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Introduction to 
semantic meta-
modeling with 
Thinklab: a user’s 
guide.
Modeling is the production of simulated observations of a system, meant to
help understand its structure or behavior. Armed with the power of creating
such observations, we can visualize and analyze the results of choices we 
could make in real life before we actually make them. Modelling practice 
has advanced to a point where very complex models can be described 
succinctly using sophisticated mathematics. This sophistication, however, 
usually applies to the mathematical instruments used but does not extend to
the semantics (conceptual description) of the systems under investigation. 
The conceptual view of the system incorporated in a model is usually very 
basic: time may be a number starting from zero, initial conditions are three-
letter “variable” identifiers hidden in configuration files that change 
completely for each model, etc. The lack of a solid, systematic and self-
consistent conceptual description of the system modeled stands in the way 
of model integration, internal consistency checking, communication and 
validation of model structure, and ability to reuse models in different 
contexts or together with others. All this diminishes the value of existing 
models to the point that they can often only be used effectively by their 
developers. Unless you have written a particular model (and you have done
it yesterday) extending or upgrading it is often difficult, time-consuming 
and fraught with doubt about what the various model components actually 
mean.

This documentation is an initial attempt to describe semantic meta-
modeling, a methodology that uses explicit semantics and machine 
reasoning to support integrated, multi-paradigm, multi-scale model 
development. The Thinklab language described here is the instrument we 
are developing to make this vision practical. Please note that everything 
about this notes (even the Thinklab name) is in its initial stages and should 
be considered both confidential and subject to change.

The language, software and documentation have 
been developed by Ferdinando Villa with the 
collaboration of the ARIES project team, including 
but not limited to Kenneth Bagstad, Brian Voigt, 
Gary Johnson, Ioannis Athanasiadis, and Luke 
Scott. Please consult with the first author at 
ferdinando.villa@bc3research.org before sharing or
making any use of this material unless previously 
coordinated.

Semantic meta-
modelling
Thinklab aims to address the task of “integrated modeling”, which 
reconciles strong semantics with modeling practice, helping achieve 
advantages (such as modularity, flexibility, validation, and integration of 
multiple paradigms and multiple scales) that have remained largely 

unrealized to this day. To achieve this goal, Thinklab keeps the logical 
representation of the modeled world distinct from the algorithmic 
knowledge that allows it to be simulated, and uses artificial intelligence to 
assemble the latter into the best possible algorithms to simulate a system 
described by users in a purely conceptual and much simpler way.

As suggested above, semantic modeling, or more accurately semantic 
meta-modeling, uses the idea of observation as the unifying theme to 
define a general way to model physical objects and phenomena (Fox and 
Hendler 2009). A model is a strategy to produce observations of a concept 
that comes from a shared knowledge base. In order for models to be 
compatible and be capable of being used as component of the same 
computation, it is sufficient that the abstract knowledge they represent
is compatible. Modern artificial intelligence provides algorithms and tools 
to automatically validate the consistency of an abstract knowledge base. 
This way, the approach enables the integration of many modeling 
paradigms that are often applied separately, for example spatially-explicit 
to process- and agent-based models, or probabilistic and deterministic 
models. This conceptualization builds a natural path to reach goals in 
modeling that have frequently been discussed, but not demonstrated to 
their full potential, including modular modeling, multiple-paradigm 
modeling, multiple-scale modeling and structurally variable modeling.

The logical representation is modeled using concepts and relationships that
comprise Thinklab’s abstract knowledge base, built out of ontologies (more
on this later). In the abstract knowledge base, concepts such as 
“watershed,” “elevation,” or “temperature” are defined, along with 
information on how they may relate to each other. No attempt is made to 
indicate how their models may be computed.

The algorithmic knowledge base is where you can provide models so that 
simulated “observations” can be computed. At the user’s request, the 
artificial intelligence in Thinklab will choose algorithms from this 
knowledge base and build an integrated algorithm by assembling them, 
driven by the abstract semantics. The result of calibrating and running the 
integrated model is the production of observations of the concepts 
contained in the abstract knowledge base.

A model in Thinklab represents a strategy to observe a concept. Models 
can consist of entire simulations, simpler algorithms, datasets, or even 
simple numbers; from the Thinklab point of view, all these just represent 
different ways to observe a concept. In striking difference from almost all 
mainstream modeling approaches, numbers, data or equations have 
absolutely no meaning by themselves, even with descriptive names or 
associated with formal metadata: even the simplest number can only be 
used in Thinklab if it has a concept associated with it. Thinklab forces you 
to use concepts so that “metadata” in your models only document auxiliary
information as they should; the conceptual part of the knowledge base 
serves automatically as the documentation of the models, while at the same
time providing a layer of “meaning” on which collaboration and model 
integration are based.

Structure of this document

This documentation contains, for now, five main chapters and a glossary, 
subdivided as follows:

1. Chapter 1, Collaborative infrastructure and the semantic 
modeling workflow provides generalities about both the 
Thinklab language and the collaborative environment it is 
expected to support. Initial examples of semantic model 
specification are illustrated.

2. Chapter 2, Models as observations: subjects, qualities and traits
introduces the semantic framework for observable concepts 
that we adopt in Thinklab.
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3. Chapter 3, Connecting data to models: semantic annotation and
observation semantics introduces the semantics of observations
that can be connected to observables, and the language 
statements that implement it. The examples concentrate on the 
semantic annotation of existing information such as data.

4. Chapter 4, Computing deterministic and probabilistic 
observations extends the material of Chapter 3 to the case of 
computed information, which in Thinklab is uniform with data,
and to providing semantics for externally computed 
information.

5. Chapter 5, Making model choices depend on context, details 
the notion of scale in Thinklab, and the ways that specific 
model choices made by the reasoning algorithms are made and 
how they can be constrained to specific scales or otherwise 
influenced. In the process, conditional models, scenarios and 
the ways to influence Thinklab’s resolution of models to 
concepts are described.

The chapters above provide a basic user guide to the new user of Thinklab, 
meant to support in-class instruction, and are by no means exhaustive of 
the system for either the conceptual side or the implementation. Not all 
examples in the chapter are guaranteed to work at all times; links to 
sections of this documentation that appear in the text may lead to non-
existing pages. Any new documentation will appear in this section of as it 
is completed and reviewed.

The current documentation was written by Ferdinando Villa and reviewed 
by the collaborators listed above, with the addition of Stefano Balbi, Aiora 
Zabala Aizpuru, Elena Perez-Minana and Simon Willcock. The Bayesian 
network primer was written by Kenneth Bagstad, who also compiled the 
Glossary, with the collaboration of the authors listed. Gary Johnson wrote 
the cookbook examples. # Module 1. Collaborative infrastructure and the 
semantic modeling workflow.

Thinklab is a computer language and software toolset that supports a 
modeling paradigm where carefully designed components can be shared 
within a broad modeling community, without previous coordination. To 
achieve this, all model components are semantically annotated, i.e., 
associated to generally recognized concepts, such as “watershed” or 
“elevation.” The operation of annotation establishes, explicitly and 
unambiguously, the identity of each modeled entity and its boundaries of 
validity for it (e.g., a particular spatial region or temporal period). Using a 
shared set of ontologies (computer documents that define concepts and 
their relationships) ensures that independently developed model 
components can be linked without ambiguity or error and be used by a 
growing global research community.

The components needed to achieve this vision are:

1. A web-based infrastructure that connects model developers, 
helps coordinate knowledge and model sharing, and controls 
data access and distribution in a way that correctly supports 
collaboration.

2. A suite of shared ontologies to ensure a stable common 
language for data and models, modified only through a 
carefully designed, collaborative workflow that facilitates 
conflict-free ontology extension.

3. A modeling language and server (provisionally named 
Thinklab), and an end-user software toolkit (Thinkcap), 
which enable model development with semantic annotations 
based on the shared ontologies. Thinkcap is a graphical user 
interface (GUI)-based client that communicates with one or 
more Thinklab servers to publish, run, and share models and 
knowledge. The Artificial Intelligence for Ecosystem Services 
(ARIES) project uses Thinklab for its underlying operation; 
Thinkcap is the primary means of model development for 
ARIES modelers. Other applications of Thinklab and Thinkcap

are possible outside the field of ecosystem services.

This document is the first of a suite of modules aimed to serve as reference 
and guide for a brief course in semantic modeling. As this material is fairly 
novel, do not worry if it is not totally clear after the first read. The text 
below provides a brief introduction to the three key components listed 
above.

Component 1: the 
collaborative, web-
based 
infrastructure
A complete semantic modeling platform can be installed on a desktop 
computer and used by a single modeler. However, the full value of this 
paradigm can only be achieved when the models and the knowledge they 
represent are shared with a broad model developer community, so that each
researcher can concentrate on, and contribute scientific advances for, the 
issues that reflect their expertise and interests. The semantic modeling 
approach facilitates integration across all modeling disciplines through the 
use of common concepts.

The collaborative infrastructure that supports this sharing is a web-based 
application that allows the desktop application to synchronize with a 
distributed set of common ontologies, data, and models. The 
synchronization is automatic using the Thinklab/Thinkcap software suite, 
and guarantees that the “core” concepts used by all model developers are 
the same. Model developers can register to obtain official certification and 
join specific modeling groups, which give access to different “views” of 
the shared knowledge base. Each user in the same group will use the same 
core ontologies, and the collaborative infrastructure grants access to public 
models built by all model developers that belong to the same groups. 
Groups can be hierarchically organized to fine-tune access to restricted 
datasets without compromising access to core and public knowledge.

Use of the software requires registration at 
[integratedmodelling.org/dashboard] and a request to the site administrator 
for certification. Certification results in a certificate file being emailed to 

the user, which is copied in the.thinklab/ directory under the user’s 

home directory and is automatically loaded by the software to identify the 
user and allow access to all shared resources for the groups s/he belongs to.

Component 2: 
Semantic modeling 
and ontologies
The central tenet of semantic modeling is to maintain the meaning of 
anything being modeled. This emphasis on meaning facilitates model 
sharing with other, independent modelers: if the meaning of concepts is 
consistent throughout the modeling community (including, and not limited 
to, their temporal and spatial properties, and all relationships between them
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and other concepts), the models developed for those concepts are 
automatically compatible. The Thinklab system is specifically designed to 
take advantage of this semantic modeling approach. Concepts are used to 
describe each entity in a model using a programming language whose 
syntax is optimized for this task.

The semantic modeling workflow differs from that of other, more common,
modeling approaches. Specifically, model development requires first of all 
that a specific subject is identified that is described by a concept 
representing thecontext for all subsequent modeling (e.g., a watershed). 
This concept is crucial: describing an area as a “region” has a different 
meaning than describing that same area as a “watershed”, as models that 
work on a watershed (for example, to extract the stream channel network) 
will not work on a region. Additional concepts can be identified to describe
each quality (e.g., elevation, slope), process (e.g. erosion, rainfall), subject 
(e.g. household, city, river) orevent (e.g. inundation, fire) of interest.

Component 3: The 
Thinklab modeling 
language and 
Thinkcap software 
environment
The Thinklab modeler workflow uses the Thinklab modeling language to 
create models for specific concepts and define their context of validity. For 
most users, model development and testing will take place within the 
Thinkcap software environment., which provides an intelligent editor for 
the language and facilities to interact with servers to synchronize and 
search knowledge, test, run and publish models. Thinklab also supports a 
user workflow, which we will not discuss in these notes aimed to modelers:
this workflow is supported by a separate web application (in course of 
development at the time of this writing) and is of much simpler nature, 
aimed to allow non-technical users to search for concepts, define a context 
and run models using simpler metaphors to use the library of knowledge 
created by modelers without being exposed to model details.

Any model, with the exception of data (NOTE: in Thinklab, data are 
models) may require the observation of further concepts, besides its own 
observable, in order to be computed. For example, a model of vegetation 
growth may require rainfall, soil and temperature observations. In 
Thinklab, as mentioned, all these dependencies are expressed using 
concepts; Thinklab applies search algorithms to iteratively match concepts 
to models as many times as necessary, resolving concepts to models as new
dependencies are brought in by the models selected. Heuristics and 
artificial intelligence are employed to define the most suitable model at 
every step, based on both objective and subjective criteria (such as 
modeler-defined data quality). This process, called resolution, enables 
Thinklab to integrate a large and distributed model base and make it 
accessible to non-technical users: since queries are performed onconcepts, 
running any model is paramount to conducting a web search for the 
concept(s) of interest. Indeed, the combination of a shared model base and 
the Thinklab language and infrastructure can be thought of as a semantic 
webimplementation specialized to handle and serve “live” model 
knowledge.

A modeling 
workflow example

Creating a context
As mentioned above, running a model requires establishing a context first 
of all. A context can represent any kind of subject, but in our example we 
will use mostly contexts that are associated to spatial locations, the most 
useful for the type of ecoinformatics modeling we use in applications. So 
we will talk about context regions, watersheds, villages and the like. The 
spatial aspect of a subject pertains to its scale, as one of the extents in it; 
those may also include time and potentially others, which will not be 
discussed here. A geographic extent can be defined using Well-Known Text
(WKT) : see the glossary for a definition and example. A simple 
geographical polygon using WKT can be written by listing a projection 
code followed by sets of spatial coordinates, like in:

EPSG:4326 POLYGON((-70.8783850983603 
-3.3045881369117316,-69.05465462961 
-3.2661991868835875,-69.13155892648547 
-4.575963434877864,-70.91683724679801 
-4.630717874946029,-71.15853646554768 
-4.263784638927346,-70.8783850983603 
-3.3045881369117316))"

The above WKT can be used within a simple Thinklab statement to create 

the Leticia region of Peru, using the subject typeim.geography:Region 

(a concept from theim.geography ontology that defines a simple region 

of geographical space – see below). The full statement is written as:

observe im.geography:Region leticia-peru over space(

    grid = "500 m", 
    shape = "EPSG:4326 POLYGON((-70.8783850983603 
-3.3045881369117316,-69.05465462961 
-3.2661991868835875,-69.13155892648547 
-4.575963434877864,-70.91683724679801 
-4.630717874946029,-71.15853646554768 
-4.263784638927346,-70.8783850983603 
-3.3045881369117316))"
);

The observe statement instructs the system to create a region named 
‘leticia-peru’, whose spatial scale will be represented by a 500-m cell size 
over the polygon defined by the WKT. A couple things to note. First of all, 
the identifier for a concept in the Thinklab language is composed of two 
parts separated by a colon. The first is the namespace, which corresponds 
to a single file that contains concepts and models for a particular topic 
(e.g., im.geography). The second is the name of the concept within that 
namespace (i.e. Region). Simply stated, the core concept Region, a 
generalized geographic region, is found in the im.geography namespace. 
(Naming conventions and a capitalization scheme have been adopted and 
will be explained in detail later).

Another important point. It is easy to get confused by thinking of the 
“polygon” as the “context”. Indeed, a context is the whole subject created 

by the statement, and its identity is given by the im.geography:Region 

concept – theobservable for this subject. We have said above that the whole
purpose of semantic modeling is to associate models to concepts. Indeed, 
when the above statement is “run” to create the subject and make it the 
context of further modeling, the resolution algorithms in Thinklab search 

for models associated to the observable im.geography:Region. Since no

special semantics are attached to regions, no models are (by default) 
associated to this concept, as a region is sufficiently specified by assigning 
its spatial (and possibly temporal) scale. If, however, we had intended our 
region of interest to be a watershed, we could have written instead:

http://www.spatialreference.org/
http://www.spatialreference.org/
http://0203.html/
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observe im.hydrology:Watershed leticia-peru over 
space(

    grid = "500 m", 
    shape = …
);

While the statement looks almost exactly the same, the meaning is very 
different, as we are now defining a subject with much more conceptual 
detail associated. If nothing special besides the scale is needed to 

characterize a semantically consistent im.geography:Region, a 

im.hydrology:Watershed has important restrictions: for example, the 

watershed has a shape that excludes areas that are not hydrologically 
reachable by rainwater. For all practical purposes, a watershed is a region, 
but it has additional semantics: using the knowledge visualization facilities 
in Thinkcap, you can explore the im.hydrology ontology to reveal that 

im.hydrology:Watershed is indeed linked to im.geography:Region

by an is-a relationship, meaning that a watershed is a special region (but a 
region is not a special watershed).

The result of this tiny change in the specification is quite dramatic. When 
the watershed above is used as a context for modeling, Thinklab will check

the ontology (im.hydrology) and find that some functional properties are

required in order for a watershed to be semantically consistent. For 
example, all hydrologic observations on a watershed require that a digital 
elevation model, flow direction attributes and a stream network be defined.
Faced with this need derived only by semantic analysis, Thinklab will look 
for a subject model that can produce these additional observations to 
complete the definition of a watershed when it is created. You can provide 
your own, custom-developed models for the same purpose, and tell 
Thinklab in which conditions it should be used (you can do the same also 
for a Region). As a default, the one model associated with 

im.hydrology:Watershed will run the set of hydrological analyses that 

comes with Thinklab, depending on being able to observe the elevation 
over the spatial scale defined for the watershed. If the elevation concept 

(im.geography:Elevation) can be resolved to a model in the 

knowledge base, this model is run to observe it, and the Watershed model 
is then run. The result is the computation of the basic hydrological 
characterization of the watershed, which includes the pit-filled elevation, 
the total contributing area for each point in the watershed, and the stream 
network in the region. All this happens without any user intervention: 
Thinklab simply recognizes that in order for a subject to properly represent
a watershed, these quantities must be known, and proceeds to observe them
based on the available knowledge base.

The modeling client software (Thinkcap) makes all these operations more 
intuitive by providing a workflow to create subjects and making 
observations in their context. Once the observe statement has been written, 
a marker named ‘leticia-peru’ will appear in the Navigator window of the 
Thinkcap interface. Dragging and dropping the ‘leticia-peru’ marker into a 
“context” window creates a subject, named leticia-peru. If the watershed 
version of the statement is used, this triggers the search for elevation and 
the computation of hydrological properties. Now that a subject has been 
created to use as a context, the interface will display the “root” subject 

named leticia-peru. The map window of the interface will display the 

area of interest. Dragging other concepts onto the map allows triggers their 
resolution to models; if an adequate model is found, the concepts are 
observed by computing the model, and visualized in the same interface.

Observing concepts
in the context.
Once a subject has been created, you have a context in which you can 
observe more concepts if you want to. In the modeler software Thinkcap, 
you can locate a concept (from the Navigator or the Knowledge Search 

window) and drag it in to the context window; this is the equivalent of 
attempting to observe it in that context. As a response, Thinklab will 
evaluate whether the concept is able to be successfully resolved, i.e. a 
model associated with the concept can be found and run. If a valid model 
for a concept in that context is identified, it will be run and the results will 
constitute new observations of that concept. Other observations may be 
made during the computation, and those will also be available to visualize. 
The resulting observations will be displayed in the interface once a model 
has run to completion.

If the effort is unsuccessful, the model base doesn’t have a suitable model, 
but you can write one and assign it to the concept. If you are interested in 
observing a concept that you cannot find in the ontologies, both the 
abstract knowledge (the concept, contained within ontologies) and the 
model knowledge (models) will need to be defined. This documentation 
emphasizes model development. However, the complete software 
documentation contains details on creating abstract knowledge as well.

NOTE: Abstract knowledge plays a significant role 
in this modeling approach and affects usability at all
levels. The creation of abstract knowledge should be
approached carefully and collaboratively to ensure 
its utility extends beyond an individual modeling 
effort.

Concepts may describe qualities, processes, events or subjects (there are 
also traits which occupy a special niche and will be discussed later). 
Observations of qualities correspond to what is commonly called data.

Qualities
Concepts that describe qualities (e.g., land cover type, temperature) define 
entities that cannot “stand alone” (note: we’re playing with semantic fire 
here, and we strive for consistency in using terms that are colloquial but 
have special meanings in our discussion. We use the word entity to mean 
anything, devoid of further significance. The topic does not leave the 
luxury of using terms like thing or object without raising doubts, so we will
stick to that). Qualities mustinhere to a subject in order to be semantically 
consistent. For example, land cover type can only exist on some kind of 
“land” – so a geographical region (e.g., a country, a watershed) subject is 
necessary. Temperature can only be measured within a specific realm (e.g., 

the lower atmosphere, the ocean’s surface). As a result, an observe 

statement cannot be used with a quality concept where we put, for 

example, im.geography:Region. Thinklab will show an error marker 

and refuse to create your subject if an attempt is made to observe 

anything that doesn’t describe a subject capable of standing alone as an 
independent object.

