The F1-score, which considers both precision and recall, is

19

approximately 95% for both classes. This balanced F1-score indicates

robust performance across both classes.

• Confusion Matrix: The confusion matrix reveals that the model correctly

predicts the majority of instances, with a relatively low number of false

positives and false negatives.

Testing Set:

• Accuracy: The ensemble classifier maintains a high accuracy of

approximately 94.73% on the testing set, consistent with its performance on

the validation set.

• Precision and Recall: Similar to the validation set, the precision and recall

values for both classes are high on the testing set, indicating the model's

ability to effectively discriminate between seizure and non-seizure

instances.

• F1-Score: The F1-score remains balanced on the testing set, reflecting the

model's consistent performance in terms of precision and recall.

3.3.6.2 Additional Metrics and Insights

• Specificity: The specificity of the model is approximately 97.26% on the

testing set, indicating its ability to correctly identify non-seizure instances

(true negatives) with high accuracy.

• False Positive Rate (FPR): The FPR is relatively low, indicating a minimal

rate of false alarms or misclassifications of non-seizure instances as seizure

instances.

• False Negative Rate (FNR): The FNR is also low, indicating a small

proportion of seizure instances being missed or misclassified as non-seizure

instances.

• AUC-ROC Score: The Area Under the Receiver Operating Characteristic

(ROC) Curve is approximately 94.68%, indicating good discriminative

power and model performance across different threshold values.

• Average Precision (AP): The AP score, which measures the average

precision-recall tradeoff, is approximately 93.19%, reflecting the model's

precision across different recall levels.

20

The analysis of prediction results demonstrates the robust performance of the ensemble

classifier in predicting epileptic seizures. The model exhibits high accuracy, precision,

recall, and balanced F1-scores on both the validation and testing sets. The low false

positive and false negative rates further indicate the model's effectiveness in

distinguishing between seizure and non-seizure instances.

21

Chapter 4 Requirement Analysis

4.1 Introduction

Requirement Engineering is a fundamental process that plays a vital role in

software development. It includes the recognition meaning, and also

administration of the system needs essential to satisfy the customer's

assumptions. These needs make up of functions, features plus restrictions that

the system should fulfill.

The procedure of Requirement Engineering makes up of 2 vital tasks,

specifically demand elicitation and also evaluation. Demand elicitation includes

the collection as well as paperwork of the customer's needs utilizing numerous

strategies such as studies, meetings, monitoring and also workshops. The primary

purpose is to generate a comprehensive plus precise system requirements that the

customer can recognize as well as accept.

When the needs have actually been collected the following action includes

evaluating as well as refining them to develop an evaluation design that designers

can translate plus usage to make as well as carry out the system. This phase

requires determining any kind of disparities, unpredictability or spaces in the

demands coupled with resolving them via conversations with the customer as

well as various other stakeholders.

A need is a declaration that explains the anticipated capability of the suggested

system either clearly or unconditionally. Demands can be classified as practical,

which explains what the system have to do, or non-functional, which defines

exactly how well the system ought to execute.

Requirements can be divided into two major categories:

1. Functional Requirements.

2. Non-Functional Requirements.

22

4.2 Functional Requirements

Functional requirements are specific actions and behaviors that a software

system mustperform to meet users' needs. They define the system's capabilities

and features and areexpressed in terms of input, processing, and output. To

ensure accuracy, they must be defined clearly and validated. The functional

requirements for the proposed system areas follows:

• Data Partitioning: Our dataset is characterized by its balanced

composition, comprising 10,000 rows for each class under consideration.

The dataset is partitioned into distinct subsets: a training set

encompassing 70% of the data, and separate validation and testing sets

each comprising 15% of the data.

• Data Preparation: In data preparation, the CHB MIT scalp EEG

database in 'edf' format provides voltage levels from EEG electrodes,

supported with information on epileptic periods. Separate files for ictal

and preictal states aid in labeling and flexibility for researchers. Only 23

essential channels retained. Final preprocessing involves labeling ictal

and preictal states as 1 and 0, respectively.

• Feature Extraction: Feature extraction in EEG-based seizure prediction

utilizes CNN and LSTM models to capture spatial and temporal patterns.

CNNs identify spatial patterns, while LSTMs capture temporal

dependencies. Outputs from these models are combined to create a

comprehensive feature set. Additionally, time-domain and frequency-

domain features like mean, variance, PSD, and relative power are

computed.

• Classification: The system must be able to accurately predict the onset

of seizure into one of the two classes: Preictal and Interictal.

• Result Visualization: The system must visualize the classification

results in anintuitive and user-friendly manner.

23

4.3 Non-Functional Requirements

Non-functional requirements are the criteria that define the system's

performance, quality, and behavior, rather than its specific functionality. These

requirements describethe system's characteristics, such as its reliability, security,

usability, performance, scalability, and maintainability, and are essential for

ensuring that the system meets the user’s expectations and needs. The non-

functional requirements for the proposed systemare as follows:

• Accuracy: The model should demonstrate high accuracy in

distinguishing between seizures and non-seizures.

• Performance: The model should efficiently and quickly classify the

seizures.

• Robustness: The system should demonstrate resilience to variations in

EEG signals and environmental factors, ensuring reliable seizure

prediction across diverse conditions.

• Scalability: The system should be scalable to accommodate larger

datasets and potential integration with real-time monitoring systems,

ensuring its applicability in broader clinical settings and future

expansions.

4.4 Technical Requirements

The technical requirements for this project are mentioned below:

1. Hardware Requirements

2. Software Requirements

4.4.1 Hardware Requirements

• Processor: The processor needs to be fast enough to handle the training of

a deeplearning model with a large dataset. A high-end processor, such as

Intel Core i7or i9 or an equivalent AMD processor, is recommended.

• Graphics Processing Unit (GPU): A powerful GPU with high memory

capacityis required to accelerate the training process of deep learning

models. NVIDIA GPUs are commonly used for deep learning tasks.

• RAM: Deep learning models require a significant amount of memory to

hold theweights and biases of the model during training. At least 8 GB of

RAM is recommended.

24

• Storage: The dataset and model checkpoints can take up a large amount

of diskspace. It is recommended to have at least 500 GB of storage

available.

