/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 8 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 9 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:386: UserWarning: Contrasts will be padded with 8 column(s) of zeros.
contrast_plot = plot_contrast_matrix(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:545: UserWarning: One contrast given, assuming it for all 2 runs
contrast_id: model.compute_contrast(
/home/remi/github/nilearn/nilearn/nilearn/glm/contrasts.py:108: UserWarning: t contrasts should be of length P=13, but it has length 4. The rest of the contrast was padded with zeros.
reg = regression_result[label_].Tcontrast(con_val)
/home/remi/github/nilearn/nilearn/nilearn/glm/contrasts.py:108: UserWarning: t contrasts should be of length P=13, but it has length 5. The rest of the contrast was padded with zeros.
reg = regression_result[label_].Tcontrast(con_val)
/home/remi/github/nilearn/nilearn/nilearn/glm/contrasts.py:159: UserWarning: Running approximate fixed effects on F statistics.
contrast = contrast_ if contrast is None else contrast + contrast_
/home/remi/github/nilearn/nilearn/nilearn/glm/thresholding.py:297: UserWarning: The given float value must not exceed 5.362553223226531. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/plotting/displays/_slicers.py:308: UserWarning: empty mask
ims = self._map_show(img, type="imshow", threshold=threshold, **kwargs)
/home/remi/github/nilearn/nilearn/nilearn/reporting/get_clusters_table.py:302: UserWarning: The given float value must not exceed 0.0. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:804: UserWarning: Attention: No clusters with stat higher than inf
cluster_table = get_clusters_table(
/home/remi/github/nilearn/nilearn/nilearn/glm/thresholding.py:297: UserWarning: The given float value must not exceed 5.362553223226531. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/plotting/displays/_slicers.py:308: UserWarning: empty mask
ims = self._map_show(img, type="imshow", threshold=threshold, **kwargs)
/home/remi/github/nilearn/nilearn/nilearn/reporting/get_clusters_table.py:302: UserWarning: The given float value must not exceed 0.0. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:804: UserWarning: Attention: No clusters with stat higher than inf
cluster_table = get_clusters_table(
/home/remi/github/nilearn/nilearn/nilearn/plotting/displays/_slicers.py:308: UserWarning: empty mask
ims = self._map_show(img, type="imshow", threshold=threshold, **kwargs)
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:804: UserWarning: Attention: No clusters with stat higher than 5.612143001639011
cluster_table = get_clusters_table(
/home/remi/github/nilearn/nilearn/nilearn/glm/thresholding.py:297: UserWarning: The given float value must not exceed 5.00088566146746. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/plotting/displays/_slicers.py:308: UserWarning: empty mask
ims = self._map_show(img, type="imshow", threshold=threshold, **kwargs)
/home/remi/github/nilearn/nilearn/nilearn/reporting/get_clusters_table.py:302: UserWarning: The given float value must not exceed 0.0. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:804: UserWarning: Attention: No clusters with stat higher than inf
cluster_table = get_clusters_table(
/home/remi/github/nilearn/nilearn/nilearn/glm/thresholding.py:297: UserWarning: The given float value must not exceed 4.286556053855873. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/plotting/displays/_slicers.py:308: UserWarning: empty mask
ims = self._map_show(img, type="imshow", threshold=threshold, **kwargs)
/home/remi/github/nilearn/nilearn/nilearn/reporting/get_clusters_table.py:302: UserWarning: The given float value must not exceed 0.0. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:804: UserWarning: Attention: No clusters with stat higher than inf
cluster_table = get_clusters_table(
/home/remi/github/nilearn/nilearn/nilearn/glm/thresholding.py:297: UserWarning: The given float value must not exceed 4.549330149357348. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/plotting/displays/_slicers.py:308: UserWarning: empty mask
ims = self._map_show(img, type="imshow", threshold=threshold, **kwargs)
/home/remi/github/nilearn/nilearn/nilearn/reporting/get_clusters_table.py:302: UserWarning: The given float value must not exceed 0.0. But, you have given threshold=inf.
stat_img = threshold_img(
/home/remi/github/nilearn/nilearn/nilearn/reporting/glm_reporter.py:804: UserWarning: Attention: No clusters with stat higher than inf
cluster_table = get_clusters_table(
/home/remi/github/nilearn/nilearn/nilearn/plotting/html_document.py:102: UserWarning: It seems you have created more than 10 nilearn views. As each view uses dozens of megabytes of RAM, you might want to delete some of them.
warnings.warn(