Once a subject has been established, all concepts that are compatible with 
being its qualities can be observed. The universe of concepts is held within 
the core ontologies and can be added to using the Thinklab language. In 
Thinkcap, the Knowledge Search view allows to search for concepts by 
name; double-clicking a concept resulting from the search displays the 
knowledge graph, which graphically relates the selected concept to the full 
knowledge base.

Subjects, processes and events.

Subjects, processes and events are “identities” that can stand alone 
semantically: you can recognize a subject or event without having to refer 
to another subject as context. They can, of course, also be observed within 
the context of another subject: for example, observing the subject concept 

im.infrastructure:Bridge within a im.geography:Region, if 

successful, will create all the Bridge subjects in that region, using the scale 
of the region as a guide to find bridges that exist in that space and time. 
While we do not discuss much detail here, the difference between the 
different types above deserves some more explanation. These kinds of 

http://020202.html/
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concepts can be observed in the same way, but the results of observing a 
process or a subject are slightly different. While subjects have an identity 
that persists beyond their observation (i.e., observing them creates subjects 
that can be visualized independently and serve as individual contexts for 
other observations), processes and events are inherent to the subject they’re
observed in: an ecosystem service, for example, is a process inherent to a 
region that affects its subjects (ecological and social) and causes certain 
qualities (e.g. environmental values) to exist for them. The most important 
difference is that observing a process does not generate an independent 
entity for it, because processes occur within subjects. The same applies to 
events, which are really processes but are seen as atomic with respect to 
time, and therefore treated differently with respect to the scale of the root 
subject. When observing a process or an event within the context of a 
subject, any qualities or subjects produced by the process will be assigned 
to the context subject instead of the process itself.

Module 2. Models 
as observations: 
subjects, qualities 
and traits.
Anything that happens in Thinklab is the result of choosing a model and 
running it in order to create an observation. A model always stands 
between the intent to observe a concept and the successful observation of 
that concept. Models require a subject in order to observe anything, so a 
model begins with the observe keyword, which can be thought of as the 
declaration of the root subject. While most of the examples discussed in the
text present the root subject as a region of space, this is only due to the 
nature of the examples. Space and time are special observation types, also 
known as extents; one or more extents create a scale. Special observation 
types will be discussed in greater detail in Module 5.

Because the observe statement does not specify how the subject should be 
observed, Thinklab will identify an appropriate model that will, if 
necessary, initiate any computation(s) required to create a semantically 
consistent subject. In the case of subjects, a model does not need to exist in
the model base; if there is no model, a default set of actions will be taken, 
according to the concept that the subject incarnates. At a minimum, a 
simple subject will be created; this, as discussed in Module 1, is what will 
happen for example for a im.geography:Region, which is simply expected 
to be there and not required to have specific qualities. When, on the 
contrary, the semantics of the subject defines specific constraints, more 
observations may happen automatically. For example, observing a 
watershed subject would trigger a basic hydrological characterization of 
the watershed, consisting in observations of some qualities such as the flow
direction and the elevation.

In contrast to subjects, models of a quality, must exist in the knowledge 
base: it is not possible to create a “default” elevation measurement or land 
cover classification. The simplest (and, from an epistemological point of 
view, also the best) model of a quality is evidence in the form of data. So 
when observing a quality, the model base is first searched for a data model 
(also called a data annotation) that matches that quality. If a data annotation
does not exist for the quality, Thinklab will look up a model that can 
compute it based on an algorithm or other process.

Modeling in Thinklab entails writing model instructions that produce 
observations of subjects and qualities. This includes annotating data 
sources to turn them into models of shared, recognized concepts. An 

important part of this process is understanding the criteria with which 
Thinklab ranks models when more than one is found for a particular 
concept. These criteria, discussed in detail in Module 5, ensure that the 
most appropriate model will be selected to observe a concept in a specified 
context.

A model statement can be run manually in Thinkcap, by dragging and 

dropping it onto a context. While this is an appropriate way to test models, 
it is important to remember that the ultimate purpose of a model is to be 
considered during the resolution of the concept(s) it describes, so that 
Thinklab can choose the most suitable model for an observation in the 
specified context. In a collaborative effort, it is normal to have more than 
one model for a concept (e.g., different data sources with different 
resolution, coverage, currency). The criteria that negotiate the model 
selection process selected are the subject of Module 5.

Concepts and 
observables
At this point, it is important to understand the details of the concepts that 
are used to specify the observable of a model, i.e., the concept that the 
model will produce an observation of. Concepts live in ontologies and 
Thinklab can be used to define them (a Thinklab namespace is indeed an 
ontology, which can define semantics both for concepts and models). A 
substantial set of concepts come with the integratedmodelling.org 
certificate. The process of creating ontologies (or even new concepts in an 
existing ontology) has its difficulties. Creating new concepts or ontologies 
(as discussed in Module XXX), requires a deep understanding of the 
contents of existing ontologies and a cautious approach which ensures 
semantic consistency and avoids unintended consequences to the 
collaborative modeling environment. Ontologies are, the fundamental 
building blocks of the semantic modeling approach. The remainder of this 
section describes how to use the knowledge that exists within the ontology 
library.

Three fundamental aspects must be correctly specified to define an 
observable:

1. The primary observable: it is a thing, process, quality or 
event.

2. Any traits that further specify the primary observable and 
influence the type of observation made;

3. The inherency of a concept to a subject, which further informs 
the matching of concepts to models during resolution.

The primary 
observable
There are two fundamental kinds of observables:

1. Those that specify entities that can be thought of as existing 
autonomously (or, as some philosophers say, have unity): those 
include entities that “are”, such as regions, human beings, 
animals or plants, but also entities that “happen”, such as 
events (e.g. an earthquake) or processes (e.g. “carbon 
sequestration”). In the following, we use the convention of 
referring to all of these with the term things.
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2. Those that specify qualities, which must refer to a thing in 
order to exist as a meaningful concept for modeling. Those 
include “properties” such as color, temperature, or density.

We say that an observable is concrete when it can be directly observed 
without further specification: for example, “nitrogen amount” would be 
concrete while “amount” would be abstract, the opposite of concrete. An 
“amount” cannot be identified without specifying an identity for it that 
“grounds” it to the physical world.

Because an identity clearly is also a concept but cannot be observed 
without an observable to refer it to, we need to bring in another class of 
concepts, which we call in general traits. Those are not observables: so 
you cannot write a model for, say, a plant species or a chemical element. 
Rather, they are used to qualify observables so that their observation 
becomes unambiguous. We recognize three types of traits:

1. Identities, which have the property of being able to turn a 
compatible abstract observable into concrete. An observable 
can have one and only one identity – for example, a “cat 
individual” or a “gold weight”. You cannot observe gold, but 
you can observe its weight: to annotate this observation, you 
use the abstract observable (weight, a quality) identified with 
“gold” (a chemical identity).

2. Attributes that can only apply to concrete observables and 
further specify them so that there is no ambiguity in 
annotations. For example “annual rainfall amount” would be 
observable without the attribute “annual”, but it would be 
incorrect to mix annual measurements with monthly ones, so 
we use the attribute to specify the annual character. There is a 
vast taxonomy of attributes, many of which are collected in our
core ontologies so that the need for “inventing the wheel” is 
minimized (along with the risk of making the wheel square). 
An observable can have many attributes, but only one per 
category: so we can see “annual average rainfall amount” but 
not “annual monthly rainfall amount”.

3. Realms are special attributes that are very common in 
modeling, so we have decided to give them a status of their 
own. A realm refers to a broad subdivision of the physical 
world (not necessarily geographically delimited) where a 
particular observable is expected to be observed; for example, 
geographical realms such as land, ocean, atmosphere, soil, or 
biogeographical ones such as ecozones. They are conceptually 
not very different from attributes and they work the same way 
– many realms, but only one per category. Because modelers 
often use realms, we conceptualize them separately so they can 
be more easily catalogued and located.

Thinklab provides base semantics for several other kinds of observables, 
such as basic physical properties (see Module 3. Still, the distinction 
between things and qualities, complemented by traits, remains the 
fundamental conceptual skeleton for the process of annotation. Any 
confusion over what is a thing vs. what is a quality will lead to trouble. 
When possible Thinklab will validate concepts so it should not be 
allowable to use a thing concept when a quality concept is needed (or vice 
versa). This is not universally possible, and observations resulting in 
strange model behaviors will arise unless the distinction is clearly 
understood.

Observing things and qualities works differently, and the observation of 
each produces different outcomes.

• The observation of a thing, also known as a direct 

observation, produces a virtual representation of one or more 
things in a context. So for example, when observing a 
watershed, an “object” tagged with the watershed concept is 
created in the computer’s memory. Within the context of the 
watershed it is possible to observe households, rivers or 

bridges. The observation of those concepts will create new 
objects, under the “ownership” of the containing watershed.

• The observation of a quality is an indirect observation. An 

indirect observation produces an output (numbers, for example)
that indirectly describes the state of that quality in the context. 
For example, consider the concept describing the amount of 
annual rainfall in a watershed. Let’s assume that the watershed 
context is distributed over an interpretation of space that 
conceptualizes it as multiple cells or polygons (In Thinklab, the
temporal and spatial qualities of observations depend on the 
specific characteristics of the context. This will be discussed in 
greater detail in Module 5.) A successful observation of this 
concept creates an observation of rainfall in the watershed, 
most likely expressed in mm (expressing the density of the 
water volume over space). The observation will take the form 
of a map, attributing a number value to each subdivision of the 
context. Each value expresses the rainfall amount indirectly, 
referring to a known scale (how many mm, defined in the SI 
system).

The interpretation of numbers (or other data types, e.g., categories) in an 
indirect observation will depend on the defined observation semantics (for 
example, a measurement in a particular unit). Units and observation 
semantics are described in Module 3. For now, it is important to understand
that the observation of a quality can only happen within the context of a 
thing. Temperature, a quality, cannot exist alone but only in reference to 
the thing whose temperature is being measured. Choosing semantics to 
match the desired level of detail enables semantic shortcuts with respect to 
the physical world. For example, it is possible to measure the “atmospheric
temperature” of a “region” (a thing) instead of observing the “atmosphere” 
in that region and contextualizing the temperature to it.

Thinklab offers the user extensive granularity when defining concepts with
its suite of existing ontologies. Things can be inanimate or reactive 
(agents); processes and events are specialized things that will be discussed 
in more detail later. For now, understand that most of what is referred to as 
“data” are qualities in the Thinklab language, and a “dataset” (a collection 
of different data relative to the same context) is what Thinklab considers 
the observation of thething that has been chosen as the context, including 
all of its observed qualities.

Keeping ontologies simple

We have discussed how traits work as “descriptors” to avoid confusion 
with other incompatible concept. For example, when modeling rainfall on 
an annual time scale, the results are presented as “annual rainfall” and 
annual measurements are not mixed with monthly or daily measurements. 
In a semantic world, it is also possible to represent such distinctions be 

represented by using a separate concept: for example AnnualRainfall 

andMonthlyRainfall, which could be specialized cases of 

im.climate:Rainfall. it is important to minimize the size of ontologies

if they are to be used by wide communities, and because there are many 
attributes that apply equally to concepts for many disciplines, traits offer a 
way out of a potential semantic explosion that can lead to a complete lack 
of interoperability. If it were necessary to define a version of all the 
qualities that can be measured annually, the ontologies would rapidly 
increase in both size and complexity (e.g., monthly measurements for each 
month, daily measurements for each Julian date). Instead what is needed is 
the specialization of a concept that uses a general “adjective”, such as: 
-finite/infinite, -vulnerable/invulnerable, or -high/medium/low.

When looking up models, Thinklab prioritizes models that share the same 
trait as the concept that is being observed, and ignoring those models that 
feature a different trait of the same type. Traits can be added to concepts 
simply by writing them along with the main observable, as it would be 
done in English: for example adding the Annual descriptor to the context 

(im.hydrology:Watershed) in the observe statement:
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observe im:Annual im.hydrology:Watershed

    over space(...)
model ... as measure im.climate:Rainfall in mm;

An “annual watershed” doesn’t make much sense by itself, but the Annual 
trait refers to the observation of the watershed, ensuring that any model or 
data selected to observe a quality in this watershed will be annual. So when
observing rainfall in this watershed using the model statement, only 
observations of annual rainfall will be made. If a model is chosen to 
resolve a process concept, for example “river flow,” only models with an 
annual time step will be chosen. In other words, traits “percolate” through 
the resolution process and influence the choice of models made so that the 
result is always consistent with the observable concept.

Of course the observe statement above does not require any traits. They 
can be added to the model statement instead. The process will work the 
same way, and the resolution of an annual model will ensure that all 
observations are made on annual data (or processes with an annual time 
step). And, of course, it is critical to use appropriate traits when annotating 
data. For example, some traits detail the data reduction choices made when
collecting data, such as average, minimum or maximum measurements. As 
many traits as necessary should be used: restrictions on the types and 
number of traits have been detailed before, but in general, only one identity
is admitted, and as many attributes or realms can be present as long as each
one belongs to a different abstract category. The following model statement
illustrates how to assign traits for average annual rainfall data:

model .... as measure im:Annual im:Average 
im.climate:Rainfall in mm;

Traits are also useful when classifying observations. They can be used to 
classify continuous data into discrete categories, which proves useful for 
certain types of modeling (e.g., Bayesian modeling). In this case, 

classifications can be done using the by keyword followed by the type of 

trait:

model Elevation as classify (measure 
im.geography:Elevation in m) by im:Level into

    im:Low if 0 to 350,
    im:Medium if 350 to 1000,
    im:High if 1000 to 8000;

Additional examples of this will be shown in detail later. For now, consider
the benefits of using the general trait im:Level, known to Thinklab as a 
subjective trait, to classify a continuous quantity according to an 
interpretation of the values. This style of model specification eliminates the
need for defining concepts like “HighElevation” and “LowElevation.”. 

There are many predefined traits in the im ontology describing general 

attributes such as regularity of occurrence (regular/irregular), frequency of 
occurrence (ephemeral, rare, common or continuous) and origin 
(endogenous/exogenous). Learning to use traits appropriately is the best 
way to ensure data and model compatibility.

Identities managed by authorities

In most cases when an identity is used, there are many – and sometimes 
infinite – possibile concepts, and the attribution of identity is normally 
subject to great debate and change. For example, biological species have a 
many-to-many relationship with the taxonomic concept they describe: 
individuals of the same species may have been attributed to different ones 
before realizing that they were two growth stages of the same, and there is 
an enormous amount of species that grows every day. Chemical “species” 
work similarly: the periodic table of elements is relatively stable, but 
molecules are certainly not something we can classify in a single ontology, 
and even if so, we certainly would not want the humongous chemical 
ontology only to describe water and carbon dioxide.

Fortunately, we are not the only ones to need a stable reference framework 
for this kind of “open-ended” identities, and organizations such as the 
Global Biodiversity Information Facility have been established to provide 
exactly such framework. Such organizations provide a vocabulary and a 

process to assign a specific, stable identifier to a concept, so that it can be 
“tracked” unambiguously throughout the changes that it has undergone 
during its use in scientific practice. Similar organization promote unique 
ways to define molecular structures, agricultural terms, etc. Thinklab 
provides a way to define identities based on these identifiers, and the 
software we provide links some authorities in so that annotation becomes 
very simple and efficient. Authorities are identified by an uppercase string, 
such as GBIF, and the syntax for an authority-backed identity is as follows:

<abstract observable> identified as “<key>” by 
<authority>

For example, to annotate a model that observes the number of individual of
the fish species Argyrosomus hololepidotus, you can refer to the GBIF 
identifier for the species and write

count im.ecology:Individual identified as "5212442" 
by GBIF

The part starting at identified counts as the definition of an identity 

trait, which is not specified directly as a concept, but by referring to an 
identifier managed by the GBIF authority. The authority name must be 
recognized and correspond to a plug-in installed in the language; use of 
authorities comes with the integratedmodelling.org certificate. Thinklab 
provides interactive search facilities and translation for some authorities: 
for example, the specification above will create a concept that displays (for
example in data legends) as the common name of the species. Authorities 
will be developed and made available to suit the user communities; at the 
moment the three authorities available are

1. GBIF for taxonomic identifiers, as above;

2. AGROVOC (from FAO) for agricultural identifiers; and

3. IUPAC for chemical species identified by an InChl string.

Only the GBIF authority has search facilities associated for the time being. 
For all others, identifiers can be retrieved by using the institutions’ web 
sited. Requests for supporting other authorities can be sent 
atintegrated.modelling@gmail.com.

Inherent qualities and subjects

In ontologies, properties are used to classify the type of relationship that 
exists between concepts. The “specialization” property is frequently used 

(e.g., a Car is-a (type of) TransportationVehicle) but there are many 

others, both very general (e.g., Individual part-of Population) and

specialized (StreamReach has-slope Slope). Although properties can

be explicitly detailed in a concept specification, Thinklab can create and 
validate properties automatically, to reduce the complexity for the modeler 
and encourage shorter, more readable specifications. Yet, there are some 
important logical implications to consider before connecting concepts and 
making observations. One of which is determining the legal and illegal 
properties of a subject: a Watershed has Rainfall and Elevation but no 
Liver or Heart. Without having to explicitly create such constraints, which 
would be difficult, it is possible to specify the allowable subject 
observables to refer to, thereby avoiding improper usage in the model 
resolution process. This type of specification is referred to as an inherency 

specification, which in Thinklab is created using the keyword within. For 

example:

model ... as measure im.geography:Elevation within 
im.geography:Region in m;

Assume there is a dataset specification (as we will see in Section 2) instead
of an ellipsis, and consider only the observable of the model: a quality 
(elevation) with an inherent subject (a geographical region). This 

guarantees that any observation of Elevation will use data only if the 

context of the observation is a Region. Note that this works for any kind 

of region: for example, both a Watershed and a Country are specialized 
types of Regions, so the data will satisfy a request for observing elevation 
in both of these instances. Observing the elevation of a tree, however, 
would not be possible using the data produced by the model above. 

mailto:integrated.modelling@gmail.com
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Inherent subjects are used to restrict the semantics of the model to an 
appropriate set of applications.

Inherent subjects are used automatically during resolution: if there are two 
datasets for a concept, one is inherent to a Region and the other is not, the 
dataset inherent to the region will be given precedence during model 
resolution (seeModule 5) for full details on prioritization in resolution). In 
general, there should always be an inherent subject for all observables; but 
the choice should be made intelligently, as it is always possible to choose a 
subject so restricted that models become almost useless. For example, 

identifying a LowerAtmosphere Region as the inherent subject for 

Temperature data may make them less useful than simply using a Region, 
given that the “default” meaning of temperature data refers to the Earth’s 
surface. Both specifications, and probably many others, may be 
conceptually correct, but the conceptual resolution of a model requires 
careful thinking: over-specification of semantics should be avoided as 
much as under-specification. If in doubt, remember that the same data can 
be annotated as many times as necessary, and there is no reason not to 
create both models if both observables have enough generality to be useful 
and sufficiently distinct meanings to be both useful.

Putting everything together

To summarize, an observable is composed of:

1. one and only one observable concept - a quality, thing, process 
or event;

2. if the observable is abstract, one and only one identity that 
grounds it to reality. For example, a species for an individual or

group: im.agriculture:Cattle im.core:Group.

3. zero or more attributes and/or realms to complete the meaning 
of the observable if necessary;

4. zero or one inherent subject type, which specifies the most 
general kind of subject that this observable may refer to.

It is important that all the necessary concepts, and not one too many, are 
included in each model. Thinklab, as illustrated in the examples throughout
this documentation, provides syntax to simplify the definition of an 
observable (in a nutshell: just string together trait concepts with their 

observable concept, and use the within keyword to introduce the inherent 

subject type if one is present). Consider the observable, in its three 
conceptual dimensions (observable/traits/inherency), as the “semantic 
fingerprint” of the model or data being described. Decomposing the 
observable keeps the ontology small - a parsimony principle which is 
crucial to the usability of a collaborative modeling infrastructure. The 
smaller the ontologies, the more useful and powerful they will be. Using 
separate concepts instead of specialization to capture the key meaning of 
observations avoids the explosion of the knowledge base and facilitates 
opportunities for more modelers to contribute to it.