4.4.2 Software Requirements

• Python Programming Language: Python is an interpreted, high-level,

general-purpose programming language. It is widely used in data science,

machine learning, and artificial intelligence. It is necessary for the

implementation of theproject.

• TensorFlow or Keras Deep Learning Libraries: TensorFlow and

Keras are two popular deep learning libraries. They provide a high-level

API for buildingand training deep learning models.

• Scikit-Learn Library: Scikit-Learn is a popular machine learning

library. It provides a wide range of machine learning algorithms and

tools. Stratified Shuffle Split method is a cross-validation method that is

used for evaluation of machine learning models. Scikit-Learn library is

necessary for the implementation of this method and also for accuracy

calculation metrics.

• MNE Library: MNE-Python is an open-source Python module for

processing, analysis, and visualization of functional neuroimaging data

(EEG, MEG, sEEG, ECoG, and fNIRS).

• Numpy and Pandas Libraries: Numpy and Pandas are popular libraries

for datamanipulation. They provide tools for handling arrays, matrices,

and dataframes.They are necessary for the implementation of the project.

• SciPy: SciPy provides algorithms for optimization, integration,

interpolation, eigenvalue problems, algebraic equations, differential

equations, statistics and many other classes of problems. The algorithms

and data structures provided by SciPy are broadly applicable across

domains.

• Matplotlib: Matplotlib is a Python plotting library used to create static,

animated,and interactive visualizations in Python. It can be used for a

variety of tasks such as creating line plots, scatter plots, bar plots,

histograms, and more. Matplotlib provides a wide range of customization

options, including the ability to add titles,labels, and annotations to your

plots.

25

Chapter 5 Modules Division

5.1 Feature Extraction and Selection

In this phase, feature extraction is achieved through the utilization of CNN-

LSTM architectures, capable of capturing intricate patterns and dependencies

within the data. These models excel in extracting features, providing a

comprehensive representation of the dataset. It's imperative to ensure efficient

storage of these extracted features to facilitate subsequent modeling processes

effectively. Furthermore, if deemed necessary, feature selection techniques are

applied to discern the most pertinent features, optimizing the dataset for

improved model performance. Evaluating the impact of feature selection on

model performance offers critical insights into the efficacy of the chosen

features, guiding further iterations and refinements in the modeling approach.

5.2 Seizure Prediction

One of the main tasks in this module division is to classify EEG results as either

suggestive of a seizure or not. Three base machine learning models, Random

Forest, Support Vector Machine, and XGBoost are used to accomplish this. By

combining these models, an ensemble model is produced that improves the

robustness and accuracy of the seizure detection procedure. Through the analysis

and categorization of the EEG results, each base model aids in the decision-

making process. In order to run the ensemble model and provide predictions

based on fresh EEG readings obtained from the EEG Data Input Module, the

module uses an inference engine. By ensuring a thorough and dependable

classification of seizures, this ensemble approach improves the efficacy of the

seizure detection system.

26

5.3 Model Evaluation

Assessing the performance of the ensemble classifier using various metrics such

as accuracy, precision, recall, F1-score, and area under the ROC curve.

Figure 5.1: Model Evaluation Metrics

5.4 Output

This module displays the model's result, which is a prediction of an upcoming

epileptic episode. It displays the findings of the seizure detection process to the

user in text format. The categorization is binary, with two possible outcomes:

"Preictal" indicating that the patient is expected to have a seizure and "Non

preictal" indicating that no seizure is anticipated. The output shows these

categorization findings on the screen, indicating whether a seizure is expected or

not. Furthermore, the model ensures that the output is continuously updated in

real time as the system processes and classifies fresh EEG values, allowing for

rapid and responsive seizure risk monitoring. This model can be utilized by

healthcare professionals to diagnose and treat patients accordingly.

27

Chapter 6 Techniques

6.1 Random Forest Algorithm

Random Forest is a versatile and powerful ensemble learning method widely

used for both classification and regression tasks in machine learning. It operates

by constructing multiple decision trees during training and outputting the mode

of the classes for classification tasks or the mean prediction for regression tasks.

It consists of a collection of decision trees, each trained on a random subset of

the training data and a random subset of the features. This randomness and

diversity among the trees contribute to the robustness and effectiveness of the

Random Forest algorithm.

Figure 6.1: Random Forest

Random Forests have several key components:

• Decision Trees: The basic building blocks of Random Forests are

decision trees, which make binary decisions at each node based on feature

values.

• Voting Mechanism: In classification tasks, Random Forest combines the

predictions of multiple decision trees through a voting mechanism, where

28

the class with the most votes becomes the final prediction. In regression

tasks, it averages the predictions of individual trees.

• Random Feature Selection: At each node of the decision tree,

Random Forest selects a random subset of features to consider for

splitting, which helps to decorrelate the trees and improve

generalization.

6.1.1 Importance of Random Forest Algorithm

Random Forests offer several advantages that make them important in various

machine learning tasks:

• High Accuracy: Random Forests typically provide high accuracy in both

classification and regression tasks, making them suitable for a wide range

of applications.

• Robustness to Overfitting: The ensemble nature of Random Forests

helps to mitigate overfitting, making them less sensitive to noise and

outliers in the data compared to individual decision trees.

• Feature Importance: Random Forests can provide insights into feature

importance, helping users understand which features are most relevant

for prediction.

6.1.2 Limitations of Random Forest Algorithm

Despite their many advantages, Random Forests also have limitations that

should be considered:

• Interpretability: Random Forests can be challenging to interpret,

especially when dealing with a large number of trees and features.

Understanding how individual trees contribute to the overall prediction

can be complex.

• Computational Complexity: Training a Random Forest model can be

computationally expensive, especially with a large number of trees and

features. Additionally, hyperparameter tuning may require extensive

computational resources.

• Biased Toward Majority Classes: In classification tasks with

imbalanced class distributions, Random Forests may be biased toward

the majority classes, leading to suboptimal performance for minority

classes, organizations or individuals with limited resources.

29

6.2 Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised learning algorithm

used for classification, regression, and outlier detection tasks. It works by finding

the hyperplane that best separates the classes in the feature space while

maximizing the margin between the classes. SVMs are particularly effective in

high-dimensional spaces and are widely used in applications such as image

classification, text classification, and bioinformatics.