Module 3. 
Connecting data to 
models: semantic 
annotation and 
observation 
semantics.
So far, we have seen that models produce observations of observables, 
which can be specified using a concept, identified with an identity if 
abstract, and optionally augmented with one or more attributes or realms 
and an inherent subject. All observations, except the “root” one made with 

the observe statement, happen in the context of a subject. A model 

therefore represents a strategy to observe a concept in a context. The result 
of the observation depends on the observable type (i.e., subject, process, 
quality, or event): observing a quality results in “data” being produced to 
represent a state, which will be distributed over the scale (space/time) set 
for the subject.

Writing models is the way to extend the power of Thinklab. The more 
inclusive the model library, the better the ability of the artificial 
intelligence engine to select an appropriate model for the specified context 
that best represents the observable. This definition of a model has the 
following consequences:

1. “Raw” numbers can never be used to represent the result of an 
observation in Thinklab: every number will always “be” 
something, i.e., have an observable associated with it.

2. Models ‘annotate’ values, data sources, equations, or external 
computations using the same syntax: in other words, data and 
models are merely two different ways of observing an 
observable (data are models).

3. In the case of computed models (e.g., equations), “inputs” are 
expressed as concepts. Thinklab resolves the concepts at run 
time based on the context.

Writing models consists of the following main steps:

1. Choosing the semantics for the observable.

2. Choosing and describing the “source” for the result of 
observing the observable: e.g., a value, data set, equation, 
external program.

3. Choosing the observation semantics, i.e., the type of 
observation made. In the case of things this is trivial, as these 
are direct observations, semantically equivalent to simply 
acknowledging the thing observed. For qualities, observation 
semantics requires more specification, for example of 
measurements, classifications, rankings, as will be seen later.

4. Creating metadata to help Thinklab track the provenance (i.e., 
origin) of the information during resolution, and choose the 
proper model when more than one model is available for the 
same concept. This will also be discussed in detail in Module 5.
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Based on these principles, we see that an observation can be made in 
different ways, including extracting numbers from a data file, computing 
an equation, or calling an external program. This section only refers to 
resolvedobservations, where the states of the observation (numbers, 
categories, etc.) are known at the time the model is written: this applies 
equally to simple data values as to external data files, databases or data 
retrieval services. Module 4describes computed observations, which 
depend on computations.

Choosing a concept
Choosing a concept is a fundamental topic that is covered more extensively
in the full documentation. For the purposes of this guide, it is important to 
remember that extending Thinklab’s data and model integration capability 
depends entirely on the reuse of the shared knowledge base. As each 
Thinklab namespace is an ontology, concepts may be created at any point 
and by anyone, and nothing prevents a modeler from creating a new 
concept per each model without thinking of integration. But in a 
collaborative environment, new concepts should only be added when 
absolutely necessary and with community agreement on terminology and 
meaning. Many concepts can be created by combining existing observables
with traits and inherent subjects as explained in Module 2. For the purposes
of this discussion, the reader is reminded of three key points:

1. Understand and properly use the fundamental types of 
knowledge: subjects, qualities, processes, and events. Errors in 
attributing these fundamental types are certain to lead to 
trouble, both when running models and when interpreting 
outputs.

2. Learn to use traits, fundamental physical properties, and 
inherency. When in doubt, use a temporary concept that can 
easily be traced, and ask the larger modeling community for 
feedback.

3. Be mindful of common mistakes in attributing semantics to 
either data or models. A list of common ontology-related 
misunderstanding is in development to be integrated with this 
documentation.

Choosing the data 
or subject source
Models may have a pre-existing source of information for the semantics 
they provide. These are referred to as resolved models. Ultimately, all 
observations must end up as resolved models for each model input. 
Information sources can be provided for both data and subjects: examples 
include the value of a constant (e.g., the gravitational constant g or the 
boiling point of water), data from datasets (e.g., a precipitation or 
population density map), or subjects from datasets (e.g., villages, 
watersheds, or roads). Examples of each are provided below to illustrate 

how the model statement uses semantics to dress a “bare” reference to 

different kinds of data (all specified immediately following the word 

model).

Values
model 100 as measure im.chemistry:Water 
im.physics:BoilingTemperature in Celsius;
model false as presence of im.theology:Satan;
model im:High as classify (probability of 
im.climate:ClimateChange) by im:Level;

All these statements (which definitely belong to subjective scenarios!) 
show how the bare value of a quality can be set to a constant, which the 
resolver will take as the value in the context of validity of the previously 
specified model. Normally this form, which shows the most direct example
of semantic annotation of data, is only used when testing or when creating 
scenarios, and most likely only for parameters that models should use 
under carefully controlled conditions: annotating constants as shown above
will rarely be used in other ways. More typically, data annotations point 
Thinklab to data sets, which can be stored externally or directly stored with
the other files in a project. This is done in the language by using functions 
that can define both data and subject sources, as shown below.

Data sources

Functions are identifiers followed by lists of named arguments within 
parentheses:

<function-name> ( <argument-name> = 
“parameter_value”, …)

The list of arguments may be empty, but if it is not, each argument will 

have a name and a value separated by an equal (=) sign. The function 

names and parameter names are not keywords of the language, so they may
change and new functions may become available at any time. Thinklab 
provides a variety of functions, capable of bridging to several commonly 
used file formats and web-based data retrieval services; each function has 
its own argument names and rules for validation of arguments. To date, the 
most commonly used functions in Thinklab connect to spatial data. The 
following examples detail functions to access raster data from a Web 
Coverage Service (WCS) and from the filesystem on a user’s computer, 
respectively:

model wcs(urn=”im:global.geography:dem90m”, no-data 
= -32768.0) as measure im.geography:Elevation in m;

model raster(file="data/landcover.tif") as 

    classify im.landcover:LandCoverType into
        im.landcover:Urban        if 200,
        im.landcover:Agricultural if 201,
        ....
        ;

Like the ‘raster’ function above, the ‘vector’ function can also be used with
a ‘file’ argument to point to a file stored on a local disk within the user’s 
project directory. Employing local files limits opportunities for 
collaboration and sharing, and it is very onerous to handle for the modeling
engine. It is therefore recommended that they should only be used during 
model testing and development. Importantly, models that refer to local data
files should not be shared in the integratedmodelling.org knowledge 
repositories, as all the data sources referred to in shared models must be 
accessible to everyone who shares the model itself.

Vector data often specify subjects, like roads or bridges, but sometimes 
they define distributed qualities in a more compact data storage form than 
raster data. For example, it is common to find vector representations of 
land cover type, although each polygon in the coverage is not a “subject” 
in a strict sense. Thinklab can use such data for qualities, as long as an 
attribute in them contains information in a recognizable form. In the 
following example, the attribute luc_id from the AFRICOVER vector 
dataset for Tanzania is accessed using the Web Feature Service (WFS) 
function:
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model 
wfs(urn="im:af.tz.landcover:tanzanialandcover", 
attribute="luc_id") as 

    classify im.landcover:LandCoverType into
        im:Agricultural if "AG",
        ....
        ;

When the resolver decides to use vector data in a grid spatial context, it 

will automatically rasterize the polygons, extract the value of the luc_id 

attribute, convert it into the concept indicated in the classification, and 
attribute it to each point of the grid. A numeric attribute would be required 
to provide a value for a numeric quality like slope or rainfall quantity. Note

that the states of the observation will be unknown (a kewyword that 

expresses the notion of ‘no data’ in Thinklab) where no polygon covers the 
context.

Subject sources

In many cases, data sources can be seen as providing things rather than 
qualities. For spatial data, a common occurrence is vector files (such as 
shape files) where each record represents one distinct object, such as a road
or a bridge. Not all vector files represent objects – some just use a vector 
representation as a convenience to lump together qualities that have the 
same values – but many do. In such cases, the models can annotate the 

sources as subject sourcesusing the keyword each and avoiding the 

observer statement after as:

model each wfs(urn = 
"im:global.infrastructure:global_rail_merge") 
named railroad-global
as im.infrastructure:Railway;

When located within a subject model (with the each keyword and only a 

subject concept after as), the source will be interpreted as a source of 

subjects. Observing the im.infrastructure:Railway concept in a 

context covered by the data above will generate as many railway subjects 
as there are in it, clipped to the context as necessary.

There is much more to be said about subject models, specifically about 
quality models that can be automatically inferred from them. We will 
briefly discuss some examples after the discussing observation semantics 
for quality models. Another topic that will be discussed farther along is 
how models can be written to specify what to do when the subject is built –
which enables what is commonly called agent-based modeling in Thinklab.
We will leave details on this advanced aspects for a further section.

Observation 
semantics for 
qualities
Observing qualities produces what we usually refer to as data, i.e., 
information that approximates the value of the state of the observable by 
referring it to a known set or scale. This “external” reference system is 
what we refer to when saying that qualities produce indirect observations. 
For example, elevation needs to refer to a unit of measure such as meters 
before a model can observe “how many units” of elevation are in a given 
location. Consider a 1 x 1 km region of land. Observing the elevation 
quality at the 100-m resolution will produce as many of these “data” as 
needed to cover the scale of the context - e.g., 100 numbers. In Thinklab, 
this set of 100 numbers counts as oneobservation of elevation in that 

context.

Thinklab provides a number of observer statements that help the user to 
specify the system of reference for a quality observation. This is equivalent
to specifying the observation semantics for the observation. In Thinklab the
observation semantics are, in general, only described through the observer. 

So, for example, a concept called Measurement will not be found in the 

Thinklab ontologies and no concepts of this kind should be added. For all 
practical purposes, the semantics of the observable and that of the 
observation are independent, and this is an important founding principle in 
semantic modeling. Some validation steps are taken to ensure that 
observables are appropriate for the observation and some exceptions exist 
to the above rule; still, observation types are best thought of as not directly 
implied by the observable concept

Data models are typically used by Thinklab when a computed model 
defines a dependency for an observable. This will be shown in detail later, 
but many models will state a dependency like:

model .... 

    as ....
    using
        (Elevation as measure 
im.geography:Elevation in m) named el,

        ....
        ... instructions to compute the result 
based on 'el';

In this case, the code instructs the Thinklab resolver to look for the most 
appropriate model that satisfies it. If a data model is available for the 
observable, it will be chosen preferentially. Otherwise a computed model 
will be chosen if available, and its dependencies will be resolved in the 
same way. Observations made in different units can be converted when 
their relationships are clear: for example, a dependency on a measurement 
of elevation in meters may be matched to a data model for elevation in feet,
and Thinklab will automatically translate the units.

Thinklab provides semantics for the following observation types: ranking, 
measurement, count, valuation, classification, proportion, percentage, 
probability, ratio and uncertainty. Each observer type has a correspondent 

statement that must be used after the keyword as (e.g., ‘as rank’, ‘as 

measure’, ‘as count’), in any model that has a quality as its observable. 
Observers create values for the states of the concept they describe that may
be different for different observers. In the sections that follow, each 
observer type is explained, including a description of the values produced, 
a description of how these data models will be used when matched to a 
dependency, and examples of use.

Ranking
Rankings produce numeric values that may use a scale (e.g. 0 to 1 or 1 to 
10) or be unbounded, may be restricted to being integer numbers, and are 
meant to describe qualities for which a higher rank means a higher “level” 
for the observable concept. They do not have units (they often translate 
what is referred to as “arbitrary units” colloquially), and as such they 
should only be used when measurement or valuation observers are not an 
option. Rankings are typically used to express preferences or survey data, 
where the quality described uses an arbitrary numeric scale.

model wcs(...) as rank ...;

model wcs(...) as rank ...:PerceivedDanger 1 to 5;

This annotation will produce floating point numbers or integers if 
requested. If a range is given, values outside of that range that are produced
by the data source will generate a runtime error, indicating a mismatch 
between the data source and its intended semantics. Some data source 
functions may offer the possibility of restricting the output range. This 
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annotation will match any dependencies for a ranking of a compatible 

observable. Note that: * If a rankstatement in a dependency does not 

specify a scale, both ranking models with and without a scale will match it;

* If a rank dependency defines a scale, only rankings with a scale will 

match it; if the observables match, the scale is seen as a “unit” of sorts, so 
the matched ranking may have a different scale, and the values which will 
be converted to the scale of the dependency before being used; * 
Dependencies that define a scale will not be matched to rankings of a 
compatible observable that do not define a scale.

Measurement

Measurements indicate physical properties, such as mass, energy, or 
entropy. Currently Thinklab will only generate a warning when a 
measurement is defined for a quality that is not a physical property, to give 
the modeler time to define concepts and still be able to test models. 
However, properly heeding the warning means that no user should ever 
“publish” a model with that warning to a public namespace.

More information about physical properties (and their fundamental 
distinction in being intensive or extensive, which is very important for their
aggregation) is available here. For this module, it is important to 
understand that physical properties are measured and quantifying the 
measurement relies on the use of a reference system with standard units 
(e.g., mm, kg, ha). Thinklab requires the user to specify units according to 
a well-identified syntax and will validate units in both the client and the 
server.

measure ...

This annotation will produce floating point numbers in the specified unit of
measure. This annotation will match any dependencies with a compatible 
observable. Units will be converted as necessary. If the annotation is 
correct, compatibility of observables should guarantee compatibility of 
units, and this compatibility is enforced to some extent in Thinklab, but not
yet to a level that guarantees full coherency and safety. Consider the points 
made previously about aggregation and the use of distributed extents in 
defining the observables to be certain that observables and units are 
properly aligned.

Note that scientific practice and published metadata are often sloppy in 
defining units, both in terms of syntax and in using units for qualities that 
are not actually measurements (e.g. “10 people” or “20 EUR”). A semantic 
modeling system cannot afford that, so the appropriate observers must be 
used to handle qualities that could be called measurements (Note: the two 

examples above are a count and a value respectively - see below). 

Additionally, the raw values of some spatial data may require a conversion 
factor (e.g., multiplying by 0.01) to express the data in standard units. Such
conversions can easily be conducted during data annotation; for example:

model wcs(urn = 
"im:na.us.climate.annual:annualprecip")

    named precipitation-annual-2007-usa
    as measure im:Annual 
im.hydrology:PrecipitationVolume in mm

    over time (year = 2007)
    on definition change to [precipitation-annual-
2007-usa * 0.01];

When in doubt, and particularly if modeled values appear to be 
consistently ‘off’, check the metadata.

Count

Counts are often considered measurements in common practice, but they 
are semantically unique, as they refer to a set of countable objects of a 
common type, and define the very particular quality that comes from 

counting them. The Thinklab count observer is special because it requires 

its argument to be a subject and produces a different concept. For example,

when counting im.demography:HumanIndividual, the resulting observable 
(a quality) will be im.demography:HumanIndividualCount. Two additional 
observers, ‘presence’ and in some instances, ‘classify’, may also produce 
new semantics. At a minimum, only the subject need be provided to the 
count observer:

model 1 as count Universe;

If, however, a count that is distributed over space, time, or both, is desired, 
a unit to define the extent of the distribution is required. For example:

model wcs(urn="aries:global-populationdensity-2006")
as

    count im.demography:HumanIndividual per km^2
    over time (year = 2006);

Using the per syntax dictates the unit that would otherwise represent the 

denominator if the annotation (incorrectly) specified the count as a 
“measurement … in people/km^2”.

This annotation will produce floating point numbers, although this is a bit 
of a semantic blasphemy, as countable subjects should not normally 
maintain identity when split, so only integer values are semantically 
correct. The ability to automatically account for densities or rates when the 
context is spatial or temporal requires enabling fractional counts. Note that 
the quality resulting from this model will be represented by a different 
concept, created (if necessary) by appending “Count” to the subject 
concept. This annotation will match any other count of the same observable
over compatible extents. Units will be converted appropriately and 
automatic aggregation will take place.

Value

It is common to see metadata referring to value observations as 
“measurements” of value - either monetary or in “arbitrary units.” A 
semantic system needs to do better than that: value is semantically very 
distinct from the generic measurement. It entails both subjective and 
objective comparison between different quantities and the value system 
that underlies valuation is much more fluid and culturally dependent than a
physical measurement.

Value is commonly assessed monetarily, but that is by no means the only 
way to observe value. Thinklab allows the specification of monetary or 
conceptual currencies.

Currently, the use of the value observer should be considered experimental 
and support for value conversion in Thinklab (i.e., in converting between 
currencies or within a single currency to account for inflation) is limited. 
The syntax allows currencies to be specified like so:

model ... as value of ...:PropertyParcel in 
USD@2004;

Because values can be non-monetary, the specification of the currency does
not need to be monetary. If a currency is given, it must be qualified by the 

year (or month/year) after the @ character, as the definition of any currency 

is meaningless without an historical context (which is independent of the 
possible temporal context). If the currency is not monetary, a concept 
expressing the type of value should be specified (e.g. “Affection”). In all 
cases, some currency is necessary, and the semantics defined by this 
statement will reflect both the observable and the way it is valued.

Note that while Thinklab is expected to enable automatic currency 
conversion, this feature is in development and is not available yet. For all 

practical purposes, value will behave the same as a measurement 

without a scale even when a temporally-specific currency is specified.

This annotation will produce floating point numbers. This annotation will 
match any value that has the same currency and year, or the same currency 
concept. In the future, translation to other currencies and years will be 
provided.
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Classification

Classifications are often used in modeling to define categorizable attributes
of a common type (e.g., land cover type) or to “discretize” continuous 
values into discrete levels that can be more easily understood or fed into 
computations that require categorical data. In a semantic system, we need 
to unravel the meaning of categories, and using string values won’t do us 
any good - but in the semantic world, the idea of “categories” corresponds 

very closely to ontologies and concepts. Indeed, the classify observer 

produces concepts, and it is carefully designed to be able to express all the 
semantic nuances described for observables: types, traits, and discretized 

levels. As a result, the classifyobserver has several options, although all 

should read naturally.

In a classification, the state of the indirect observation is a concept. This 
corresponds to what is commonly called a categorical observation. Because
in Thinklab nothing can be devoid of semantics, it is not possible to 
produce categories that are simply strings (e.g. “high” and low“). Any 
categorization must have clear semantics, so any time models call for 
categories, a classification must define the categories in the terms of an 
explicit concept hierarchy.

Classify has three different forms, which are used in different 
circumstances. Direct and indirect classifications simply define the list of 
concepts that make up the classification, and are used when the concepts 
are produced directly in the model, for example through an algorithm. 
Classification using observables or traits is used when the concepts are 
produced by reclassifying some other observation; classification rules are 
defined to produce each concept. The latter form can use a trait as the basis
for classification.

As a special case, the classify keyword can include only the observable 

concept when stating a dependency. This special case will be explained in 
Module 4.

Direct classification

In a direct classification, the concepts that form the concept space are listed

directly after the observable concept and the keyword into:

model ManureType as 

    classify im.agriculture:Manure into PigManure,
CattleManure, PoultryManure

  observing 
        (PigManureProportion as proportion of 
im.agriculture:Pig  in im.agriculture:Manure 
im.core:Mass) named pig-manure, 

        (CattleManureProportion as proportion of
im.agriculture:Cattle in im.agriculture:Manure 
im.core:Mass) named cattle-manure, 

        (PoultryManureProportion as proportion 
of im.agriculture:Poultry in im.agriculture:Manure 
im.core:Mass) named poultry-manure

    using rand.select(
        distribution = (pig-manure cattle-manure
poultry-manure),

        values = (PigManure CattleManure 
PoultryManure)

    );    
This model creates four concepts: ManureType, PigManure, CattleManure,
PoultryManure in the namespace where the model is declared. The last 
three concepts are children of the first. The concepts are produced directly 

by therand.select accessor (which selects one of the child concepts 

based on the probabilities specified by each of the observed dependencies) 
there is no need to specify any other criterion for classification. The 
specifics of the rand.select accessor are treated elsewhere.

Indirect classification

The indirect classification assumes that all the concepts in the concept 
space have already been defined and tagged with metadata. The metadata 
field is used to link the appropriate concept to the value extracted from a 
data source or observed by a mediated observation. The link is established 

with the according to keyword sequence followed by the metadata field

that contains the linking value. Concepts with established numeric 
encoding, like those used in numerically classified land-cover or soil order 
data, offer significant time savings and limit the ability of the user to 
introduce error in the coding scheme:

model data.wcs(id = "europe:corine2000", no-data = 
255) named corine-2000

    as classify im.landcover:LandCoverType 
according to im:numeric-encoding;

This will only work if the children of the observable concept (in this case 

im.landcover:LandCoverType) are tagged in the respective ontology 

with an im:numeric-encoding field that specifies the number that will 

be extracted from the data.wcs(...) data source. An example 

LandCoverType ontology snippet is below:

...
class LandCoverType 

    has children
        ...
        (DiscontinuousUrbanFabric with metadata 
{ im:numeric-encoding 112 })),

        (class IndustrialCommercialTransport
            has children
                (class 
IndustrialCommercialUnits with metadata 
{ im:numeric-encoding 121 }),

                (class RoadRailNetwork with 
metadata { im:numeric-encoding 122 }),

                (class PortArea with 
metadata { im:numeric-encoding 123 }),

        ...
This approach transfers the burden of annotating the encoded value for a 
datasource from the model to the concept. This is worth doing if the 
concepts are used for more than one data source; otherwise the effort is the 
same and it’s just a matter of stylistic preference whether to use this form 
or the mediating classification discussed next.

Classifying values into observables or traits

The most complete classification specifies classifiers that attribute the 
result concept according to results of the “incoming” information (e.g., the 
values that come from a dataset). A common use of classifiers is to 
annotate a data source:

model wfs(urn = 
"im:af.tz.landcover:tanzanialandcover",

        attribute = "lc") 
named tanzania-lulc
as classify im.landcover:LandCoverType into

    im.landcover:AgriculturalArea        if "AG",
    im.landcover:ForestSeminaturalArea   if "NVT",
    im.landcover:VegetatedStillWaterBody if "NVW",
    im.landcover:UrbanFabric             if "UR",
    im.landcover:WaterBody               if "WAT";

The classifier, the part that follows the if keyword in each row, can 

accommodate many kinds of expressions, discussed in detail in Module 4 
and demonstrated further in the Cookbook. Numbers, strings or concepts 
can be matched using ‘is’, numeric intervals using a syntax like ‘1 to 10’, 
or partial intervals using operators like ‘< 10’ or ‘>= 4.3’.

Data often represent a classification according to a specific aspect of the 
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main observable, one that is best described with an attribute. In such cases, 
classifications should be annotated using the main observable and instead 
of defining its subtypes in the classifiers, use the ‘by’ keyword and mention
the specific trait being observed. Then, the classifiers will be defined by the
appropriate attributes. A typical case is when data describe a discretization 
in subjective levels:

model wcs(...) as classify im.policy:Poverty of 
im.demography:HumanPopulation by im:Level into

        im:High     if 4,
        im:Moderate if 3,
        im:Low      if 2,
        im:Minimal  if 1;

Note that if data are available and the modeler wants a discretization of 

known numbers, the proper annotation is not classify but the actual 

numeric observer; models without data sources can be used later to 
discretize the value. For example, if a discretization of 
im.geography:Elevation is needed, do not annotate a data source as:

model wcs(...elevation data...) as measure 
im.geography:Elevation in m

    discretized by im:Level into
        im:High if > 2000,
        ....                     (An INCORRECT 
example)

This would make available a model of elevation data that ranks it into 
subjective values that only make sense for a specific application, losing the
numeric information in the data. This model would match any dependency 
for elevation data, and produce discretized midpoint numbers when the 
requesting side wants numbers, with a great loss in precision. A proper way
would be to just provide the undiscretized measurement in a public 
repository, and create a local model that translates it in the same namespace

where it will be used, marked private to ensure that nothing else will use

it:

namespace my.namespace using im.geography;

(RIGHT, BUT STILL NOT PERFECT) 

private model Elevation as 

    classify im.geography:Elevation by im:Level
        im:High if > 2000,
        ....;

We will see in Module 4 that this kind of requirement can be stated directly
as a dependency, eliminating the need for a private model (and the risk of 

forgetting the private, making it available for others with potential 

problems) and keeping all the subjectivity nicely encapsulated within the 
context where it is needed.

Values in the data source that fall outside the space defined by the 

classifiers in a classify statement will appear as unknown, in the final 

observation, the Thinklab definition of “no data”. This is sometimes a 
handy way of selecting only a few categories or values from a data source. 
Operations, such as sums or subtractions, which have an unknown operand 
will result in an unknown result.

Proportion and percentage

Proportions and percentages are two almost identical ways of referring to a
quantity that represents a portion of an implicit “whole” amount. The 
semantics of the quantity and the total amount usually only differs by a 
trait, with the amount at the numerator being more specific than the one at 
the denominator - for example, the proportion of “vulnerable” land over 
the total land. Thinklab allows both to be specified:

model ... as percentage of im.agriculture:Pig  in 
im.agriculture:Manure im.core:Mass;

In the case above, the quality concept is stated in the second part 

im.agriculture:Manure im.core:Mass: an abstract quality (mass) 

qualified with a Manure identity. The “specific” case that is compared with

the less specific manure mass is identified by another identity after in. The

whole statement read as “annotate these data as the percentage of manure 
mass that can be attributed to the Pig identity”.

You can use the keywords percentage or proportion to annotate data 

that contain numbers in the interval [0-100] or [0-1], respectively. Thinklab
will match proportions and percentages to each other, converting the 
numbers as necessary.

Some concepts may be inherently defined as proportions or percentages: 
for example, ecologists are accustomed to work with “canopy cover”, 
which represents the proportion of land covered by the tree canopy in a 
forest when seen from above. In such cases, when you certainly don’t want
to think about the “generic ground” and the “canopy” that covers it, you 

can simply use the concept without specifying of and in:

model … as proportion im.ecology:CanopyCover;

Note that in such cases, the concept will be validated as actually expressing
a proportion, and an error will be flagged if that’s not the case. In other 
words, Thinklab will let you use a simpler semantics only if the semantic 
groundwork has already been done correctly in the ontologies you are 
using.

Ratio

Ratios are interesting because they don’t have one observable but two. 
Indeed, our definition of an observable is something that is “grounded” in 
reality; while ratios only exist as comparative observations of two 
observables. There are no true ratios in nature. For this reason, we provide 
only the full form of the observer where both compared qualities are 
annotated independently:

model … as ratio of im.ecology:Soil 
im.chemistry:Carbon im.core:Mass to im.ecology:Soil 
im.chemistry:Nitrogen im.core:Mass;

Because there are no concepts that can be seen as natural ratios, we do not 
provide a simpler form as we did with proportions and percentages. This 
model will match any ratios of compatible observables and produce 
floating point numbers. An appropriate concept will be created by the 
annotation: in the case above, the concept will look a bit complicated – 
something like 

im.ecology:SoilCarbonMassToSoilNitrogenMassRatio. 

Fortunately you can state your dependencies using the ratio observer, and 
never have to write that.

Note that knowing the ratio of two quantities allows an intelligent software
to infer one quantity when the other is known. So for example the above 
model should be enough to satisfy an observation of carbon mass in the 
soil when a model producing the nitrogen mass in the soil exists. This 
capability is in development in Thinklab.

Presence

Presence is the quality corresponding to a subject, process or event “being 

there” in the context. As such, it can only take the values true or false. 

Presence is the observational equivalent of a “boolean” value in data-
oriented languages.

Thinklab provides a simple statement to annotate presence data:

model … as presence of im.infrastructure:Building;

Note that the concept after of must be a thing and can not be a quality, as 

there is no such things as “presence of a temperature” for example. If you 
need to know, for example, whether temperature is above 25 Celsius, the 

statement you are looking for is not a true or false statement, but a 
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classification of a restricted conceptual hierarchy that classifies 
temperature into “above 25” or “below 25”.

Like in proportions and percentages, it is possible to encounter concepts 
that are semantically defined as types of presence, so the form without the 

of is admitted with validation. Note, however, that this is rare and the form

above is the most common one.

This model will match any dependency requiring presence of a compatible 

observable. The values resulting from it will be true or false, and a 

quality concept such as im.infrastructure:BuildingPresence will 

be created if not already existing. Note that if you have annotations of the 
subjects themselves (e.g. a vector file of buildings) it is usually not 
necessary to provide a presence annotation, as that is automatically inferred
by Thinklab: see the section on de-reification below for details.

Probability and uncertainty

The last two observers refer to the observation of the likelihood of 
something happening or being observed correctly. They are provided to 
simplify annotation of risks and to make it easy to track model and data 
uncertainty.

The probability observer has both the explicit form

model … as probability of im.physics:Fire within 
im.ecology:Forest;

and a simpler form for concepts that are naturally probabilities, such as 

risks. In the explicit form, the observable after of must be something that 

happens: an event or a process. Again, you may be tempted to 
conceptualize probabilities of qualities or subjects as semantic shortcuts, 
but Thinklab will not allow that. The observer will produce numbers in the 
range [0-1] and will flag as errors any data output that falls outside this 
range. The direct form will produce a concept such as 

im.physics:FireProbability.

The uncertainty observer refers generally to the spread of a value around 
its maximum likelihood estimator, but does not mandate any specific type 
of uncertainty: simply the meaning for it, producing a numeric expression 
that means “less certainty” when it is higher. It is used often to annotate 
expected outputs from external models that produce estimates of 
uncertainty along with values, such as Bayesian networks. It is more rarely 
used to annotate data, as few direct estimates of uncertainty are available. 

Like probability, it has a direct form with of and an indirect one for 

observables that are defined as uncertainties. Unlike probability, it has no 
constraints on the type of observables that can be used: you can estimate 
the uncertainty of anything, including another uncertainty. Also unlike 
probability, it can produce floating point numbers in any positive range. 
The observer will create a concept such 

asim.ecology:CanopyCoverUncertainty if that does not exist 

already.

Discretization

All numeric observers (rank, measure, value, ratio, proportion, 

percentage, count, probability and uncertainty) can be 

discretized into discrete levels. The most common way to do it is by using 
a trait, often usingim:Level or a trait that derives from it:

model wcs(...) as measure im:Length of 
im.ecology:Leaf in cm

    discretized by im:Level as
        im:Low    if < 10,
        im:Medium if 10 to 30,
        im:High   if > 30;

In this case, the output of the model is a concept as in a classification, but 
the quantitative meaning is not lost: when used in a numeric context, the 

values will be automatically converted in the midpoint of the intervals as 
long as the boundaries are finite (they are not in the example above). When
specifying a discretization, the classifiers must be continuous (the 
endpoints must touch): the convention for intervals specified as above is 
that the interval is closed at the beginning and open at the end.

Note: spatial densities and temporal rates refer to observations, not 
observables

It is important to distinguish between the primary identity of what is to be 
observed and those secondary aspects of the observation that depend on 
being distributed over space or time when defining the semantics of an 
observable. It is common to encounter concepts like “population density,” 
for example, whose definition as a “density” depends on the observation 
being made over a spatial context (e.g., “per hectare” or “per square 
kilometer”). In Thinklab, space and time are part of the context; for this 
reason they don’t enter the semantics of an observable, but are 
automatically handled when they are observed over space, time, or both. 
Confusion in semantic modeling is likely when the common attribution of 
concepts used in data or models implies that they are distributed over a 
specific type of context (spatial or temporal), even though they may be 
used in others. So for example, a concept named PopulationDensity (which
implies that applied to the population observable is distributed in space) 
should be avoided, in favor of the generic semantics of population without 
such implications. In Thinklab, the appropriate observable for this case is 
acount of people, expressed for example as

model .... as count im.demography:HumanIndividual 
per km^2;

Only subjects can be counted, so this model, which contains all the 
semantics of what population density is (a count of individuals over 
space),requires a subject concept (im.demography:HumanIndividual). The 
model implies a density, but only when the data source is spatially explicit. 
Thinklab will, if necessary, aggregate densities automatically into total 
numbers of individuals when the model is matched to a context that is 
spatial but not distributed in space (e.g. a city defined with only a single 
polygon without grid cells). The same applies to rates, which are the 
equivalent of densities with respect to time. Observables and observations 
are independent, and their semantics should not be “contaminated” by 
concepts that have to do with the characteristics of the context of 
observation. Avoiding references to spatial densities and temporal rates 
will maintain semantic consistency and help to minimize confusion.

De-reification of 
subject models
Having discussed quality models in detail, we can go back for a moment to
subject models. Observations of subjects are direct, so it is not necessary to
state anything more than the subject type. Direct observations simply 
create subjects. So an object source such as a shapefile can be annotated to 
create subjects as seen above. In addition, the existence of a subject also 

implies certain qualities: an obvious one is the presence of the subject, 

which takes the values true or false according to a subject being in a 

point of the context or not. Thinklab will automatically generate quality 
observers for presence whenever a subject annotation is encountered, so 

that observation of presence of im.infrastructure:Railway will 

be made automatically by rasterizing the line contexts coming from the 

subject annotation above, and returning true for each point where a 

railway is present.

Further, semantics can also be used to specify the qualities referring to 
each subject. Thinklab expects that subjects produced by a subject source 

im:Level
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may come with attributes, Adding observers (see below) to the subject will 
determine their qualities. Consider this example:

model each wfs(urn = 
"im:global.infrastructure:grand_reservoirs_v1_1") 
named reservoirs-global
as im.hydrology:Reservoir
interpret

    GRAND_ID as im:name,
    AREA_SKM as measure im.core:Area in km^2;

In the example above, the interpret keyword introduces a list of 

attributes and the ways they should be interpreted when creating subjects. 

As each reservoir subject comes with an attribute (AREA_SKM) that 

contains a measurement of its area in its original source, we specify the 
second attribute with a quality observer for it. This has two effects in 
resolving dependencies:

1. any dependency for a Reservoir subject that is satisfied by the 
subject source will create reservoirs that contain the quality of 
Area;

2. a quality dependency such as measure im.core:Area 

within im.infrastructure:Reservoir … will be 

satisfied by a model inferred from the above specification. The 
model will be matched to the context of observation: for 
example, when asked to measure reservoir area over a spatial 
grid context covered by the subjects above, Thinklab will 

automatically rasterize the AREA_SKM attribute and if 

necessary, convert the values in the units requested.

This ability of creating qualities from things is called de-reification 
(removing the “thing-ness” in things) and is very useful to make the most 
out of data. You could also annotate each quality explicitly:

model wfs(urn = 
“im:global.infrastructure:grand_reservoirs_v1_1”, 
attr=”AREA_SKM”) 

    named reservoirs-area-global
    as measure im.core:Area within 
im.hydrology:Reservoir in km^2;

But this is made unnecessary by the subject annotation, which provides this

and an automatic presence of im.hydrology:Reservoir along with 

the subjects themselves – three birds with a stone.

You may have noticed the GRAND_ID attribute, annotated as just providing 

a single metadata property, im:name. That will not produce any 
observation, but tells Thinklab that the subjects should have metadata 
reflecting the content of that attribute. You cannot observe a name – no 
physical reality in that – but each reservoir produced can be given the name
specified in the attribute, a useful property for visualization. That is the 

equivalent of the name you specify in an observe statement – subjects 

have individuality, so they can have their own metadata.

Module 4. 
Computing 
deterministic and 
probabilistic 
observations.
What is most commonly referred to as a model (outside of 
Thinklab/ARIES) is actually an algorithm that computes quantities that 
describe “virtual observations,” which reflect a hypothesis about the 
observable that is expressed in equations or other processes. Such 
modeling relates the state of the observable to that of other observables. 
For example, we can interpret tree biomass as dependent on precipitation, 
soil type, and incoming solar radiation present or past. With this in mind, 
we can define the two main differences between “data” and “models” in 
Thinklab. Models, but not data, can:

1. Define an equation, algorithm, or external process to compute 
the state of the observable;

2. Have dependencies, i.e., the statement of other observables that
need to be observed before the state of the model’s observable 
can be computed using some type of algorithm.

These two points introduce additional specification requirements, rather 
than structural changes, when compared to data models, i.e., data, in 
Thinklab. We have defined data as resolved models before, because data 
don’t require any other observable to be computed before them. Therefore 
it is guaranteed that data will produce observations when used in a 
compatible context. Because the definition of a computed model is just like

that of data with some added specifications, we use the model statement to

annotate both data and models. Data are effectively a pre-computed model 
of the observable, which does not require any further observations but is, 
like any model, dependent on scale, assumptions, etc. Data models may 
also include equations, which are useful when, for example, when we wish 
to modify raw data before it is used as the state for an observation.

Because Thinklab is a semantic system, each dependency is defined 
semantically, i.e., by providing the details about the identity of what needs 
to be observed, not by giving the system equations or other information 
concerning how to compute it. For this reason, models in Thinklab are 
usually small; the final, integrated algorithm that computes a top-level 
observable concept (e.g., “climate”) is defined by resolving each 
dependency to models, a process that may bring in new dependencies as 
models are chosen. Observation of a complex observable is successful 
when all the “end points” of the model chain are resolved models. At that 
point, Thinklab can create a data flow from the model chain, and run that to
compute the states of every observable involved, creating the final subject 
that contains observation for qualities and other subjects as its semantic 
constraints require.
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Model syntax: 
observable, 
dependencies and 
computations.
A simple computed model may sum the state of its dependent qualities to 
obtain the state of its own quality observable:

namespace my.namespace using im, im.agriculture;

...

model SummerCropYield as

    measure im:Summer im.core:Yield of 
im.agriculture:Crop in t/km^2

    observing
        (JunCropYield as measure im:June 
im.core:Yield of im.agriculture:Crop in t/km^2) 
named jun-yield,

        (JulCropYield as measure im:July 
im.core:Yield of im.agriculture:Crop in t/km^2) 
named jul-yield,

        (AugCropYield as measure im:August 
im.core:Yield of im.agriculture:Crop in t/km^2) 
named aug-yield

    on definition set to [jun-yield + jul-yield + 
aug-yield];

There are several new things to note in this example:

1. Instead of a data source, we specify a name after the model 

keyword, using the capitalization conventions used for 
concepts. Indeed, we are creating a concept. Essentially this 
model is an ontological statement: we define the concept 

my.namespace:SummerCropYield while giving an 

interpretation of how it should be computed (i.e., as the sum of 
crop yields in June, July, and August). As noted in the 
introduction, each Thinklab namespace is an ontology: the 

im.namespace ontology that is created by Thinklab reading 

this statement contains the new concept.

2. A new keyword, observing, is followed by a comma-

separated list of dependencies. Each dependency is a mini-
model itself, but without computational details. Within each 
parenthesis, there is a concept ID for the observable and the 

full semantics of what is observed. The keyword named is used

to give the dependency a name, which will only be used within 
this model and won’t be recognized by other models, even 
those in the same namespace. This name is used to refer to the 
value of the observation in equations and conditions. The 

im.namespace ontology will also contain the three concepts 

corresponding to the first identifier, and a dependency 
relationship that links them to the main observable 
(SummerCropYield).

3. The last line, whose syntax we will describe later, shows the 
simplest way to compute a quality in Thinklab: an expression, 
defined within square brackets, that returns the value of the 
observation. In this simple expression, we use the names we 
defined above to refer to each operand (jun-yield, jul-yield, and
aug-yield).

The context of 
applicability for a 
model
At this point, it may be unclear how this model handles time and space, 
because there are no time or space specifications in it. In Thinklab, when 
temporal and spatial constraints are not specified, it means that the model 
applies to any time and any location. In data models, the data source may 
implicitly contain a temporal and/or spatial context, which automatically 
becomes the context of validity for the model. For example, if an annotated
dataset contains a raster map of elevation that covers Spain, Thinklab will 
not use it to resolve a context located in Greece. But the SummerCropYield
model doesn’t have a data source, so the model, as stated, covers every 
situation: not only every part of the world, but also any definition of 
SummerCropYield that has no associated space or time. Methods to 
instruct Thinklab on where and when this model should apply are covered 
in Module 5.

There is, however, one other important consideration to correct the 
SummerCropYield model presented above. The units used throughout the 
module are t/km^2 - implying a dependence on space and no dependency 
on time. So if this model was used in a non-spatial context (for example 

created with an observe statement without an over space ... clause), 

it would produce the wrong results, returning a spatial density of yield (in 
t/ha) when a total yield (in t) is wanted. Indeed, the proper way to specify 
this model is

model SummerCropYield as

    measure im:Summer im.core:Yield of 
im.agriculture:Crop in t/km^2

    observing
        (JunCropYield as measure im:June 
im.core:Yield of im.agriculture:Crop in t/km^2) 
named jun-yield,

        (JulCropYield as measure im:July 
im.core:Yield of im.agriculture:Crop in t/km^2) 
named jul-yield,

        (AugCropYield as measure im:August 
im.core:Yield of im.agriculture:Crop in t/km^2) 
named aug-yield

    over space
    on definition set to [jun-yield + jul-yield + 
aug-yield];

Adding the over space statement, without further specification, ensures 

that whatever the usage of this model, it will only apply to a context where 
any kind of space is defined. In anticipation of Module 5, it should be 
fairly intuitive that following the ‘over space’ statement with a polygon, as 

in an observe statement, will also limit the use of the model to contexts 

that cover that particular space.