Figure 6.2: Kernel Trick for Support Vector Machine

SVM have several key components:

• Hyperplane: In SVM, the hyperplane is the decision boundary that

separates the classes in the feature space. For binary classification, the

hyperplane is defined as the line that maximizes the margin between the

closest data points of different classes, known as support vectors.

• Kernel Trick: SVM can efficiently handle nonlinear classification tasks

by mapping the input features into a higher-dimensional space using a

kernel function. This allows SVM to find a linear decision boundary in

the transformed feature space, even if the original feature space is

nonlinear.

• Support Vectors: Support vectors are the data points that lie closest to

the decision boundary and determine the position of the hyperplane.

These are the critical points that influence the margin and the decision

boundary.

30

6.2.1 Importance of Support Vector Machine

Support Vector Machines offer several advantages that make them important in

various machine learning tasks:

• Effective in High-Dimensional Spaces: SVMs perform well in high-

dimensional spaces, making them suitable for tasks with a large number

of features, such as text classification and image recognition.

• Robustness to Overfitting: SVMs are less prone to overfitting compared

to other classifiers, such as decision trees, especially when using a proper

regularization parameter.

• Versatility: SVMs can be used for both linear and nonlinear

classification tasks by choosing an appropriate kernel function. This

flexibility allows SVMs to handle a wide range of data types and

distributions.

6.2.2 Limitations of Support Vector Machine

Despite their advantages, Support Vector Machines also have limitations that

should be considered:

• Sensitivity to Parameter Tuning: SVM performance is sensitive to the

choice of hyperparameters, such as the regularization parameter (C) and

the choice of kernel function. Proper parameter tuning is essential for

achieving optimal performance.

• Limited Interpretability in Nonlinear Cases: SVMs with nonlinear

kernels can produce complex decision boundaries that are difficult to

interpret, especially in high-dimensional feature spaces. Understanding

the model's behavior may require additional techniques, such as feature

importance analysis.

• Difficulty Handling Large Datasets: SVM training time increases

significantly with the size of the dataset, making them less suitable for

very large datasets compared to other algorithms such as gradient

boosting machines.

6.3 XGBoost Algorithm

XGBoost (Extreme Gradient Boosting) is a scalable and efficient machine

learning algorithm used for supervised learning tasks, including classification,

31

regression, and ranking problems. It belongs to the family of gradient boosting

algorithms and has gained widespread popularity for its performance and

flexibility in various machine learning competitions and real-world applications.

XGBoost builds a predictive model by combining the predictions of multiple

weak learners, typically decision trees, in an additive manner. It iteratively

improves the model's performance by minimizing a loss function and adding new

trees that complement the existing ones.

Figure 6.3: Gradient Boosting process used in XGBoost

Key components of XGBoost include:

• Weak Learners: XGBoost uses decision trees as weak learners by

default, although it can also incorporate other types of base learners. Each

tree is trained to predict the residuals (errors) of the previous trees,

allowing XGBoost to correct mistakes made by earlier trees.

• Gradient Boosting: XGBoost employs a gradient boosting framework,

where each new tree is trained to minimize the gradient of the loss

function with respect to the model's predictions. This approach enables

XGBoost to effectively handle complex nonlinear relationships in the

data.

• Regularization: XGBoost includes several regularization techniques to

prevent overfitting and improve generalization performance. These

techniques include shrinkage (learning rate), tree depth regularization,

and feature subsampling.

32

6.3.1 Importance of XGBoost Algorithm

XGBoost offers several advantages that make it an important tool in machine

learning:

• High Performance: XGBoost consistently achieves state-of-the-art

performance on a wide range of machine learning tasks, including

classification, regression, and ranking. Its ensemble approach and

regularization techniques help prevent overfitting and improve predictive

accuracy.

• Flexibility: XGBoost supports various objective functions and evaluation

metrics, allowing users to customize the model's behavior based on the

specific task and dataset. It can handle both categorical and numerical

features and is robust to missing data.

• Interpretability: Despite its complexity, XGBoost provides insights into

feature importance and model behavior through built-in visualization

tools and feature importance scores. This transparency helps users

understand the model's decision-making process and identify key factors

driving predictions.

6.3.2 Limitations of XGBoost Algorithm

Despite its many advantages, XGBoost also has some limitations to consider:

• Hyperparameter Tuning: XGBoost requires careful tuning of

hyperparameters such as tree depth, learning rate, and regularization

parameters to achieve optimal performance.

• Computational Resources: Training XGBoost models can be resource-

intensive, particularly when using large ensembles of trees or complex

feature engineering. It may require significant computational resources

and memory, especially for distributed training on clusters.

• Overfitting: Like other ensemble learning methods, XGBoost is

susceptible to overfitting, especially when using large ensembles of trees

or high-dimensional feature spaces.

33

6.4 Majority Voting Algorithm

Majority Voting Algorithm is a simple yet effective ensemble learning method.

Ensemble learning involves combining the predictions of multiple models to create

a more robust and reliable final prediction. In Majority Voting, a group of diverse

machine learning models is trained on the same dataset, each employing unique

algorithms or techniques. When it's time to make a prediction, each model casts its

vote for the outcome, and the final prediction is determined by the majority's

decision.

Figure 6.4: Majority Voting

6.4.1 Importance of Majority Voting Algorithm

The Majority Voting Algorithm offers several benefits and finds applications in

various domains:

• The primary advantage of the Majority Voting Algorithm is its ability to

improve prediction accuracy. Combining the predictions from multiple models

leverages the strengths and compensates for the weaknesses of individual

models. The aggregated prediction tends to be more reliable and robust,

resulting in enhanced overall accuracy.

• Different machine learning models may have inherent biases due to their

design or training data. By utilizing the Majority Voting Algorithm, these

biases can be mitigated or even eliminated to a certain extent. The algorithm

ensures that predictions are based on a diverse set of models, reducing the

influence of individual biases and promoting fair and unbiased decision-

making.

• The Majority Voting Algorithm enhances the robustness of machine learning

systems. It reduces the risk of making incorrect predictions caused by the

instability or limitations of individual models. By combining predictions, the

algorithm creates a more stable and reliable decision-making framework that

can handle diverse data patterns and adapt to different scenarios.