Importantly, because a quality has a value over the whole context, this 
computation will be repeated as many times as necessary to cover a 
distributed context. So if, for example, this model is chosen to compute a 
dependency on SummerCropYield in another model that is run over a 
10x10 km spatial grid using a 1 km^2 resolution, the equation will be 
computed 100 times (once for each of the 100 grid cells), each time with 
the value of the dependencies computed by another model or data in the 
same cell.

The identification of an observable as a density (e.g., 
SummerCropYieldDensity) should be avoided for the reasons discussed in 
Module 2 and further explained in the discussion on scale in Module 5. 
SummerCropYield should be called a density if the observable was 
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semantically a density, independent of the context; for example, the density
of water. The fact of being distributed over a context that is aware of space 
makes the observable a density only when observed in that context, not by 
nature. Aggregation, which in Thinklab is managed automatically, would 
remove the density “character” from the observation. The same 
considerations apply to time: if distributed over time, the units must have a 
temporal unit in the denominator, but it would be inappropriate to name the
concept a SummerCropYieldRate.

The observable in 
computed models
The most obvious difference between a “resolved” model that annotates 
data and one that is “unresolved” model is that the latter includes an 

observable concept definition after the model keyword. Indeed, a 

computed model creates new knowledge (or “reinterprets” it), and the 
concept statement defines its semantics. The concept may be defined 
before the model, or more than one model may be provided for the same 
concept; the first time an unknown name is encountered, a concept will be 
created with the semantics that depends on its use. Successive uses of the 
same name will need to be consistent with that semantics.

In some situations(detailed below), this concept can be written without a 
colon-separated namespace identifier, which we use to qualify an external 
ontology in the Thinklab naming conventions. This defines a concept that 
is “local” to the namespace within which the model is defined. So the 
model in the example above will in fact create the 
my.namespace:SummerCropYield concept. If the model has an observer, 
this concept will be a specialized version of the observable defined for it. 
So SummerCropYield will be in a “is-a” relationship with the 

SummerCropYield concept created by the measure statement inside the 

model, and will inherit all the traits from it.

Compare the model above to a “resolved” data model described in the 
Module 3: only the observer semantics is stated for a resolved data model, 
because the data source takes the place of the top-level observable. Indeed, 
we areannotating data so that specification is all we need. When we 
compute data, we are defining new knowledge, hence the need for a 

concept after model.

When the primary observable is local to the namespace, we expect that the 
concept will only be useful inside of it, for example to use as a dependency
in other models in the same namespace. This is done commonly when a 
namespace contains models for many different observables, all of which 
are used in a final model that brings the whole conceptualization together.

In other situations, the models can use a primary observable concept that 
has been defined outside the namespace. This choice is normally made 
when the namespace is meant to provide an “alternative” way of observing 
a concept that is localized to a particular scale – for example to a given 
geographical region. In such cases, observations of the observable will 
only be made with these models where the constraints are met – which may
even be only a subsection of a full context of observation. This is discussed
more in detail in the next sections; however, just note that models with a 
“known” (external) observable are typically useful in a shared context, 
while models with “local” observables are usually written to provide 
clarity and internal organization in namespaces that want to keep most of 
their models private. In the examples below, we only create knowledge in 
the local namespace, which can be used in outside models only when 
qualified with the full name for the concepts (e.g. 
my.namespace:Elevation).

Mediation
Mediation is mainly used with classifications. It is a way to chain different 
observers together for use in models. Mediation introduces an implicit 
dependency for “another view” of the same observable. A typical example 
is:

namespace my.namespace;

...

model ElevationLevel as

    classify (measure im.geography:Elevation in m)
by im:Level into

        im:High if > 1000,
        im:Low  if < 1000;

This kind of specification nests a dependency within an observer, without 
assigning it a concept and a name. The example defines a classification that
depends on observing a measurement of elevation. The part within 
parentheses is indeed a dependency, but because the semantics of the 
“inner” observation relates directly to that of the observable, and we don’t 
need to preserve the value of the measurement for any computation, we can
more simply set it in place of the concept to be observed by the 
classification. This kind of statement is a shorter, more intuitive and a more
“fluent” idiom than the equivalent model expressed with dependencies. 
While the model below will produce the same results as the one above, it is
longer, more complex, and less readable, so the above model would be 
highly preferable:

model ElevationLevel as

    classify ElevationLevel by im:Trait into 
im:High, im:Low

    observing
        (Elevation as measure 
im.geography:Elevation in m) named elevation

    on definition set to [
        elevation < 1000 ? im:Low : im:High
    ];

For this reason, mediation should always be used when it’s appropriate, in 
place of a less readable model with one dependency.

Expression 
language
The next few sections provide some guidance on how to write the 
expressions between the square brackets and where to learn more about 
them. The language used for these expressions is parsed by a Groovy 
interpreter, after being pre-processed by Thinklab so that concepts and 
identifiers known to Thinklab can be used without error.

Groovy is a superset of the Java language, with less strict syntax rules and 
optimized for use in scripts and expressions, but containing all the power 
of Java plus numerous enhancements. More details about the language are 
outside the scope of this guide, but it is important to know that the 
language is much more powerful than the simple expressions we use as 
examples can show. Exploiting this power obviously requires programming
skills. For the interested, there are many resources about the Groovy 
language, both on the Web and in print.

The main things to know about the way Thinklab and Groovy interact are:
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1. The identifiers used after the named keyword in dependencies 

can be used in Groovy as variables that contain the value being 
computed for that dependency (in each state determined by the 
scale, e.g., in each grid cell, with one expression evaluation per
state). The naming conventions used in Thinklab (lowercase 
and dash-separated) are not compatible with Groovy, which 
does not use dashes within identifiers. The names that are 
declared are automatically substituted in the expression before 
Groovy sees them, but if the wrong identifier is provided (i.e., 
due to a typo) that contains a dash, Thinklab will not substitute 
it, and Groovy will interpret that as a subtraction of two 
variables, yielding a potentially confusing error that will hint at
only one part of the variable name being undefined (e.g. 
“population” when the expression contains “population-
density” but that has not been defined as the name of a 
dependency).

2. The “no data” value, indicated in Thinklab with the keyword 

unknown, is the equivalent of “null” in Groovy and Java, and 

will be translated to that before the expressions are passed to 
Groovy for calculations. If an expression has a chance of 

encountering an unknown value (e.g., from no-data points in a 

data source) it should be prepared to handle it. Groovy allows 
null values to be added and subtracted, making the result null 
without error; but multiplications, for example, will break the 
computation and produce an error. We are working on solutions
to this problem, but for now statements may need to be “null-
proofed” like this:

[(a == unknown || b == unknown) ? unknown : a*b]

The ternary operator above (C ? Y : Z) will return Y if the condition C is 
true, or Z if it is false. In English, it is the equivalent of saying “is a 
unknown or b unknown? then return unknown; otherwise return the 

product of a and b”. Either unknown or null can be used interchangeably. 

Note the two equal signs - Groovy, like most languages, uses a single equal

sign for assignments to variables, and the equality operator is ==. If you 

need more complex expressions, please refer to Groovy documentation for 
details on syntax, which is compatible with the better known Java, and for 
functions you may call (e.g. mathematical functions).

3. The Groovy type of the values assigned to dependency names 
will be 1) a floating point number if it comes from a numeric 
observer (rank, measure, value, count, percentage, proportion, 
ratio, uncertainty); 2) a boolean (true/false) value if it comes 

from a presence observer; or 3) a concept if it comes from a 

classify observer. For those who can negotiate a 

Java/Groovy interface, concepts conform to the IConcept java 
interface described in the Thinklab API documentation. 
Proficiency in Java/Groovy allows access to many functions 
related to concepts, but for the uninitiated, it is usually enough 
to know that the operator “is” can be used for a concept, 
followed by a literal concept identifier, like so:

[(land-cover-type == unknown || land-cover-type is 
im.landcover:Urban) ? 10 : 20]

The Thinklab cookbook included in this documentation contains examples 
of expressions of common usage.

Using expressions in 
data models
Expressions can be used to modify or create the value of resolved models 
as well. It is quite normal to link to a data source that requires some 

processing before it can fully express the desired observation semantics. In 
such cases, a model this can be used:

 model wcs(...) 
    named ghg-emissions-usa
    as measure im.policy:GreenhouseGasEmissions in
t/ha*year

    on definition change to [ghg-emissions-usa * 
0.0001];

The above model will work as a data annotation, but will transform the 
value into a tenth of a thousand of what the WCS data source contains 
before producing the observation. Similar expressions can be used for more
complex transformations or for filtering of values. Models can have both 
data sources and dependencies. Each model dependency will itself need to 
be resolved, but the final value can be assigned using expressions that take 
into account both the value of the data source and that of the dependencies.

Limitations

Processing of expressions in Thinklab is still fairly primitive, so there are 
several limitations that will be removed in future versions. The most 
important are:

1. Square brackets ([,]) can only be used within an expression if 
the closing bracket is quoted using a backslash character, as in

\]. If this is not done, the closing bracket will be interpreted as

the end of the expression. This makes the use of the standard 
array notation with Groovy a bit awkward, although this is only
of concern for modelers with coding skills. This limitation will 
be removed in the future.

2. The pre-processing of Thinklab concepts and symbols within 
expressions uses a fairly unsophisticated pattern matching 
algorithm, which may fail when identifiers contain other 
identifiers (for example, if dependencies have very simple 
names like “a” or “b”). When in doubt, use longer, more 
descriptive names and provide space around all identifiers. We 
will soon switch to a parser that has no such limitations.

3. The content of the expressions is not analyzed by Thinklab in 
the same way that rest of the model syntax is. The expression 
code is only parsed the first time when the model is run, so it is
possible to write completely incorrect expressions that will not 
show errors in the editor yet produce errors at runtime. When 
models containing wrong expressions are run, errors will be 
reported that should be easy to relate to the offending 
expression. In the future, the expression parser will be 
integrated more deeply in the language so that syntax errors in 
expressions can be seen during editing.

Of course, no language analysis can identify logical errors in the 
expressions. So always test models with particular care and under different 
scenarios of use when they contain expressions.

Dependencies in 
detail
As we have seen above, a list of dependencies is introduced by the 

keyword observing. In order to compute the observable, the 

dependencies in the list must first be observed. This applies to both 
qualities and subjects, as it may be desirable to observe subjects (e.g., 
households or bridges) in order to observe a larger-scale subject, for 
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example a region, that contains them. On the other hand, remember that 
any dependency is also a semantic statement of a relationship between the 
observable of the model and that of the dependency. Based on our 
definition of a quality, it is pointless to depend on subjects when the 
observable is a quality. For this reason, Thinklab does not allow qualities to
be part of a list of model dependencies, although qualities held by subjects 
may be referenced through the de-reification mechanism discussed above 
for subject models.

One general, but advanced, semantic specification that applies to both 
subject and quality dependencies is that of the property that Thinklab adds 
to the underlying ontology to capture the semantics of the dependency. By 
property we refer to the ontological specification of the semantics for the 
connection between the two concepts. We have not discussed properties in 
these beginner-level modules, and this point can be safely skipped if it 

comes out as confusing. Otherwise, the specification uses the for 

keyword, like so:

…
observing

        (Elevation as measure 
im.geography:Elevation in m) for 
im.geography:hasElevation named elevation

This specification is necessary only when full control of the model 
semantics is desired. Thinklab will create a property automatically if one is
not supplied, and in common modeling practice the specification is not 
required.

Quality dependencies
In quality models, dependencies are a fairly simple affair: in addition to the
local concept, the observer and a name, an optional status can also be 
specified:

observing

    (Elevation as measure im.geography:Elevation 
in m) optional named elevation

This allows Thinklab to compute the model even if that dependency cannot

be resolved to a model (a mandatory keyword is also provided for 

completeness, but it’s the default setting).

When an optional dependency cannot be resolved, the corresponding value 

will be unknown. In a deterministic calculation, this makes the result of 

any expression where it is used unknown,, even if other values are valid. 

In aBayesian network (BN) model the BN will use prior probabilities 
instead of data; a result will be calculated but it will carry greater 
uncertainty than one where values can be resolved for all model 
dependencies. In the current Thinklab implementation there are some 
limitations to this behavior: for example multiplications do not yet allow 
unknown values. Such situations should be handled using the strategy 
explained in the expressions section below. This situation may arise even 
when the dependencies are resolved, e.g., when a dependency is resolved 
to data that contain “no data” values. So it’s important that the expression 
code, or any other selected computation, is prepared to handle the resulting

unknown value.

It is acceptable to specify the dependent observer and concept in an 
independent model as long as it is in the same namespace and defined 
before the model that uses it. For example:

namespace my.namespace using im, im.geography;

private model SoilPH as

    classify (rank im.geography:Soil 
im.chemistry:PH) by im:Level into

        im:High if > 5,

        im:Low otherwise;

model SomethingDependentOnPH

    as ...
    observing
        SoilPH named soil-ph
    ... ;

can be written using the name of the model (SoilPH) in place of a full 
definition of it in parentheses. This is mostly useful when the same model 
needs to be reused in the dependencies of several models below it. When 

using this syntax, dependent models should always be declared private, 

to ensure that they are not inadvertently used to resolve a dependency in 
another namespace. In most cases, based on this example, the choice of 
whether pH is high or low should be decided in the context of the model 
using those subjective levels. If other models use the same 
conceptualization of high or low pH, the above approach will ensure that 
the same interpretation is used throughout (or simply to save some typing). 
In a collaborative context, however, subjective definitions should not be 
allowed to potentially “contaminate” other namespaces by being available 
to interpret soil pH, even if it would only be used if my.namespace:SoilPH 
was referenced in a dependency. For example, other people may search for 
the concept and (inappropriately) use it based the fact that the name 
matches a modeling need of theirs, when the more correct approach would 
be for each modeler to define their own private models (Note: There will 
be cases where it is entirely appropriate to reuse a model in diverse 
contexts. This is why it is so important that the applicable context of each 
model be accurately recorded).

This syntax can also be used to “force” the use of a specific model to 
resolve a dependency, instead of letting Thinklab resolve the concepts 
itself. This should be reserved for special situations, as doing so “wires” 
models together in a rigid way, deactivating much of the utility of semantic
modeling. If it is deemed desirable to wire models together this way, a 
better way would be to refer to the models by name:

private model SoilPH named the-ph-we-want as

    classify (rank im.geography:Soil 
im.chemistry:PH) by im:Level into

        im:High if > 5,
        im:Low otherwise;

model SomethingDependentOnPH

    as ...
    observing
        the-ph-we-want named soil-ph
    ... ;

This linkage is guaranteed to work even if there are other models for the 
same concept in the same namespace (e.g., assigned to different spatial 
locations). As shown above, the name of a model is specified using the 

named keyword that follows the observable. As per Thinklab naming 

conventions, lowercase, dash-separated names are used for such identifiers.
If needed, a model from another namespace can be used as long as it has 

been imported in thenamespace declaration at the top of the namespace 

(the list following the word “using”):

namespace my.namespace using im, im.geography, (the-
ph-we-want) from my.ph.models;

...

model SomethingDependentOnPH

    as ...
    observing
        the-ph-we-want named soil-ph
    ... ;

http://0301.html/
http://0203.html/


Thinklab help - 19 March 2015 21 / 42

A list of symbols within parentheses can be used to identify imported 
identifiers (multiple identifiers can be included in that list, separated by 

commas). An asterisk (*) can be used to import all symbols from a 

namespace, although this can generate confusion and unexplained errors 
(e.g., symbol redefinition) when either namespace is changed, so this 
should not be done routinely. When no list of symbols is given, as we 
normally do with imported ontologies, the system merely records the 
dependency of the namespaces, and ensures that the dependency is read 
before the namespace that depends on it is parsed. Note that circular 
dependencies should be avoided: the system will not complain about them, 
but the results may be unpredictable and symbols or concepts that are 
expected to be defined may not look so when circular dependencies are 
defined.

Again, the direct use of models in dependencies is a special situation that 
shouldn’t be the norm. In the normal case, when an observer is specified 
with the dependency, quite a bit of information can be embedded in the 
dependency statement. This is helpful to “localize” subjective 
interpretations to the model they’re meant for. This comes in handy for 
example when using a subjective trait like im:Level, which is likely to only
have a precise meaning within each computation. The example above, for 
instance, can be written in one single model:

model SomethingDependentOnPH

    as ...
    observing
        (SoilPH as
            classify (rank im.geography:Soil 
im.chemistry:PH) by im:Level into

                im:High if > 5,
                im:Low otherwise) named 
soil-ph

    ... ;
This way, the SoilPH concept will only have the semantic scope of the 
model it’s in, and will never be used outside of it or appear in searches. 
This is the safest way to specify dependencies on observables that are 
interpreted in ways that only apply to one or a few models in a namespace; 
this approach should thus be adopted as a default.

A special syntax can be used when defining a dependency - a classification 

by trait:

...
im.ecology:Forest by 
im.conservation:DegradationLevel
...

Because the word by is reserved for classifications according to a specific 

subjective trait, the statement above can be used without ambiguity instead 

of a much more verbose classify statement. The output of this 

dependency will be one of the possible values of im:DegradationLevel 

(im:Low, im:Medium, ….) when matched to a model that defines that trait

for a im.ecology:Forest. This alternative syntax may help make model 

specification as parsimonious and intuitive as possible.

Subject models and dependencies

Subject models instruct Thinklab to observe subjects within the context of 
interest. At this point it may be difficult to understand what a subject model
does: indeed, subjects are created more than computed, so what are subject 
models for?

As suggested above, subject dependencies are only admitted in subject 
models, because there is a contextual relationship between the dependent 
and the observable that makes no sense for a quality. For example, 
temperature can be observed in the context of a region, based on the 
observation of the region, but the region to which a temperature refers 
cannot be observed based on a measure of temperature.

Because subject observations are direct and do not need observers, their 
use as dependencies is fairly simple. For example, the following statement:

model ...

    observing im.infrastructure:Road;
is all it takes for Thinklab to look up a model that annotates a source of 
subjects annotated with the Road concept, e.g., a vector file. will lookup 
data or models that can produce roads in the context, and if found, the 
roads will be created. Each road is a subject in itself, linked to the root 
subject.

Like with qualities, a property (for keyword) and an optional status for the

dependency can be specified. Adding a name (named) is possible, but not 

useful, because the model will not refer to the “value” of a subject in any 
expression, and it’s possible for zero subjects to be obtained as the result of
the observation (e.g., roads can be observed in a region that has no roads, 
and a perfectly good observation of no roads can be obtained). Names for 
dependent subjects should be attributed, when appropriate, directly in the 
subject sources using attributes, as in the example we showed in the 
previous section.

The same syntax works with concepts describing events and processes, 
since each of these observers “stand alone” and are observed directly.

When the dependency is on a subject, process, or event, there is another, 
very useful syntax that enables complex agent-based models to be 
initialized in a very simple way. It is quite common for a model to want to 
create subjects where no subject sources are available, but where subject 
sources may provide a context for the subjects we want. For example, we 
may have subject sources for households (say a vector file with a point per 
household) but want a model containing agents for the families inside 

them. The use of the keyword each, which we have seen in subject models

before, inside the dependencies allows to specify that:

model …

    observing im.demography:Family at each 
im.demography:Household;

This dependency will first try to observe households in the context of 
observation; if any are found, Thinklab will extract the context (e.g. the 
location in space) for each of them, and create a Family at that same 
context. As with any regular subject, the family semantics will be used to 
define any further observation; for example, if we have told Thinklab that 
each family must have an income quality associated, then Thinklab will 
attempt to observe that income for each family generated (this is explained 
in more detail below). If the knowledge base contains models for a Family, 
the most appropriate for the context will be retrieved and used to initialize 
each family, which may also create qualities or subjects (e.g. individual 
members) in each Family subject. Backed by a knowledge base with 
contributions from many collaborating participants, the single line 
dependency above may build a whole simulated world.

Resolving dependencies vs. making observations in a context

By this point it may be evident that the modeling workflow we outlined in 
Module 1 (creating a subject then observing concepts of interest within it) 
is an exact equivalent of writing a model with all the concepts of interested
as dependencies then observing that model in the context of the root 
subject. The only difference is that in the second case, a generic quality is 
observed without specifying its observer. For example, if the Elevation 
concept is modeled in a region, the output will be the best observation of 
Elevation there, whether in feet or meters. By stating a dependency with its
observer, specific observation semantics are guaranteed. Obviously this is 
crucial if the resulting values need to be used in equations, so it would not 
be acceptable in such a model to write:

model ... 

    observing im.geography:Elevation;
because there would be no control over the meaning of the numbers output 

http://0101.html/
http://0102.html/
im:Level
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by such a model. The form above is, however, fine for subjects, because 
subjects are observed directly, so there is no interpretation for their values. 
As a result, Thinklab only allows the extremely simple syntax shown 
above when the concept specifies a subject.

Automatically resolved dependencies

In some cases, the ontologies (i.e., abstract knowledge) contain conditions 
for some observable’s semantic coherence that require particular 
observations to be made. For example, the definition of a concept for a 
Watershed may include a restriction that a watershed must have a spatial 
configuration that allows a stream network to exist within it. This can be 
expressed in the ontologies using statements that look like:

    thing Watershed is im.geography:Region
        requires StreamNetwork;

If such requirements are present, Thinklab will automatically try to make 
the necessary observations when a subject like a Watershed is observed. 
This is because everything in Thinklab is semantically explicit, and the 
statement above says that no watershed can exist if it does not have an 
observable stream network. By using semantic restrictions, many tasks that
are usually done explicitly by modelers become automatic. When a concept
like a Watershed is used as the inherent context of the observable (e.g. 

Runoff of Watershed), it is guaranteed that the Runoff model will be 

able to access the stream network. If the model is run at all, it will run in a 
Watershed, and a Watershed can only exist if a StreamNetwork can also be 
observed.

Actions linked to 
transitions
The examples so far have been fairly simple; however, complex operations 
used in other modeling systems can also be used within Thinklab, such as 
temporally explicit simulation specifying discrete differential equations for
rates of change, or agent-based models.

All these functionalities are enabled in Thinklab by connecting actions to 
transitions. The full set of possible actions and transitions is both under 
active development and beyond the intended level of these modules. We 
will introduce the ideas here for completeness, though they are currently 
not fully functional and the final syntax may differ.

Module 5 describes how scale is represented in Thinklab, but we have 
already encountered examples where we assign spatial and/or temporal 
extents to subjects. Those extents may be represented in a way that implies 
multiple states (e.g., grid cells or polygons for space, time steps for time). 
In such cases, Thinklab will choose a computation sequence for these 
multiple states, and carry on the observation by generating scale 
transitions. The moment when the simulated time moves from t to t+1 is a 
time transition.

Dynamic simulation gets is power by attaching actions to time transitions. 
That is specified using a statement we have seen already:

model ....

    over time
        integrate population-size as 
[population-size + birth - death],

        change land-use to im.landcover:Urban if
[population-size > 100];

Agent-based modeling is accomplished by providing syntax for dependent 
subjects to make changes and to access their own observed world from 

within expressions.

The ‘over time/space/…’ syntax allows a full specification of scale for each
individual model. This allows a fully multi-scale system to be specified 
very simply. It works very nicely with subject models like so:

model AdministrativeRegion 

    observing
        Household at each HouseholdLocation,
        Administration at each CapitalCity;

....

model Household

    ....
    over time (step="1 day")
        ....;

model AdministrativeRegion

    ...
    over time (step = "30 day")
        ...;

This example illustrates in a simple way how each model can specify a 
different temporal resolution, which will be automatically negotiated by 
Thinklab. Of course all these models are linked automatically through the 
resolution process. Thinklab may thus choose a different household model 
for only some of the households, say for example when the poverty level is
above a threshold. These examples show how the investment in learning to 
“think semantically” pays off in simplicity. Because the meaning of all 
involved entities are specified fully and unambiguously, the software can 
wire components and data together properly, accomplishing difficult tasks 
that would normally fall to the modeler.

The on definition syntax previously seen in the section on data 

annotations is a special case of a transition: the difference is that when we 

say on definition, we refer to the initialization transition, which brings

the model from the uninitialized to an initialized state, just before the 

temporal component of a simulation begins. The on definition syntax 

allows a list of actions just like over .... However, some transitions that

require the existence of time (e.g., integrate) are not allowed.

Bridging to 
external 
computations
Expressions in Thinklab are full Groovy programs, with which complex 
models and strategies can be coded. Yet, that requires programming skills, 
and deferring the logics of complex models to Groovy code is certainly not
the primary reason for Thinklab to exist. In fact, many computations that 
are of interest to modelers are handled by external software, and when 
possible it is much simpler and cheaper to reuse external modeling 
software than to write new code to use inside Thinklab – particularly when 
the modeling software has an independent history and is maintained by 
others. For this reason, Thinklab provides a mechanism for a model to 
bridge to any external software that can be run from a language supported 
by the Thinklab implementation. This includes nearly all non-GUI based 
programs, as a modeling engine can easily integrate software and run 
external executables - but cannot as easily click buttons or fill forms.

http://0103.html/
http://0103.html/
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The link between Thinklab and external computations is established using 

function syntax that follows the using keyword:

model SoilCarbonStored as
measure aries.carbon:SoilCarbonStored in t/ha
discretized by im:Level into 

   im:VeryHigh if 200  to  520,
   im:High     if 110  to  200,
   im:Moderate if  90  to  110,
   im:Low      if  50  to   90,
   im:VeryLow  if 0.01 to   50,
   im:Minimal  if 0    to  0.01
observing

   im.geography:Slope by im:Level,
   im.soil:SoilPh by im:Level,
   ....
using bayesian(import="bn/madagascar/sink.xdsl");

The last line includes the bayesian function, which defines what we call a

state accessor. This particular accessor is initialized by reading the file 

specified with the import argument from the project where the model is 

defined. The file specifies a Bayesian network which is then used to 
compute the value for each point in the context. The accessor will be 
passed the value of all dependencies and will compute the 
SoilCarbonStored result.

There are many accessors available in Thinklab in addition to the Bayesian 
one illustrated above. They include random number generators, table and 
spreadsheet readers, random choosers for outcomes based on probability 
distributions that can be parameterized using observed dependencies, and 
GIS operations. The existing ones are listed in the full documentation. 
Because function names are not keywords of the language, it is very easy 
for a developer to add new functions when needed, and the list of available 
accessors will keep growing with time.

Just as quality models can use the using syntax to pass off the 

computation of values to an external accessor, subject models can have 
subject accessors that operate on the subject as a whole, after all its quality 
dependencies have been initialized. For example, this is the current 
definition of the Watershed module included in the Thinklab hydrology 
ontology:

model im.hydrology:Watershed,

    //  pit-filled land elevation.
    (im.hydrology:Elevation as measure 
im.hydrology:Elevation in m),

    (im.hydrology:FlowDirection as measure 
im.hydrology:FlowDirection in degree_angle),

    (im.hydrology:TotalContributingArea as measure
im.hydrology:TotalContributingArea in m^2)

    ...
    observing
        (Elevation as measure 
im.geography:ElevationSeaLevel in m)

    over space
    using hydrology.watershed();

The bulk of the hydrological computations is not specified as a giant 
expression at the end, but is left to the subject accessor named in the last 
line, which will be passed the full digital elevation map (guaranteed to be a

map by theover space clause) and produce all the outputs indicated in 

the list. Subject accessors provide convenient ways to encapsulate complex
computations in clean “packages” that can be written as Thinklab plug-ins 
in a variety of languages, providing unlimited points of extension 
associated to specific semantics while keeping the code clean and readable.

Multiple observables
A model doesn’t necessarily have only one output: indeed, most non-trivial
models, such as the watershed model shown above or any Bayesian 
network with intermediate nodes, usually have more than one. If we want 
to keep results for future analysis beyond the “primary” observable that 

comes after the keyword model, we must provide observers for all the 

qualities that the model produces (subjects are directly observed, so they 
don’t require further specification). In the example above, we have used 
the same syntax that we used for dependencies to provide an observer for 
each additional output we want to keep. The accessor will be passed a list 
of the inputs and outputs, and will negotiate with the underlying model 
code to ensure that these can be produced and passed to Thinklab once 
computed, to become part of the final “dataset” represented by the subject.

The same specification can be used for anything computed by a state 
accessor. For example, a Bayesian network can be provided with observers 
for all the computed intermediate nodes and their relative uncertainties, 

using theuncertainty observer. The implementation of the accessor will 

ensure that the passed observers correspond to nodes in the network that 
can be computed, and will then create the corresponding observations.

Each of the observables in a model can be used to resolve dependencies 
within other models on its observable. All else being equal, Thinklab will 
try to minimize the number of models used, choosing a single model that 
produces two required observables over two models that produce the same 
observables independently, unless the latter are “evidence” (data) models.

Module 5. How to 
make model 
choices depend on 
context.
In previous modules, we have often hinted that “Thinklab chooses the best 
model” to observe concepts directly requested by the modeler or model 
dependencies. We have not, however, described in detail how that process 
occurs, or how to instruct Thinklab under what conditions a given model 
should be used. This section explains how models are chosen and how to 
control the model selection process.

Five fundamental topics will explain this process:

1. How to restrict the scope of a model to a specific scale (i.e., 
space or time; in this module we will only give examples about
spatial regions);

2. How to use conditional statements to choose between different 
observers at each computed state;

3. How to use lookup tables to direct model selection when 
multiple methods exist to observe an observable;

4. How to use scenarios to “force” the use of certain models when
particular model elements in an observation should reflect non-
default assumptions;

5. How to tell Thinklab how much to trust a given dataset or 
model, which can become a factor in the resolution process.
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Scale constraints 
for models and 
namespaces
One of the most useful things in modeling, particularly when we contribute
to a shared model base, is to constrain a model for use only in a particular 
region. By region we refer to any constraints on the model’s scale, so we 
could refer to a particular extent of space or time (e.g., falling within a 
certain polygon or temporal period), to a given resolution of either, or both.
Thinklab uses a very general definition of scale, which extends to time, 
space, and even other “conceptual” dimensions, such as the hypothesis 
space (or multiple spaces) that is reflected in a model’s assumptions. Those
aspects are experimental and not discussed here, so in this documentation, 
we only describe how to set spatial constraints. The remaining aspects of 
scale and scale constraints will be covered in the full documentation.

The following examples describe spatial coverage and constraints, with 
limited discussion of temporal specifications. In general, anything that we 
say for space can be applied to time in a similar way, but the resolver may 
not be yet prepared to deal with all cases of temporal specification.

Constraining a model
When data, or an object source, are inherently spatial or temporal, it may 
not be necessary to specify constraints on the model’s usage. In this case, 
their coverage is automatically recorded by Thinklab and becomes the 
“default” spatial or temporal constraint for all models that annotate it. For 
example, since the following data specification:

model wfs(urn = 
"im:af.tz.landcover:tanzanialandcover",

        attribute = "lc") 
named tanzania-lulc
as classify im.landcover:LandCoverType into

    im.landcover:AgriculturalArea        if "AG",
    im.landcover:ForestSeminaturalArea   if "NVT",
    im.landcover:VegetatedStillWaterBody if "NVW",
    im.landcover:UrbanFabric             if "UR",
    im.landcover:WaterBody               if "WAT";

specifies WFS access to a vector file for Tanzanian land cover, the 
bounding box reported by the WFS service for it will be used as its spatial 

constraint. Because of this, the tanzania-lulc model will only be used 

as a candidate for resolving the observable concept 

im.landcover:LandCoverType when the context of the request 

overlaps this bounding box. This is usually enough for raster spatial 
sources, whose coverage is exactly that rectangular bounding box – or 
should be (“no-data” borders are a different issue that can be dealt with 
using conditional statements, discussed later).

In some cases, it may be necessary to “correct” the coverage, either 
because 1) the data contain regions where they are unreliable, or 2) because
(e.g., in a vector file covering a region that is far from rectangular) we want
to ensure that other models will be used in regions covered by the 
bounding box of a preferred dataset, where we know that the first dataset is

unavailable or unreliable. In such cases, we can use an over space 

keyword in a similar way as theobserve statement:

model wcs(id = "san_pedro:swregap_lulc")
named vegetation-type-swregap

as classify aries.carbon:VegetationType into

    ...
over space (shape = "EPSG:4326 POLYGON((-114.816209 
42.002018,..))");

(other ways to specify polygons aside from WKT include the use of 
shapefiles stored either 1) locally on the user’s machine, 2) within a 
Thinklab project, or 3) on a GeoServer; complete descriptions and 
examples are provided in thefull documentation). Importantly, the spatial 

coverage specified after over space is intersected with the coverage of 

the namespace, when one has been given. That is, if a data source is used 
that does not cover the given polygon at all, the intersection will be empty 
and Thinklab will generate a warning message. Otherwise, the model will 
only be used in this example to resolve 

aries.carbon:VegetationType in the intersected spatial coverage. 

This can be useful when it is desirable to select only a specific portion of a 
larger coverage.

When not working with a data source (i.e., when annotating an unresolved 
model), nothing changes, except that there will be no native coverage with 

which to intersect. The over space notation can still be used, and the 

model will only be applied within the specified polygon.

A very common use of scale constraints occurs when annotating computed 
models that are meant to be used only in a specific region. This could 
either be a large range such as the tropical or temperate zone, or a smaller 
range where certain assumptions about a model’s applicability can be 
considered valid. The cleanest way to do that is to constrain the whole 
namespace, adding additional constraints to individual models when 

necessary. The syntax for that is similar but uses the keyword covering:

namespace aries.carbon.local.sw-north-american-
deserts

    using im, im.hydrology
    covering space( shape = "....");

Because WKT specifications can be long and messy, a common strategy to 
keep the code clean is to use a specific namespace in a project to hold 
definitions for these locations:

namespace aries.carbon.locations;

define COASTAL_CALIFORNIA as

    space(shape = "EPSG:4326 POLYGON((-
122.01075303165209 38.46721456396898, ...))");

define MADAGASCAR as

    space(shape = "EPSG:4326 
POLYGON((52.778320305152796 -27.644606378394307, ...
))");

define NORTHERN_ROCKIES as

    space(shape = "EPSG:4326 POLYGON((-111.05 
45.01, -104 45.01, ...))");

define ONTARIO as 

    space(shape = "EPSG:4326 POLYGON((-
95.35682310773775 50.520669204331895,...))");

then import the needed definitions into namespaces that need them, using 
defined identifiers to reference them:

namespace aries.carbon.local.northern-rockies

    using (NORTHERN_ROCKIES) from 
aries.carbon.locations,im.soil, im, im.hydrology

    covering NORTHERN_ROCKIES;
The extended form of the using clause in the ‘namespace’ statement has 

been seen before, and can also be used to import symbols such as model 
names. In addition to improved readability, the ‘using’ clause has the 
advantage that definitions need be provided only in one place (i.e., per 
Thinklab project). If it is changed later (e.g., to a detailed polygon after 
testing it with a simple polygonal bounding box), it will automatically 
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affect all the namespaces that use it.

When a namespace is constrained to a particular region, all the models 
within it will be constrained to that region. If a model in a constrained 

namespace also incorporates an over space statement, Thinklab will 

intersect the namespace-level coverage with the model-specific one, further
restricting its coverage, as seen before for data sources. So a namespace 
coverage can be restricted but not redefined on a model-by-model basis.

Temporal coverage

While we don’t yet provide full support for temporal constraints, the over

time statement should be used when appropriate to specify the time period

covered by models or data. The most typical example is to identify the year
to which a data source refers:

model ...
over time(start = 1995)

This indicates that the data are valid from 1995 onwards: they will not be 

used if the context has an over time definition that specifies an earlier 

year. An end year can also be specified, as can both a ‘start’ and an ‘end’ 

year. When faced with a choice of two models that are both temporally 
suitable to resolve a concept, Thinklab will give preference, all else being 
equal, to the most current one. If the context is temporal, this will be the 
one whose date is closest to the context’s time; otherwise the model with 
the most recent start date will be used.

The time syntax is much more powerful than indicated here. It is possible,

for instance, to specify full dates and times, resolutions etc., but as 
mentioned above, temporal support in Thinklab is still under development 
and full details will be provided in a future release.

Conditional choice 
of observer
As we learned earlier, any computations specified for quality models are 
carried on each state implied by the scale of the context. For example, a 
10x10 spatial grid will be computed 100 times, once per cell, and the 
observer will be called upon to produce a value every time. So far we have 
seen models in the form:

    model <quality observable>
        as <observer> .... ;

Quality models may have more than one observer, which computes the 
value in different ways. We can thus assign conditions for choosing an 
observer, which may depend on other observations. These observers must 
be compatible, i.e., produce the same kind of observer/observation type. 
For example, measurements and proportions cannot be mixed, because that
would break the model’s semantic consistency. The general form for these 
conditional models is:

model <quality observable> 

    [observing
        <model dependency> named <name>, ....]
    as
        ( <observer 1> ) [if <condition> ], ....
    ;

where the part in square brackets should be read as “optional.” Each 
observer is in parentheses and may optionally be followed by the keyword 

if and an expression (using the square bracket notation). If the set of 

dependencies following the observing keyword is given before any 

observers are specified (i.e., before the as keyword), they will be 

computed before the observers are called in, and their value will become 
available for use in the expressions. The next example should clarify the 
syntax. In the (rather twisted!) model below, elevation and slope data are 
queried and the model will return values of zero, except where elevation is 
greater than 1000 m, where it will return the elevation as a value:

model CrazyElevation 

/*

 * model dependencies - used only to select 
observers..

 */
observing (Elevation as measure 
im.geography:Elevation in m) named el

/*

 * two observers with conditionals. Parentheses are 
not required in this

 * case but are good practice, as the condition for 
the observer could be

 * wrongly attributed to the preceding observer's 
action if the action

 * itself is unconditional. 
 */
as

    (measure im.geography:Elevation in m
        observing 
            (Slope as measure 
im.geography:Slope in degree_angle) named pslope1

        on definition
            change to 0 if [pslope1 < 10] )
    if [el < 1000],

    (measure im.geography:Elevation in m
        observing 
            (Slope as measure 
im.geography:Slope in degree_angle) named pslope2

        on definition
            change to 0 if [pslope2 > 10] )
    otherwise;

(note that everything between /* and */ is interpreted as a comment, i.e., 

ignored by Thinklab). This example also shows how otherwise can be 

used as a catch-all condition instead of if. Both the if part and the model

dependencies are optional; the behavior of this form when neither are 
supplied is very useful, because the “chain” of observers will be followed 
in the specified order until one of the observers produces a valid result. 
This is very useful to yield an alternative model when the preferred one 

produces unknown (no data) values, as it often happens when using spatial 

datasets. This form can also be used in resolved models. The only thing 
that cannot be done is to use incompatible types of observers as 
alternatives.

Lookup tables
While the conditional form shown above is useful, in some cases it will be 
easier and cleaner to just tabulate alternative values. Thinklab provides a 
powerful lookup table syntax, where the values in a column of the table 
can be returned on the basis of values in other columns.

Here is an example of a lookup table:
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Landcover Slope Erosion factor
Rock * 0.0
Sand < 1 0.2
Grassland < 1 0.04
Sand 1 to 4 0.4
Sand 4 to 7 0.6
Sand > 7 0.8
In a model, it might be desirable to produce erosion factors that correspond
to dependencies for land cover and slope. The standard statement to define 
a lookup table is similar to a function. It can be used directly in a model or 

as the argument of a define statement, to be referenced in other models 

and namespaces as shown earlier in the specification of spatial constraints. 
The previous definition can be stated as follows:

define EROSION_TABLE as table (landcover, slope, 
erosion-factor):

    Rock,        *, 0.0,
    Sand,      < 1, 0.2,
    Grassland, < 1, 0.04,
    Sand,   1 to 4, 0.4,
    Sand,   4 to 7, 0.6,
    Sand,      > 7, 0.8;

and used in a model as follows:

model ErosionFactor as

    proportion ErosionFactor 
    observing
        (LandCover as classify 
im.landcover:LandCoverType) named land-cover,

        (Slope as measure im.geo:DegreeSlope in 
degree_angle) named slope

    using lookup (land-cover, slope) into 
EROSION_TABLE;

While the form above should be intuitive, there are several things to note. 
First of all, table definition can be set directly in the model if it is only 
needed there, by typing the ‘table’ and what follows instead of the 
EROSION_TABLE identifier:

  model ErosionFactor as
    proportion ErosionFactor 
    observing
        (LandCover as classify 
im.landcover:LandCoverType) named land-cover,

        (Slope as measure im.geo:DegreeSlope in 
degree_angle) named slope

    using lookup (land-cover, slope) into table 
(landcover, slope, erosion-factor):

            Rock,        *, 0.0,
        Sand,      < 1, 0.2,
            Grassland, < 1, 0.04,
            Sand,   1 to 4, 0.4,
            Sand,   4 to 7, 0.6,
            Sand,      > 7, 0.8;

The choice of which syntax to use is only one of convenience, and should 
be dictated by the need to reuse the table elsewhere. In general, inline 
(latter, model-embedded) specifications should be used unless the table is 
“official” (e.g., reflects accepted standards) or would need to be reused 
through the code.