• In situations where individual models produce conflicting predictions or have

34

uncertainties, the Majority Voting Algorithm provides a mechanism to handle

such uncertainties effectively. It considers the collective opinion of multiple

models, which helps in making more informed decisions and reducing the

impact of individual model variations or outliers.

• The Majority Voting Algorithm is flexible and compatible with various

machine learning models and algorithms. It can be applied to both

classification and regression problems, accommodating a wide range of

applications. This versatility makes it suitable for diverse domains and allows

integration with existing machine-learning pipelines.

6.4.2 Limitations of Majority Voting Algorithm

The majority voting algorithm, which combines the predictions of multiple base

classifiers to make a final decision, has several disadvantages:

• Sensitivity to Imbalanced Data: Majority voting can be biased towards the

majority class in imbalanced datasets. If one class heavily outweighs the

others, the majority voting scheme may tend to predict that class more

frequently, leading to poor performance on minority classes.

• Equal Weighting of Classifiers: In majority voting, each base classifier is

typically given equal weight regardless of its individual performance. This

can be problematic if some classifiers are consistently more accurate or

reliable than others. In such cases, the influence of weaker classifiers may

negatively impact the final decision.

• Inefficiency with Large Number of Classes: As the number of classes

increases, the probability of ties in the voting process also increases.

Resolving ties can become computationally expensive and may require

additional measures to break ties effectively.

• Lack of Probabilistic Interpretation: Majority voting does not provide a

probabilistic interpretation of the final decision. Instead, it simply outputs the

most frequent class label without indicating the confidence or uncertainty

associated with the prediction. This lack of probabilistic information may be

crucial in certain applications where understanding the confidence level of

predictions is essential.

35

Chapter 7 UML Diagrams

7.1 Use Case Diagram

A use case diagram is used to represent the dynamic behavior of a system. It

encapsulates the system's functionality by incorporating use cases, actors, and

their relationships. It models the tasks, services, and functions required by a

system/subsystem of an application. It depicts the high-level functionality of a

system and also tells how the user handles a system.

7.1.1 Purpose of Use Case Diagram

The main purpose of a use case diagram is to portray the dynamic aspect of a

system. Itaccumulates the system's requirement, which includes both internal as

well as external influences. It invokes persons, use cases, and several things that

invoke the actors and elements accountable for the implementation of use case

diagrams. It represents how anentity from the external environment can interact

with a part of the system.

Following are the purposes of a use case diagram given below:

• It gathers the system's needs.

• It depicts the external view of the system.

• It represents the interaction between the actors.

Figure 7.1: Use Case Diagram

36

7.2 Class Diagram

Class diagram is a static diagram. It represents the static view of an application.

Class diagram is not only used for visualizing, describing, and documenting

different aspectsof a system but also for constructing executable code of the

software application.

Class diagram describes the attributes and operations of a class and also the

constraintsimposed on the system. The class diagrams are widely used in the

modelling of object-oriented systems because they are the only UML diagrams,

which can be mapped directly with languages.

Class diagrams can also include other elements, such as interfaces, abstract

classes, andpackages, which help to further organize and clarify the relationships

between classes in a software system.

7.2.1 Purpose of Class Diagram

The purpose of class diagram is to model the static view of an application. Class

diagrams are the only diagrams which can be directly mapped with object-

oriented languages and thus widely used at the time of construction.

UML diagrams like activity diagram, sequence diagram can only give the

sequence flowof the application, however class diagram is a bit different. It is the

most popular UMLdiagram in the coder community.

The Purpose of the class diagram can be summarized as:

1. Describe responsibilities of a system.

2. Base for component and deployment diagrams.

3. Forward and reverse engineering.

Figure 7.2: Class Diagram

37

7.3 Sequence Diagram

Sequence diagram is an event diagram. It reveals the circulation of messages in

between various things or elements with time plus is commonly made use of to

design the habits of a solitary usage instance. They work for developing as well

as connecting the circulation of messages in between items in a software program

system plus for recognizing possible issues or traffic jams in the system's actions.

In a series diagram the items are stood for as upright lifelines which diminish the

size of the representation. Messages in between things are stood for as

arrowheads that attach the lifelines with the message name as well as

specifications composed over the arrowhead.

The order of the messages is revealed by their placement on the representation,

with earlier messages on top plus later on messages near the bottom. Time is

revealed horizontally with the left side of the representation standing for the

beginning of the series plus the ideal side standing for the end.

7.3.1 Purpose of Sequence Diagram

The purpose of a sequence diagram is to visualize the interactions between

objects in asoftware system over time. It shows the order in which messages are

exchanged betweenobjects or components in a system, and can be used to model

the behavior of a single use case or scenario.

Following are the purposes of a sequence diagram given below:

• Designing and modelling the behavior of a software system.

• Communicating system behavior to stakeholders.

• Testing and debugging.

Figure 7.3: Sequence Diagram

38

7.4 Activity Diagram

Activity diagrams are a type of diagram used in software engineering and

business process modeling to visualize the flow of activities involved in a system

or process. These representations are for analyzing, creating, and recording

processes as well as for communicating complex procedures to stakeholders.

The task templates are composed of nodes and edges. Nodes may stand for

activities, decisions or other events in the system or process being modeled while

edges represent the control flow between these nodes.

Tasks can be represented with different kinds of nodes, such as:

1. Initial node: Represents a starting point of the process or a system.

2. Activity node: Represents an activity or work that is performed as part of

the process.

3. Decision node: Represents a place where one follows another depending

on certain condition(s) only.

4. Join node: One place in which more than one path in the process come

together again into a single path

5. Final node: Represents end point for either system or process

In task diagrams edges can be object flows or control flows. Control flow denotes

how control moves between nodes while object flows denote how data or things

move from one node to another

7.4.1 Purpose of Activity Diagram

The purpose of an activity diagram is to provide a visual representation of a

system or process, making it easier to understand and analyze.

Here are some key points about the purpose of activity diagrams:

• Visualizing complex processes and workflows

• Improving communication and collaboration among stakeholders

• Analyzing the efficiency of a process and identifying potential

bottlenecks orareas for improvement

• Designing new systems or processes by testing different scenarios

andidentifying the best approach

39

• Documenting existing systems or processes to make it easier to

maintain andupdate them over time.

Figure 7.4: Activity Diagram

40

Chapter 8 Dataset Details

8.1 CHBMIT Dataset

The EEG data for training models in this study was obtained from the CHB-MIT

Database. One of the most popular freely available EEG datasets for seizure

detection and prediction is the CHB-MIT dataset. The CHB-MIT dataset consists

of 22 pediatric patients' continuous scalp EEG recordings arranged into 23 cases.

All signals are recorded at a resolution of 16 bits at 256 samples per second and

the majority of the files contain recordings of 23 EEG channels. Annotations

detailing the start and end of each seizure are included in the dataset. The

prediction task typically views the period of time preceding each onset as the

preictal stage. The Electroencephalography (EEG) dataset can be accessed by

navigating through the directory. The dataset consists of raw EEG recordings

saved in EDF format.

First, preprocessing involved extracting data from the CHB-MIT Scalp EEG

Database, which was made available via PhysioNet in the European data format

edf. Compatibility and accessibility are guaranteed by this format, which also

includes metadata regarding epileptic periods in the dataset. The edf files were

carefully used to extract the voltage levels from the EEG electrodes, which served

as the basis for further preprocessing procedures. The process of annotating and

classifying ictal and preictal states was carried out using the comprehensive data

included in the edf files, guaranteeing that both states were fairly represented. To

enable accurate labelling and further analysis, separate files were kept for the

ictal and preictal periods.

During the last stage of preprocessing, discrete states were defined for further

analysis by carefully labelling data points that represented preictal and non pre

ictal states with '0' and '1' respectively.

Figure 8.1: Distribution of Preictal and Non-Preictal classes

41

8.2 Dataset Splitting

Training Set (70%): Enriched with a diverse range of EEG patterns, including

both normal and seizure activities, the training set forms the foundation for the

model to learn and generalize.

Validation Set (15%): This set acts as an intermediate checkpoint during the

training process. Models are evaluated on this dataset to gauge their performance

and make adjustments, preventing overfitting to the training data.

Testing Set (15%): Kept entirely separate until the model is fully trained, the

testing set serves as an unbiased benchmark to assess the model's real-world

predictive capabilities. It provides insights into the model's ability to generalize to

unseen data, especially concerning seizure detection.

Figure 8.2: Dataset Splitting

42

Chapter 9 Codes

9.1 Code for Data Acquisition

LOADING THE DATASET

#In[1]:

import mne

import os

patient_folder = 'C:/Users/Admin/Desktop/Major Project/Final-Year-Project-

ML/Dataset/'combined_fif_path = os.path.join(patient_folder,

'Combined_eeg.fif')

if os.path.exists(combined_fif_path):

try:

raw_data_combined = mne.io.read_raw_fif(combined_fif_path,
preload=True)

print("Combined data loaded into memory successfully.")

except Exception as e:

print(f"Error loading combined file: {e}")

else:

print(f"Combined file not found at: {combined_fif_path}. Please check the

file path.")

#Out[1]:

#In[2]:

info_combined = raw_data_combined.info

print(info_combined)

raw_data_combined.plot(n_channels=30, duration=20, scalings={'eeg': 50e-6})

plt.show()

43

#Out[2]:

#In[3]:

raw_data_combined.plot_psd(fmax=50, average=True)

plt.show()

#Out[3]:

44

#In[4]:

Mark channels as bad

raw_data_combined.info['bads'] = ['SPO2', 'HR', 'MK']

Plot PSD

raw_data_combined.plot_psd(fmax=50, average=True)

plt.show()

#Out[4]:

9.2 Code for Feature Extraction

#In[5]:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from keras.models import Sequential

from keras.layers import Conv1D, MaxPooling1D, LSTM, Dense, Flatten

Load the CSV dataset

dataset = pd.read_csv('D:/Project/new.csv')

X = dataset.iloc[:, :-1].values # Features

y = dataset.iloc[:, -1].values # Outcome

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Standardize the features

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

45

Reshape the features for CNN input (assuming each sample has 23 channels)

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)

Define the CNN-LSTM model

model = Sequential()

Convolutional layers

model.add(Conv1D(filters=32, kernel_size=3, activation='relu',

input_shape=(X_train.shape[1], 1)))

model.add(MaxPooling1D(pool_size=2))

model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

LSTM layer

model.add(LSTM(units=50, return_sequences=True))

model.add(LSTM(units=50))

Dense layers

model.add(Dense(units=64, activation='relu'))

model.add(Dense(units=1, activation='sigmoid'))

Compile the model

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

Train the model

model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test,

y_test))

Evaluate the model

loss, accuracy = model.evaluate(X_test, y_test)

print(f'Test Loss: {loss}, Test Accuracy: {accuracy}')

Extract features using the trained model

feature_extractor = Sequential(model.layers[:-1]) # Exclude the output layer

X_train_features = feature_extractor.predict(X_train)

X_test_features = feature_extractor.predict(X_test)

Now you can use the extracted features for further analysis or classification tasks

#Out[5]:

46

9.3 Code for Model Training and Evaluation

#In[6]:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from xgboost import XGBClassifier

from sklearn.feature_selection import SelectFromModel

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

Load the CSV dataset

dataset = pd.read_csv('D:/Project/all.csv')

Handling missing values

dataset.dropna(inplace=True) # Drop rows with missing values

Assuming 'data.csv' contains your dataset

X = dataset.iloc[:, :-1].values # Features

y = dataset.iloc[:, -1].values # Outcome

Split the dataset into training, validation, and testing sets

X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3,

random_state=42)

X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5,

random_state=42)

Feature selection using Random Forest Feature Importance

feat_selector = SelectFromModel(RandomForestClassifier(n_estimators=100,

random_state=42))

X_train_selected = feat_selector.fit_transform(X_train, y_train)

X_val_selected = feat_selector.transform(X_val)

X_test_selected = feat_selector.transform(X_test)

Individual classifiers

rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)

svm_clf = SVC(kernel='rbf', gamma='scale')

xgb_clf = XGBClassifier()