The rows of the table can contain simple values to be matched, but it is 

also possible to use a classifier specified with the classify statement as a

table entry. Each dependency will be matched following the order of the 
column list indicated after the keyword ‘lookup.’ In the previous example, 
the land-cover value for each point within the context will be matched to 
values in the first column and the slope to values in the second. The result 
of the lookup operation will yield values in the last column for the first row

that matches both classifiers.

The lookup values to be computed as output can be associated with a 

column other than the last one by using the ? identifier in the lookup call. 

For example, the call above is equivalent to lookup (land-cover, 

slope, ?) and the ? could be used in any position (i.e., land-cover, ?, 

erosion-factor). This way, a lookup table can be used with greater 
flexibility.

A * classifier will match any value. Be careful when using it - it should 

always be the last choice within each set of otherwise equivalent 
combinations, which can be ambiguous when there are several columns. 
When in doubt, remember that choices are always matched top to bottom.

The names chosen for the columns after the table keyword do not 

influence the way the lookup table works: the list is only used to define the 
_number of elements required for each row. This is crucial to the proper 
functioning of the table, as Thinklab does not rely on or mandate 
indentation and formatting. As with any component of a semantic modeling
system, however, it is important that descriptive, unambiguous names are 
used for column headings, so that the meaning of the table is clear to 
anyone reading it.

Lookup tables can be even more powerful because each classifier or value 
can also be an expression. Expressions are normally used to compute the 
values to be returned; in such cases, they will be computed before the value
is assigned, and these computations can use all the model dependencies. If 
they are matched instead, the match will be successful only when the 
dependency associated with the column and the result of evaluating the 
expression is the same.

The choice of whether to use a lookup table or a conditional statement 
(described earlier in this module) depends on the context. One approach or 
the other may be the cleaner method depending on the model, its purposes, 
and the modeler’s preferred coding style.

Scenarios
Scenarios in Thinklab are sets of alternative models used only when the 
scenario is explicitly activated. When one or more scenarios are active, the 
models within them will always be chosen preferentially to resolve their 
concepts. Conversely, models in scenarios that are not active will never be 
used. For example, a climate change scenario may contain alternative 
datasets for temperature, precipitation, or other climatic variables. 
Activating this scenario will guarantee that any observation of precipitation
and temperature will reflect the scenario’s assumptions. As a concept can 
describe observables at any level in the model dependency chain, applying 
a scenario can affect an entire modeling session or just limited elements of 
it.

Specifying a scenario in Thinklab is as simple as creating a namespace 
using the keyword scenario instead of namespace in the first statement.

scenario aries.ipcc.scenarios.hadley.b2 

   using im.geography;

model wcs(id = "usa:sum_hi_wint_lo_hadley_B2")

    named summer-high-winter-low-hadley-b2-north-
america

    as measure im.geo:SummerHighWinterLow in 
Celsius;

...

Scenarios are activated explicitly by the modeler (in the Thinkcap GUI this
is done by ticking the appropriate checkbox for the scenario in the 
“Scenarios” view) before observing the concept(s) of interest. When 
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observations are made with any scenarios active, any dependency 
associated with the concepts modeled in the scenarios will then be resolved
using the scenario instead of the “regular” knowledge base. If, for example,
a scenario contains a land cover change model that observes the 
im.landcover:LandCoverType concept, any model that depends on 
im.landcover:LandCoverType will link to that land cover change model, 
attempting to resolve it using data or models from the scenario namespace, 
before resorting to the standard data layers. No models or data included in 
scenarios will ever be used unless the scenario is active.

Some scenarios are inherently incompatible with others; for example, 
different climate change scenarios should not be mixed together, because 
they reflect different assumptions about emissions trajectories. Other 
scenarios could be appropriate for combined use. For example, it might be 
appropriate to run a scenario for climate change and one for land cover 
change individually and then in combination to explore their synergistic 
effects. When scenarios are mutually exclusive, as in the case of multiple 
climate or land-cover change scenarios, the disjoint with clause can be 
added to the scenario specification to ensure that the listed scenarios are 
mutually exclusive:

scenario aries.ipcc.scenarios.hadley.b2 

    disjoint with aries.ipcc.scenarios.hadley.a2, 
aries.ipcc.scenarios.hadley.b1

            using im.geography;

...

As explained, the navigator in the modeler interface we provide (Thinkcap)
has a “Scenarios” view with checkboxes that allows their activation. Since 
we defined the IPCC scenarios as disjoint, ticking the checkbox for one of 
them will automatically deselect the others. Scenarios not declared disjoint 
can be used together without restrictions.

Influencing the 
model ranking: 
subjective metrics 
of quality
Thinklab uses a fairly sophisticated ranking algorithm to select which 
model to use when more than one model is found that could observe an 
observable. We do not give full details on the algorithm here, though it is 
important to list the criteria that it uses. One of these criteria can be 
influenced by the user-supplied metadata for each model, reflecting the 
modeler’s “rating” of e.g., data quality or model reliability, so we will 
explain how to use this feature. Modelers can influence the ranking 
algorithm in much deeper ways, but that’s an advanced (and potentially 
dangerous) topic that we will not discuss here.

Thinklab currently uses the following criteria to rank models. Criteria are 
listed in the default order of importance that Thinklab gives them when 
computing the rank of a model (note that this is a very active area of 
development, so the criteria, ordering, or definition may change):

1. lexical scope reflects whether the model is in a scenario, in the 
same namespace of the dependency that makes the observation,
or in the same project; models that are located “closer” to 
where they are needed are given preference. Models that are in 
active scenarios are always chosen above all others. Otherwise,
for instance, a model in the same namespace as one that 

requires its observable will be preferentially chosen.

2. trait concordance reflects the number of attributes (traits) that 
the candidate model’s observable shares with the observable to 
be resolved. Attributes “percolate” through a model chain 
starting with the context. So if we are modeling in a 
im.geography:Region that has been tagged with an attribute 
(e.g., im:May), models that share that attribute (e.g., data that 
refer to the month of May) will be chosen preferentially.

3. scale coverage reflects how much of the scale defined in the 
selected context is covered by the model.

4. scale specificity reflects the ratio between the total coverage of
the candidate model vs. that of the context. Models that are 
more specific will be prioritized over models that have been 
constrained to larger contexts or have not been constrained at 
all. For example, a regional-scale model (dataset) would 
typically be selected ahead of a national-scale model, which 
would be selected ahead of a global-scale model.

5. inherency: models that are specifically meant to be observed in
the particular type of context being used will be chosen 
preferentially over more general models.

6. subjective concordance: this criterion uses a multiple-criteria 
ranking of user-defined metadata vs. a weight structure that can
be redefined on a namespace-by-namespace basis (see below).

7. evidence: resolved models with data sources will be chosen 
preferentially vs. computed models.

Aside from the choice to activate or deactivate scenarios, number 6 is the 
only criterion that is under direct user control, i.e., the “subjective 
concordance” criterion. These can be defined by users, but the current 
convention in Thinklab uses only one criterion on a routine basis, named 
“im:reliability.” Such criteria are specified in metadata at the end of a 
model statement (before the final semicolon), like so:

    model 
        ..... (full model definition)
    with metadata {
        dc:originator "NCAR GIS Climate Change 
Scenarios"

        dc:url "http://www.gisclimatechange.org"
        im:reliability 75
        im:distribution "public"}
    ;

Metadata specification is fairly flexible, and any metadata tag or value 
could theoretically be used without generating a syntax error (though a 
consistently defined and applied set of metadata conventions is of course 
highly desirable in a collaborative modeling environment). For these 
criteria, we use the convention of specifying values using positive integers 
between 1 and 100. The default intermediate value for any criterion that is 
evaluated but not given in metadata is 50. So each model will have 
im:reliability = 50 unless the modeler enters a different value. Unless the 
default ranking priorities are changed (see below), user-specified reliability
will then be used as the value to assess the above-defined criterion 6. If a 
model is thought to be of particularly poor quality (e.g., coarse resolution, 
minimally documented, or with other known limitations), it should receive 
a lower value; models of high quality should receive a higher one. 
Conventionally we have preferred using the 25-75 range, leaving extreme 
values for special situations, though for certain well-known, 
methodologically robust data or models higher values (e.g., 90) may be 
warranted.

Thinklab provides a vocabulary for other criteria, including for example 
“openness” that may be used to nudge the model choice towards those that 
are open source. The current version, however, only uses im:reliability. 

im:reliability
im:reliability
im:reliability
im:May


Thinklab help - 19 March 2015 28 / 42

Each namespace can redefine the entire ranking strategy using the 
following syntax:

namespace my.namespace

    resolve using {
        im:lexical-scope 1
        im:evidence 3
        im:trait-concordance 2 
        im:subjective-concordance 4
        im:scale-coverage 5
        im:scale-specificity 6 
        im:inherency 7
        im:scale-coherency 8
        im:network-remoteness 0
        im:reliability 100
    };

where each criterion name not corresponding to one of the “core” criteria 
(1-7 above) [CLARIFY] is matched to the metadata using the indicated 
weight. Use of this form is very dangerous unless the implications of 
doing so are well understood. If multiple subjective criteria are present, 
they will be aggregated using a multiplicative weighted multiple criteria 
algorithm that we do not discuss here. The modified ranking strategy will 
be used to resolve any model included in the namespace for which the 
modified ranking has been created.

Lastly, “blacklist” and “whitelist” namespaces can be added for use in 
model resolution by using the following syntax:

    namespace picky.namespace1
        resolve from
            good.namespace1,
            good.namespace2

    namespace picky.namespace2
        resolve outside
            bad.namespace1,
            bad.namespace2;

The blacklist (resolve outside…) and whitelist (resolve from…) 

are not needed together, as the whitelist will select only those namespaces 
for resolution. It will effectively ignore the blacklist, which tells Thinklab 
to avoidresolving from blacklisted namespaces. Conversely, using only a 
blacklist would eliminate models in blacklisted namespaces from use, 
making a whitelist unnecessary. When ranking instructions are provided 

together with a black/white list, resolve is only used once:

    namespace my.namespace
        resolve from
            good.namespace1,
            good.namespace2
        using {
            im:lexical-scope 1
            im:evidence 3
            im:trait-concordance 2 
            im:subjective-concordance 4
            im:scale-coverage 5
            im:scale-specificity 6 
            im:inherency 7
            im:scale-coherency 8
            im:network-remoteness 0
            im:reliability 100

        };
Using such specification can give provide power and flexibility to over the 
way in which a model is resolved. However, it is also likely to lead to 
situations that are confusing and difficult to manage unless great care is 
taken, so we suggest that they be avoided by all but expert users. # 
Reference sheets

This part of the documentation contains quick reference sheets that can be 
useful during modeling practice.

The unit reference details the syntax for units of measurement understood 
by Thinklab’s unit parser. The function reference briefly describes the most
common functions in Thinklab and their arguments. The glossary lists the 
terms used most often in Thinklab documentation and provides a brief 
definition for each of them.

This section is far from complete and cannot substitute person-to-person 
instruction yet. # Unit of measurement: reference chart # Thinklab 
functions: reference chart # Glossary of terms used in Thinklab/ARIES 
modeling

Abstract knowledge: Concepts; abstract knowledge provide a general 
definition of each concept and is contained within ontologies.

Accessor: A function that links Thinklab’s core code and functionality to 
an external method or program for data and model handling. The accessor 
transfers inputs from Thinklab to the external program and returns outputs 
to Thinklab for analysis by the modeler.

Action: A change in the state of a model element that may occur, for 
example, during a transition.

Annotation property: [UPDATE DEFINITION]

Bayesian network: A probabilistic graphical model (a type of statistical 
model) that represents a set of random variables and their conditional 
dependencies via a directed acyclic graph.

Bayes’ Theorem: A mathematical theorem that allows estimation of the 
likelihood of one event that is conditional on another. It allows the 
probabilities of linked events to be updated from a state where information 
about the likelihood of events is lacking (and only prior probabilities exist) 
to a state where an outcome is known (evidence of an event is submitted 
and posterior probabilities are estimated via Bayesian updating).

Bayesian updating: The process by which prior and/or conditional 
probabilities are replaced by evidence (knowledge of the state of an event),
and are updated using Bayes’ Theorem to become posterior probabilities.

Child node: A child node in a Bayesian network is influenced by the state 
of one or more parent nodes via an edge (arrow) that indicates influence. 
Child nodes may include intermediate nodes whose outcomes determine 
the state of additional child nodes and top nodes whose states do not 
influence other nodes, and are typically a final output of a Bayesian 
network model.

Computed observation: An observation that has been calculated 
deterministically, i.e., using equations.

Concept: The description of an entity [UPDATE DEFINITION]

Conditional probability: The probability of outcomes in a child node, 
which depend on the states of all possible combinations of values for the 
parent nodes. Conditional probabilities are updated to posterior 
probabilities once evidence is submitted, during the process of Bayesian 
updating, and can also be updated by training the Bayesian network.

Context: The conditions under which a model may be run (in Thinklab 
terms, conditions under which an observable may be observed). In 
Thinklab this will most commonly be a set of geographic and/or temporal 
constraints under which a model may be run.

http://0203.html/
http://0202.html/
http://0201.html/
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Data model: A model statement that directly references a specific dataset 
to be observed, as opposed to a model that requires Thinklab to search for 
other means to resolve the concept.

Deterministic model: A model where every set of outcomes is determined 
by predefined model parameters and input data states, and identical results 
are obtained every time when input data values are the same.

Event: An observable that has both a subject and a temporal component. 
[UPDATE DEFINITION]

Extensive physical property: When measuring an extensive property, the 
amount of the substance being measured (or more frequently in Thinklab, 
the area over which it is measured) greatly matter. Mass and volume are 
examples of extensive physical properties – so when aggregating e.g., tons 
of biomass or volumes of water, the extent of the analysis must be very 
carefully considered.

Extent: In Thinklab, a given subset of time and/or space that can be used 
to generate the scale under which a model can be run.

Identity: [UPDATE DEFINITION]

Indirect observation: Qualities produce indirect observations: since a 
quality cannot be observed without an associated subject, an observation of
a quality with an associated subject is an indirect observation. [UPDATE 
DEFINITION]

Inherency: The association of specific qualities or properties with a given 
subject.

Intensive physical property: When measuring an intensive property, the 
amount of the substance being measured (or more frequently in Thinklab, 
the area over which it is measured) does not matter. Temperature or density
are examples of intensive physical properties.

Knowledge graph: A graphical display in Thinkcap that shows the 
relationship between a selected concept and all other related concepts (i.e., 
within an ontology).

Literal: [UPDATE DEFINITION]

Mediation: A method for defining different states that could be observed 
for a model, typically used with classifications, in a way that links an 
observable to traits and inherencies to produce more readable, compact 
modeling statements.

Model knowledge: Models; each piece of model knowledge describes a 
potential way to resolve a concept (i.e., through data or models). Models 
may: 1) directly reference and annotate a piece of data (which is itself 
simply a way to observe an observable) or 2) include equations, 
algorithms, or external processes to compute an observable, which may 
include dependencies on additional observables to compute the state of the 
model’s observable.

Namespace: Each project in Thinkcap can contain multiple namespaces – 
individual files that contain abstract and model knowledge. A namespace 
can be thought of as an individual file within a folder (i.e., Thinkcap 
project).

Object: [UPDATE DEFINITION]

Observable: A subject, process, quality, or event that could be viewed and 
quantified using a model.

Observation: The viewing and quantification of a concept within a given 
context. A modeling process may yield multiple observations (i.e., 
instances) of the concept within a given context. Multiple methods may 
also exist to observe an observable (i.e., various data and models).

Observer: Thinklab uses seven observer types, which are included in an 
observer statement for each model. Observer types include rankings, 
measurements, counts, values, classifications, proportions, and ratios. 

Selection of the appropriate observer type for each data or model is critical.

Ontology: A file that contains abstract knowledge of concepts. This 
includes definitions for concepts, spatial and temporal constraints on 
concepts, and relationships between concepts. Ontologies in Thinklab are 
organized by general thematic areas (e.g., hydrology, landcover, soils).

Parent node: A parent node in a Bayesian network influences the state of 
one or more child nodes via an edge (arrow) that indicates influence. The 
state of the parent node is, however, not influenced by the state of any 
other node.

Posterior probability: The probability of outcomes following Bayesian 
updating, which occurs once evidence is submitted for one or more nodes 
in the Bayesian network. Following the updating process, posterior 
probabilities thus replace prior and conditional probabilities.

Prior probability: The probability of the occurrence of different states of a
parent node, prior to the submittal of evidence on the Bayesian network.

Probabilistic model: A model where input data are defined using 
probability distributions rather than constant values. Monte Carlo 
simulation and Bayesian modeling are two examples of common 
probabilistic modeling approaches.

Process: A process always has an inherent subject. [UPDATE 
DEFINITION]

Project: A Thinklab project can contain multiple namespaces, as well as 
other files. Thinklab currently contains several core projects (im and 
org.aries), a tutorial project (thinklab.tutorial), and individual projects that 
contain data and models for various ecosystem services (org.aries.carbon, 
org.aries.sediment, org.aries.water, etc.). Additionally other projects may 
be created as testing and development spaces.

Property: [UPDATE DEFINITION]

Quality: The result of a process; qualities are indirect observations of 
phenomena and cannot “stand alone” in observations. For example, the 
sediment load of a river would be a quality (the sediment load is the quality
and cannot be independently observed without a subject, in this case the 
river).

Raster data: A cell-based configuration for spatial data, where the extent 
covered by the data includes a grid of cells at a specified spatial resolution 
(e.g., 25x25 m), and each cell carries a certain value (e.g., for elevation, 
land cover, or precipitation).

Reification and De-reification: [UPDATE DEFINITION]

Resolution: The process by which Thinklab applies search algorithms to 
iteratively match concepts to models as many times as necessary, and uses 
heuristics and artificial intelligence to define the most suitable models at 
each step. Once the appropriate model(s) are selected, they will be run and 
the appropriate observations will be passed back to the modeler. Successful
resolution of the model yields a resolved observation.

Restriction: Within ontologies, a restriction specifies a “requirement” for a
concept that links together related concepts. [CLARIFY]

Scale: In Thinklab, the spatial and/or temporal constraints on a model, i.e., 
conditions under which it can be considered valid to run a given model to 
generate observations.

Semantic modeling: A paradigm that maintains the meaning of all entities 
being modeled through the use of ontologies that provide clear, consistent 
definitions of concepts and the relationships between concepts (i.e., entities
that can be modeled, and data and models to observe them).

State: Successful observation of a concept will produce a state for each 
observation. Individual observations of this state will be distributed across 
the spatial and temporal scale set by the context of analysis.
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Structural learning: An advanced form of Bayesian training where an 
algorithm determines the structure of the Bayesian network (i.e., 
dependencies between parent and child nodes) based on the data, as well as
their associated probabilities. Structural learning is a complex process and 
is not planned for integration with ARIES/Thinklab in the near future.

Subject: The thing to be observed during the modeling process. Subjects 
may also have associated qualities or properties, some of which may be 
inherent to a specific subject.

Thinkcap: A graphical user interface (GUI)-based client run within the 
Eclipse software development environment. Thinkcap communicates with 
the Thinklab server, which parses and runs the Thinklab modeling 
language.

Thinklab: A semantic modeling language and the system that parses and 
runs it (i.e., the Thinklab server).

Training:The application of an algorithm, e.g., expectation maximization, 
to learn and quantify the relationships between the nodes of a Bayesian 
network based on data for at least one parent and one child node within the 
network. Training replaces user-supplied conditional probabilities with 
those derived from the data.

Trait: A trait provides further descriptive information about an observable, 
yielding semantic precision while keeping the size of Thinklab’s core 
ontologies tractable. Traits can be used, for example, to provide finer 
temporal specification or to specify levels or frequencies of the observable.