Train the models

rf_clf.fit(X_train_selected, y_train)

svm_clf.fit(X_train_selected, y_train)

xgb_clf.fit(X_train_selected, y_train)

Predictions on validation set

rf_val_pred = rf_clf.predict(X_val_selected)

svm_val_pred = svm_clf.predict(X_val_selected)

xgb_val_pred = xgb_clf.predict(X_val_selected)

Combine predictions using weighted average voting

ensemble_preds_val = np.array([rf_val_pred, svm_val_pred, xgb_val_pred])

Define weights for each classifier

47

weights = np.array([0.4, 0.3, 0.5]) # Example weights, you can adjust as needed

weights = weights.reshape(-1, 1) # Reshape weights to match

ensemble_preds_val shape

Calculate weighted average for validation set

weighted_sum_val = np.sum(ensemble_preds_val * weights, axis=0)

Round the weighted sum to the nearest integer to get the majority vote

majority_vote_val = np.round(weighted_sum_val).astype(int)

Calculate accuracy on validation set

ensemble_accuracy_val = accuracy_score(y_val, majority_vote_val)

print(f'Ensemble Accuracy on Validation Set: {ensemble_accuracy_val}')

Predictions on testing set

rf_test_pred = rf_clf.predict(X_test_selected)

svm_test_pred = svm_clf.predict(X_test_selected)

xgb_test_pred = xgb_clf.predict(X_test_selected)

Combine predictions using weighted average voting for testing set

ensemble_preds_test = np.array([rf_test_pred, svm_test_pred, xgb_test_pred])

Calculate weighted average for testing set

weighted_sum_test = np.sum(ensemble_preds_test * weights, axis=0)

Round the weighted sum to the nearest integer to get the majority vote

majority_vote_test = np.round(weighted_sum_test).astype(int)

Calculate accuracy on testing set

ensemble_accuracy_test = accuracy_score(y_test, majority_vote_test)

print(f'Ensemble Accuracy on Testing Set: {ensemble_accuracy_test}')

Classification report and confusion matrix for ensemble classifier on testing set

print("Ensemble Classifier Metrics on Testing Set:")

print(classification_report(y_test, majority_vote_test))

print("Confusion Matrix:")

print(confusion_matrix(y_test, majority_vote_test))

#Out[6]:

48

9.4 Code for Web Application

#In[15]:

import streamlit as st

import pickle

import numpy as np

model = pickle.load(open('EE_model.pkl', 'rb'))

def risk_potability_prediction(input_data):

input_as_array = np.array(input_data).reshape(1,-1)

prediction = model.predict(input_as_array)[0]

return prediction

def main():

st.set_page_config(page_title='EEG - Based Epileptic Seizure Prediction',

page_icon=':potable_water:')

st.title('EEG - Based Epileptic Seizure Prediction')

st.write('This app predicts Epileptic Seizure Prediction')

st.subheader('Epileptic Seizure Prediction')

mar = st.number_input('# FP1-F7', format="%.7f", min_value=0.0,

max_value=100.0, value=7.0, step=0.1)

deb = st.number_input('C3-P3', format="%.7f", min_value=0.0, value=50.0,

step=1.0)

dis = st.number_input('P3-O1', format="%.7f", min_value=0.0, value=50.0,

step=1.0)

gen = st.number_input('P4-O2', format="%.7f", min_value=-0.0000303,

value=50.0, step=1.0)

crs = st.number_input('P7-O1', format="%.7f", min_value=0.0,

max_value=1000.0, step=1.0)

gdp = st.number_input('P7-T7', format="%.7f", min_value=-0.0000303,

value=50.0, step=1.0)

pqg = st.number_input('T8-P8-0', format="%.7f", min_value=0.0, value=50.0,

step=1.0)

pqg1 = st.number_input('T8-P8-1', format="%.7f", min_value=0.0, value=50.0,

step=1.0)

try:

prediction = risk_potability_prediction(input_data)

if prediction == 0:

st.error('The Patient is affected by Epileptic Seizure.')

else:

st.success('The Patient is not affected by Epileptic Seizure.')

except Exception as e:

st.error(f"An error occurred: {str(e)}")

st.write('---')

49

if name == ' main ':

main()

#Out[16]:

50

51

Chapter 10 Experimental Analysis and Results

10.1 Evaluation Metrics

#In[7]:

print("Ensemble Classifier Metrics on Validation Set:")

print(classification_report(y_val, majority_vote_val))

print("Confusion Matrix:")

print(confusion_matrix(y_val, majority_vote_val))

#Out[7]:

#In[8]:

from sklearn.metrics import accuracy_score, precision_score, recall_score,

f1_score, confusion_matrix

Accuracy

accuracy = accuracy_score(y_test, majority_vote_test)

print(f'Accuracy: {accuracy}')

Precision

precision = precision_score(y_test, majority_vote_test)

print(f'Precision: {precision}')

Recall (Sensitivity)

recall = recall_score(y_test, majority_vote_test)

print(f'Recall: {recall}')

F1 Score

f1 = f1_score(y_test, majority_vote_test)

print(f'F1 Score: {f1}')

Confusion Matrix

conf_matrix = confusion_matrix(y_test, majority_vote_test)

print('Confusion Matrix:')

52

print(conf_matrix)

#Out[8]:

#In[9]:

Specificity

specificity = conf_matrix[0, 0] / (conf_matrix[0, 0] + conf_matrix[0, 1])

print(f'Specificity: {specificity}')

#Out[9]:

#In[10]:

False Positive Rate (FPR)

fpr = conf_matrix[0, 1] / (conf_matrix[0, 1] + conf_matrix[0, 0])

print(f'False Positive Rate (FPR): {fpr}')

#Out[10]:

#In[11]:

False Negative Rate (FNR)

fnr = conf_matrix[1, 0] / (conf_matrix[1, 0] + conf_matrix[1, 1])

print(f'False Negative Rate (FNR): {fnr}')

#Out[11]:

53

#In[12]:

from sklearn.metrics import roc_curve, auc

import matplotlib.pyplot as plt

Compute ROC curve and ROC area for each class

fpr, tpr, _ = roc_curve(y_test, majority_vote_test)

roc_auc = auc(fpr, tpr)

Plot ROC curve

plt.figure()

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %

roc_auc)

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve')

plt.legend(loc='lower right')

plt.show()

Print AUC-ROC score

print(f'AUC-ROC Score: {roc_auc}')

#Out[12]:

54

#In[13]:

from sklearn.metrics import precision_recall_curve, average_precision_score

Compute precision-recall curve and AP score for each class

precision, recall, _ = precision_recall_curve(y_test, majority_vote_test)

ap = average_precision_score(y_test, majority_vote_test)

Plot precision-recall curve

plt.figure()

plt.step(recall, precision, color='b', alpha=0.2, where='post')

plt.fill_between(recall, precision, step='post', alpha=0.2, color='b')

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.ylim([0.0, 1.05])

plt.xlim([0.0, 1.0])

plt.title('Precision-Recall Curve')

plt.show()

Print Average Precision (AP) score

print(f'Average Precision (AP): {ap}')

#Out[13]:

55

#In[14]:

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix

Compute confusion matrix

conf_matrix = confusion_matrix(y_test, majority_vote_test)

Plot confusion matrix

plt.figure(figsize=(8, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False)

plt.title('Confusion Matrix')

plt.xlabel('Predicted Labels')

plt.ylabel('True Labels')

plt.show()

#Out[14]:

56

Chapter 11 Installations

11.1 Introduction

The implementation phase is a crucial stage in the software development life

cycle. Thisphase involves the actual implementation of the project plan that was

developed during the previous stages, such as the requirement gathering and

analysis phase and the designphase. In other words, it is the phase where the

project plan is put into action.

The execution stage usually begins when a substantial part of the code for the

program has actually been composed. Now the group in charge of execution

concentrates on equating the needs defined in the need stage right into a sensible

framework that can be applied in a program’s language. This includes creating

code together with creating formulas that fulfill the requirements detailed in the

job strategy.

In our task, we have actually chosen to take advantage of both Jupyter Notebook

as well as Spyder as our Integrated Development Environments (IDEs) for

coding jobs. Jupyter Notebook supplies an easy-to-use user interface for code

make-up as well as implementation, promoting smooth partnership within our

group. Additionally, Spyder an open-source IDE customized for clinical shows

in Python, enhances our toolkit with its effective functions as well as abilities.

By using both Jupyter Notebook as well as Spyder we guarantee adaptability

together with effectiveness in our growth operations encouraging our group to

take on varied difficulties easily.

11.2 Tools Used

11.2.1 Jupyter Notebook

Our Integrated Development Environment (IDE) was Jupyter Notebook. A web-

based environment used frequently in data science and machine learning projects

is Jupyter Notebook. With its help, anyone can create and share documents with

code samples, formulas, illustrations, and explanatory text. Moreover, Python,

R, Julia, and other programming languages are supported by Jupyter Notebook.

The interface isuser-friendly and features a web browser-based editor that makes

it easy to write and execute code. The notebook layout consists of cells that hold

either code or text allowing for an organization of code, into sections. Jupyter

Notebook includes integrated features for visualizing data through tools like

Matplotlib and Seaborn simplifying the creation of charts and graphs, within the

notebook itself.

57

11.2.2 Spyder

Spyder is an environment that's available, for free and open source. It is created

in Python by scientists, engineers and data analysts for their use. The platform

offers a blend of editing, analysis, debugging and profiling tools similar to those

found in development software. Additionally, it provides features for data

exploration, interactive execution, deep inspection and visually appealing data

visualization. Making it a versatile tool, for work.

11.3 Libraries Used

11.3.1 Numpy

NumPy, short, for python is a Python library used for computing and handling

arrays with dimensions or just one dimension. It's an open-source Python library

known as Numerical Python. It is designed to perform complex mathematical,

image processing, quantum computing, and statistical operations, etc., on

matrices and multidimensional arrays.

11.3.2 Pandas

Pandas is a Python library used for working with data sets. It has functions for

analyzing, cleaning, exploring, and manipulating data. Pandas allows us to

analyze big data and make conclusions based on statistical theories. Pandas can

clean messy data sets, and make them readable and relevant. Relevant data is

very important in data science.

11.3.3 Matplotlib

Matplotlib is an amazing visualization library in Python for 2D plots of arrays.

Matplotlib is a multi-platform data visualization library built on NumPy arrays

and designed to work with the broader SciPy stack. Matplotlib is a cross-

platform, data visualization and graphical plotting library for Python and its

numerical extension NumPy. As such, it offers a viable open-source alternative

to MATLAB. Developers can also use matplotlib's APIs (Application

Programming Interfaces) to embed plots inGUI applications.

11.3.4 Seaborn

Seaborn is a library that uses Matplotlib underneath to plot graphs. It will be used

to visualize random distributions. Seaborn is a library for making statistical

graphics in Python. It builds on top of matplotlib and integrates closely with

pandas data structures.Seaborn helps you explore and understand your data.

58

11.3.5 Sklearn

Scikit-learn (Sklearn) is the most useful and robust library for machine learning

in Python. It offers a variety of tools, for machine learning and statistical

analysis, such as classification, regression, clustering and dimensionality

reduction through an interface, in Python.

11.3.6 Keras

Keras is a high-level neural network API developed in Python that may be used

with TensorFlow, CNTK, or Theano. It offers a simple interface for creating deep

learning models and enables quick and easy experimentation. Keras includes a

large number of pre-built layers, loss functions, and optimizers that may be

simply coupled to create a custom deep learning model.

11.3.7 Tensorflow

TensorFlow is an open-source software library that supports dataflow and

differentiable programming across a variety of activities. It is utilized in machine

and deep learning applications like as neural networks, natural language

processing, and computer vision. TensorFlow offers both a low-level API for

creating custom deep learning models and high-level APIs like Keras, which

make it easier to construct and train deep learning models.

11.3.8 MNE

MNE-Python is an open-source Python package that processes, analyzes, and

visualizes functional neuroimaging data (EEG, MEG, sEEG, ECoG, and fNIRS).

Depending on your analytic requirements, you may choose to install a number

of related or compatible software programs.

59

Chapter 12 Conclusion and Future Score

12.1 Conclusion

In conclusion, our project has successfully developed an advanced epileptic

seizure prediction system leveraging ensemble learning techniques applied to

EEG signals. Utilizing a diverse preprocessed dataset sourced from the CHB-

MIT database, our approach combined deep learning models such as CNN and

LSTM with traditional classifiers including XGBoost, SVM, and RF. The

ensemble classifier exhibited robust performance, achieving notable results on

both the validation and testing sets: an accuracy of approximately 94.77% on the

validation set and 94.73% on the testing set. Precision, recall, and F1-scores

remained consistently high for both seizure and non-seizure instances. This

model's accurate prediction of impending seizures provides a crucial opportunity

for timely intervention, empowering individuals with epilepsy to take necessary

precautions. Through meticulous analysis and evaluation of prediction results,

we have gained valuable insights into the model's behavior and identified areas

for potential improvement. Overall, our ensemble-based seizure prediction

method shows potential for improving the quality of life for people with epilepsy,

contributing to better healthcare outcomes, and meeting an urgent societal need.

12.2 Future Scope

Within the domain of epilepsy intervention, our ensemble-based epileptic seizure

prediction model represents a major intermediate step towards further development

and generalization with yet unexplored barriers and prospects. In hindsight, the

following areas of potential exploration and improvement can be pinpointed.

Making the model capable of real-time predictions can be a major step towards

patient-centric healthcare, as it could be implemented with wearable EEG devices

and smartphone apps for immediate notification and possible emergency actions for

the individual. Alternative techniques of feature engineering such as multi-modal

data integration and individual model formulation also appear to be a possibility.

Clinical validation and integration with the help of healthcare professionals are

particularly important for regulatory approval and broader adoption. In addition, a

commitment to the highest levels of interpretability and explainability of the

model’s predictions will result in greater transparency and acceptance by clinicians

and patients. Efforts dedicated to ensuring the model is improved continually and

expanded globally are critical for the future of epilepsy and health equity

worldwide. Thus, by supporting various ways to innovate and collaborate, we can

achieve further progress in epilepsy management and significantly improve the

lives of those living with epilepsy.

60

References

1. Mohamad Shahbazi, Hamid Aghajan (2018). A Generalizable Model for

Seizure Prediction Based on Deep Learning using CNN-LSTM

Architecture, 11.

2. Ziyu Wang, Jie Yang, Mohamad Sawan (2021). A Novel Multi-Scale

Dilated 3D CNN for Epileptic Seizure Prediction, 4.

3. N. N. Saranya, D. Karthika Renuka, R. Geetha Rajakumari (2021).

Ensemble Classification for Epileptic Seizure Prediction, 5.

4. Felix George, Alex Joseph, Bibin Baby, Alex John, Tonny John, M

Deepak, G Nithin, P.S. Sathidevi (2020). Epileptic Seizure Prediction

using EEG Images, 4.

5. Ruyan Wang, Linhai Wang, Peng He, Yaping Cui, Dapeng Wu (2022).

Epileptic Seizure Prediction Based on Unsupervised Learning for Feature

Extraction, 6.

6. Tian Yu, Boyuan Cui, Yaqian Xu, Xilin Liu (2023). Refine EEG

Spectrogram Synthesized by Generative Adversarial Network for

Improving the Prediction of Epileptic Seizures, 4.

7. Milind Natu, shilpa Gite, Mrinal Bachute, Ketan Kotecha (2022). Review

on Epileptic Seizure Prediction: Machine Learning and Deep Learning

Approaches, 7.

8. Xiaoyan Wei, Lin Zhou, Zhen Zhang, Ziyi Chen, Yi Zhou (2019). Early

prediction of epileptic seizures using a long-term recurrent convolutional

network, 5.

9. Usman, S. M. Khalid, S Akhtar, R. Bortolotto, Z. Bashir, Zamp Qiu. Using

scalp EEG and intracranial EEG signals for predicting epileptic seizures:

Review of available methodologies, 8.

10. Anibal Romney, Vidya Manian (2021). Optimizing Seizure Prediction

from Reduced Scalp EEG Channels Based on Spectral Features and

MAML, 6.

11. Prosper Chiemezuo, Noble-Nnakenyi, Kehinde Adebola Olatunji,

Oluwatoyin Bunmi Abiola, Abiodun Oguntimilehin (2022). Predicting

Epileptic Seizures using Ensemble Method, 7.

12. Nhan Duy Truong, Levin Kuhlmann, Mohammad Reza Bonyadi, Damien

Querlioz, Luping Zhou, Omid Kavehei (2019). Epileptic Seizure

Forecasting with Generative Adversarial Networks, 9.

61

13. Tian Yu, Boyuan Cui, Yaqian Xu, Xilin Liu (2019). Epileptic Seizure

Prediction with Multi-View Convolutional Neural Networks, 10.

14. Simin Khalilpour, Amin Ranjbar, Mohammad Bagher Menhaj, Afshin

Sandooghdar (2020). Application of 1-D CNN to Predict Epileptic

Seizures using EEG Records, 11.

15. Khansa Rasheed, Junaid Qadir, Senior Member, Levin Kuhlmann, and

Adeel Razi (2021). A Generative Model to Synthesize EEG Data for

Epileptic Seizure Prediction, 11.

16. Xiang Lu, Anhao Wen, Lei Sun; Hao Wang, Yinjing Guo, Yande Ren

(2023). An Epileptic Seizure Prediction Method Based on CBAM-3D

CNN-LSTM Model, 9.

17. Burak Gözütok, Ahmet Ademoülu (2021). Epileptic Seizure Prediction

Using Convolutional Autoencoder Based Deep Learning,8.

18. Ahmed M. Abdelhameed, Magdy Bayoumi (2018). Semi-Supervised Deep

Learning System for Epileptic Seizures Onset Prediction, 6.

19. Varsha K. Harpale; Vinayak K. Bairagi (2016). Time and frequency

domain analysis of EEG signals for seizure detection: A review, 9.

20. Khansa Rasheed, Adnan Qayyum, Junaid Qadir, ShobiSivathamboo,

Patrick Kwan, Levin Kuhlmann, TerenceO’Brien , and Adeel Razi.

Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A

Review,11.

62

63

64

65

66

67

68

69

70

71