Transition: A change from one state to another. For example, in a 
temporally dynamic model, a transition marks the movement of a 
simulation from one time step to the next, and is associated with an action 
that is coded into the model for a given transition.

Uninformed prior: A state of total absence of knowledge about a system, 
in which the likelihood of each of several states are equal (i.e., given four 
possible states, each would be assumed to have a probability of occurrence 
of 0.25).

Vector data: A non-cell based configuration for spatial data. Data may 
take the form of polygons, lines, or points. Each of these features will have 
one or more associated attributes.

Thinklab naming 
conventions

Supplemental 
material
This section contains material that relates to the practice of modeling with 
Thinklab but is not directly related to the language or its implementation.

At the moment the only content available is a primer on Bayesian 
networks, given the common usage of these methods in models developed 
with Thinklab.

We also added the beginning of a Thinklab cookbook to show some 
examples of commonly used expressions and programming patterns. This 
section will be expanded with time. # Using Bayesian networks for 

ecosystem service modeling in ARIES

Bayesian network models (BNs, also called Bayesian belief networks) are 
a class of probabilistic models that can aid in quantifying ecosystem 
services – particularly their source, sink, and use conditions. BNs have 
been applied to a wide variety of research problems across the sciences, 
and others have used them in ecosystem services assessments, but ARIES 
was one of the first tools to explicitly incorporate BNs. However, it is 
critical to note that ARIES is amodeling platform that integrates multiple 
modeling paradigms – both probabilistic and deterministic. BNs are but 
one approach to quantifying ecosystem services and like any modeling 
approach have their strengths, weaknesses, and contexts where their use 
will be more or less appropriate. ARIES therefore integrates probabilistic 
OR deterministic models as appropriate to the context of interest to the 
modeler. However, since most modelers are more familiar with 
deterministic modeling approaches, we are providing this module to 
familiarize new users with Bayesian modeling approaches.

In mathematical terms BNs are a probabilistic graphical model (a type of 
statistical model) that represents a set of random variables and their 
conditional dependencies via a directed acyclic graph. A BN specifies a 
joint distribution in a structured form; dependence between the variables is 
represented by a directed graph. Random variables are represented by 
nodes, and edges indicated direct dependence. “Directed” refers to the fact 
that certain factors influence others (via direct correlation or causal 
influence) in a directional way. One or more parent nodes thus influence 
each child node in a BN model. Each parent and child node carries with it a
set of probabilities that it will take a certain value or state. For parent nodes
this is termed the prior probability and for child nodes it is termed the 
conditional probability (i.e., the probability of its value is conditional on a 
set of outcomes for its parent nodes). The BN is acyclic because it cannot 
account for feedback loops in the way that some types of deterministic 
models do. BNs use Bayes’ Theorem to update the probability (yielding 
posterior probabilities of the distribution of values for a child node when 
new evidence (i.e., data) is submitted for the state of its parent node(s), and
vice versa).

There are at least three important benefits associated with Bayesian 
modeling:

1. Bayesian models explicitly account for and communicate 
uncertainty in their results. However, they only handle 
uncertainty related to missing data; it is not possible for them to
account for uncertainty associated with the underlying model 
structure (with the exception of advanced approaches such as 
structural learning that are not planned for immediate 
integration into Thinklab so will not be discussed in depth 
here).

2. Bayesian models can operate under conditions where 
deterministic models do not exist or are known to perform 
poorly. For example, the Revised Universal Soil Loss Equation 
(RUSLE) was developed to quantify and map soil erosion. It 
has been tested and performs particularly well on relatively 
level slopes and in agricultural systems. It performs more 
poorly on steep slopes (>20%), on geologically young, 
mountainous soils, and in quantifying rill, gully, and 
streambank erosion. In ecosystems where ecological 
production functions are poorly known, or in social systems 
where demand for an ecosystem service is minimally 
understood, Bayesian networks may provide a superior 
approach for ecosystem service mapping and quantification. A 
productive way forward within ARIES could thus be to 
combine known, well-tested deterministic models (e.g., 
RUSLE) in locations where their performance is well accepted,
and to pair these with probabilistic (Bayesian) approaches 
elsewhere.

3. Bayesian models can operate under conditions where data are 
missing or incomplete. For example, if an input spatial dataset 

http://yudkowsky.net/rational/bayes
http://0302.html/
http://0301.html/
http://0301.html/


Thinklab help - 19 March 2015 31 / 42

for a region of interest covers only half of that region, the 
model will use the data for the half of the region where it 
exists, and will use the prior probabilities (further discussed 
below) for the part of the region where no data exist. Results 
will be generated for the entire region, though they will have 
less uncertainty where data exist and greater uncertainty where 
data do not.

Below, we present general guidelines for developing BNs, drawn from an 
excellent article by Marcot et al. (2006). We do not, however, present a 
step-by-step guide to using a particular BN editing software. A variety of 
BN editing software platforms are available, including both commercial 
software packages such as Netica (https://www.norsys.com/), Agenarisk 
(http://www.agenarisk.com/) and freeware, such as GeNIe 
(http://genie.sis.pitt.edu/index.php/downloads); we encourage the reader to 
consult the help documents and tutorials supplied by these software 
providers.

Guidelines for 
Bayesian modeling 
(following Marcot 
et al. 2006)
Construction, testing, and use of Bayesian models entails six steps:

1. Develop the causal graph

2. Discretize each node

3. Assign prior probabilities

4. Assign conditional probabilities

5. Peer review

6. Test with data and train the Bayesian network

1. Develop the 
causal graph
The first step in BN construction is to develop what can be called a causal 
graph, influence diagram, or “alpha-level model.” Through consulting with
experts or the literature, the modeler gains an understanding of what inputs 
or variables influence a system’s behavior. These include parent nodes 
whose values influence the likelihood of a distribution of outcomes for one
or more child nodes (intermediate nodes may also be used to aggregate the 
influence of multiple parent nodes, themselves influencing an ultimate 
“top” child node). Influence is indicated by an arrow pointing from the 
parent to the intermediate or top node, and indicates a causal relationship; 
unlinked nodes are assumed to be unrelated.

Best practices for developing causal models include:

1. Keeping the number of parent nodes and the number of their 
discrete states (more on this to follow) low enough that 

conditional probability tables (CPTs) remain tractable. As a 
rule of thumb, Marcot et al. suggest limiting each child node to 
no more than 3 parent nodes and each parent node to no more 
than 5 discrete states (this is where intermediate nodes can be 
valuable in keeping CPTs tractable). The number of 
combinations required to complete a CPT will be the number of
states of each parent node multiplied by each other. So if a 
model has three parent nodes, with two having two discrete 
states and the third having five discrete states, 20 different 
probability combinations will need to be entered in the CPT. It 
is thus easy to see how CPTs can become intractable when too 
many parent nodes and states are added to the model. As 
always, model simplicity (i.e., parsimony) is generally a 
desirable goal!

2. Ensuring that each node corresponds to an observable, i.e., a 
unique, semantically specified thing, quality, process, or event. 
Typically these will correspond to spatial data. In some cases 
intermediate nodes can be used to aggregate parent nodes in 
“fuzzier” concepts that help to keep BN CPTs tractable, but 
overreliance on this approach is undesirable. In cases where 
data for an observable do not exist but data for a related proxy 
do, an additional parent node can be added to correspond to the
proxy dataset, and an appropriate degree of uncertainty can be 
added to the intermediate node being approximated by that 
proxy dataset.

3. Not developing models that are overly “deep,” i.e., contain too 
many layers of nodes (Marcot et al. suggest using four or fewer
layers). Too deep a model often indicates an undesirably high 
level of complexity; additionally, the effects of submitted 
evidence (data) for parent nodes on the state of the top child 
node is watered down by the presence of intermediate nodes, so
the model may become unresponsive to changes in input data.

4. Always documenting models, particularly the chosen rationale 
for model construction choices. This may involve citations of 
the literature or a list of experts consulted on model structure. 
See Bagstad et al. (2011) for example documentation of past 
ARIES models.

5. BNs should be constructed at the appropriate scale. In ARIES, 
BNs have been constructed to quantify source, sink, or use 
values or inputs to those final values; however a different class 
of flow models are used to link source, sink, and use regions, 
so sources, sinks, and uses should typically not be mixed 
within the same BN.

2. Discretize each 
node
Once the causal model is complete, every node must be classified into a set
of discrete states. While some BN modeling platforms support the use of 
continuous data nodes, GeNIe (the BN modeling software used to date 
with ARIES) does not, so discretization is a necessary next step. Very 
often, these will be related to traits (e.g., present/absent or 
high/moderate/low, which is often appropriate for discretizing continuous 
data), though they could also be categorical (e.g., soils group or land cover 
type). It is important to strike the right balance between precision, over-
simplification, or over-complication of the model. As a general rule, if a 
different value of the input data would produce a different outcome, those 
input data states should take separate discrete states in the BN. When 
multiple states of the input data are expected to yield the same results, 
these states could be combined into a single discrete state in the BN.

http://genie.sis.pitt.edu/index.php/downloads
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In addition to defining the number and names of each discrete state in the 
BN, the modeler must also define how data for the appropriate observable 
will yield values for each possible discrete state. For instance, continuous 
data must be discretized to as many non-overlapping ranges as there are 
discrete states for the data. Discretized categorical data may entail a list of 
unique categories if the modeler expects each category to yield different 
results or a combination of categories (i.e., into multiple groupings of soil, 
vegetation, or land cover types) if (s)he expects all members of each group 
to produce similar model behavior. If certain data values exist for the 
region of interest but they are not included in the discretization, ARIES 
will assume there are no data for those locations. It is thus important that 
the entire range of values be included within the discretization. Generally, 
information from past ecological production function studies is the best 
way to discretize data. When such studies are absent, as is often the case, it 
may be sensible to explore the data for the modeler’s region of interest in 
GIS and to use an algorithm (e.g., Jenks natural breaks, equal interval) to 
discretize continuous data.

Accurate discretization of data for the top node of a model is extremely 
important. The possible values for discrete states of the top node should 
correspond to those the modeler expects to observe in their region of 
interest where the model will run. Particularly if training data are 
unavailable at the needed spatial and temporal resolution, knowing the 
possible range of outputs in the context of interest is critical. If done 
correctly, high and low model output values will thus be realistic for the 
context of interest. When adequate training data are absent, data ranges can
be derived from coarser resolution data, published field or modeling 
studies, or expert elicitation.

3. Assign prior 
probabilities
For parent nodes, prior probabilities must next be assigned. Prior 
probabilities are the expected likelihood of a particular discrete state 
occurring in the absence of data. Obviously, both prior and conditional 
probabilities must sum to 1 across all the discrete states. Three general 
approaches can be used to set prior probabilities – 1) use existing data (i.e.,
look at the data for a similar region of interest and determine the frequency
at which each discrete state occurs), 2) use expert elicitation, or in the 
absence of either, 3) use uninformed priors. The latter are simply 1 divided 
by the number of discrete states (i.e., if there were 5 discrete states, each 
would be set to 0.2). Uninformed priors represent a total absence of 
knowledge about the system. Remember, when input data exist for all or 
part of a region of interest, the BN will be set to the corresponding discrete 
state from the data for that location; priors will be used only where data do 
not exist (i.e., for incomplete or patchy datasets).

4. Assign 
conditional 
probabilities
Conditional probabilities define the probability distribution of the states of 
a child node for each potential combination of parent states. As discussed 
previously, a large number of parent nodes and/or discrete states for those 
nodes will result in very complex CPTs, increasing the burden on the 

modeler to generate well documented, defensible contingent probabilities.

If an equation exists that defines the relationship between parent and child 
nodes, it is possible to use it to calculate values for the child node CPT. 
Otherwise, when using expert elicitation, a common approach is to “peg 
the corners,” defining the highest and lowest potential combinations of 
values from the parent nodes. These cases are set to 0% and 100%, and the 
modeler gradually interpolates values for the intermediate cases.

Copying and pasting probabilities to a spreadsheet program can often be a 
helpful approach to completing CPTs. The modeler can sum the rows for 
each combination of parent node states, ensuring that all values sum to 1 - 
a necessary condition for all prior and contingent probabilities, based on 
the definition of a probability distribution of a discrete random variable. If 
the modeler knows that a certain parent node is more influential in 
determining the value of the child node, that information should be 
represented in the CPT. For instance, imagine a 3-node BN where we must 
complete a CPT for a child node with two parents, each parent having 3 
discrete states (yielding a 9-column CPT). The modeler could start by 
pegging the corners for just the most influential parent node, completing a 
simple 3-column CPT. (S)he could then determine how much the less 
influential parent node influences the value of the child node, and adjust 
the values for the six additional columns in the final, 9-column CPT.

In a few cases, it may be appropriate to simplify complex CPTs using a 
noisy max algorithm. Rather than allowing every possible combination of 
values of the parent nodes to exist (which can quickly result in very 
complex CPTs), noisy max nodes simplify the CPT by considering only the
possible states for each individual parent node – not their interactions. We 
have used noisy max nodes, for example, in viewshed and open space 
proximity models where objects in a field of view or nearby open space 
types are either mutually exclusive or the most dominant characteristic 
determines the outcome for the child node, rather than a combination of the
interacting values from multiple parent nodes. For instance, in a model of 
visual blight we assume that for each cell where the model is run, a 
highway, commercial development, or a transmission line will each 
degrade a viewshed to a certain degree individually, rather than in 
combination. The “leak” column specifies the likelihood that each discrete 
state of the child node would occur when all parent node conditions are 
absent.

Once the CPTs are populated the “alpha-level” model has been completed. 
The modeler should test the BN, setting evidence for the different input 
nodes and updating the model to ensure that the intended behavior is 
expressed within it. Changes in evidence for more influential relationships 
should yield greater changes to the model’s output, and vice versa. If 
unexpected behavior occurs, model structure and/or probabilities should be
adjusted.

5. Peer review
To generate a “beta-level model,” the network structure, prior and 
contingent probabilities, and model behavior should be reviewed by a 
subject matter expert who was not involved in the initial construction of 
the BN. This person can either agree with or recommend changes to all or 
part of the BN, yielding a more robust model.
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6. Test with data 
and train the 
Bayesian network
The final step in BN construction and testing – generation of the final 
“gamma-level model” – entails training the model to actual data. Assuming
we have data that correspond to multiple parent and child nodes, the 
process of BN training uses an algorithm, e.g., expectation maximization, 
to “learn” the relationships between the nodes, replacing the CPTs, which 
are often subjective or expert-driven, with probabilities derived directly 
from data. This is the true “data-driven modeling” approach that BNs bring
to probabilistic modeling. Some more complex algorithms derive the 
structure of the BN as well as the values of the CPT for a given set of input
data (i.e., structural learning). However, this is a complex process and 
Thinklab support for structural learning is not planned for the near future.

While BN training is an extremely desirable last step in model 
development and testing, it will not always be possible. Even if datasets 
that correspond to the concepts expressed by all or most parent and child 
nodes in the BN exist, they must be of adequate quality for the training to 
succeed. Data that vary too widely in their temporal currency will be more 
likely to introduce error into a trained BN, since different layers will 
represent conditions at different times. Another frequently encountered 
problem occurs when data occur at varying spatial resolutions. When one 
or more coarse resolution datasets are trained along with one or more fine 
resolution datasets, many different values from the fine resolution dataset 
may be matched to a single value from the coarse resolution dataset. For 
example, if a 25x25 m and a 1 km^2 dataset are used to train a BN, 160 
different possible inputs from the 25x25 m dataset may be matched to a 
single value of the 1 km^2 dataset. This can yield a trained BN that may be
quite insensitive to changes in its input data. In such cases, an untrained but
well-vetted and documented BN may be preferable to a BN trained using 
poor quality data.

Parting thoughts
As previously noted, BNs are not a panacea for ecosystem service 
modeling (nor is any single modeling approach or paradigm). BNs can, 
however, be very useful particularly in places where data are scarce, trusted
deterministic models do not exist, or such models are known to perform 
poorly. When the opposite conditions hold, deterministic models are likely 
to outperform probabilistic models; as always, a best practice is for the 
modeler to know his/her system and to carefully choose the most 
appropriate data and models for that system. Once they are semantically 
annotated, ARIES is equally capable of handling probabilistic and 
deterministic models, and the ARIES resolver will be able to select the 
most appropriate model for the modeling problem of interest.
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Thinklab cookbook
This section is meant to support a “learn by example” paradigm for task of 
common occurrence. These examples are mostly meant to show 
expressions and their use, and use simple semantics that should not be 
taken as indicative of good semantic modelin practices. In semantic 
modeling, more than anywhere else, it is fundamental to use examples to 
learn, not to cut and paste from - the practice is bad everywhere, but 
particularly so in a paradigm that is founded on what things mean: cutting 
and pasting is the opposite of thinking!

Computing states
The examples shown below illustrate how to build analytic (i.e., algebraic) 
models using the Thinklab language. The keys to this are two clauses:

on definition set to [some formula of the dependent 
concepts]

on definition change to [some formula of the dependent
concepts]

The “set to” clause assigns the value to be a function of the dependent 
concepts referenced in the observing clause. The “change to” clause uses 
the dependent concepts to modify the state of the top-level observable.

Importantly, if “change to” is used, the system will expect a previous value 
for the observable to be defined at the time the expression is evaluated, and
will try to resolve it using data or other models; the formula may contain 
the model name to refer to the unmodified observable. If “set to” is used 
instead, the model is expected to produce the value directly and will work 
as long as all the dependencies are resolved, and the use of the model name
in the formula is an error.

Note that within the square brackets [] any valid Groovy code may be 
evaluated, provided that it returns a value that matches the model type. For 
more information on the Groovy language, see http://groovy.codehaus.org

To model a concept as an analytical function of the values of one or more 
other concepts:

model newConcept as measure newConcept in   

Example using the above model statement to express the equation: 
TotalCarbonStorage = VegetationCarbonStorage + SoilCarbonStorage

http://groovy.codehaus.org/
http://yudkowsky.net/rational/bayes
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model TotalCarbonStorage as measure 
aries.carbon:TotalCarbonStorage in t/ha observing 
(VegetationCarbonStorage as measure 
aries.carbon:VegetationCarbonStorage in t/ha) named 
vegetation-c, (SoilCarbonStorage as measure 
aries.carbon:SoilCarbonStorage in t/ha) named soil-c 
on definition set to [vegetation-c + soil-c];

Another example which expresses the equation: GreenhouseGasEmissions 
= PopulationDensity * 0.04

model GreenhouseGasEmissions as measure 
im.policy:GreenhouseGasEmissions in t/ha*year 
observing (PopulationDensity as count 
im.policy:Population per km^2) named population-
density on definition set to [population-density * 
0.04];

Another example which expresses the equation: YieldUse = 
PopulationDensity * YieldUseCoefficient

model YieldUse as measure ia.agriculture:YieldUse in 
kg/year observing (ia.agriculture:PopulationDensity as
count im.policy:Population per km^2) named population-
density, (YieldUseCoefficient as ratio 
YieldUsePerPerson) named yield-use-coefficient on 
definition set to [population-density * yield-use-
coefficient];

Another example which expresses the equation: LiveStockWaterUse = 
CowDensity * WaterUseCoefficientCattle + SheepDensity * 
WaterUseCoefficientSheep + GoatDensity * WaterUseCoefficientGoat

model LivestockWaterUse as measure 
aries.water:LivestockWaterUse in mm observing 
(CowDensity as count im.agriculture:Cattle per km^2) 
optional named cow-density, (SheepDensity as count 
im.agriculture:Sheep per km^2) optional named sheep-
density, (GoatDensity as count im.agriculture:Goat per
km^2) optional named goat-density, 
(WaterUseCoefficientCattle as ratio 
aries.water:WaterUsePerHeadOfCattle) optional named 
water-use-coefficient-cattle, 
(WaterUseCoefficientSheep as ratio 
aries.water:WaterUsePerSheep) optional named water-
use-coefficient-sheep, (WaterUseCoefficientGoat as 
ratio aries.water:WaterUsePerGoat) optional named 
water-use-coefficient-goat on definition set to [(cow-
density * water-use-coefficient-cattle) + (sheep-
density * water-use-coefficient-sheep) + (goat-density
* water-use-coefficient-goat)];

A tricky example which expresses the piecewise equation: 
IrrigationWaterUse = {2000 if LandCover = AgriculturalArea, 0 
otherwise} Note the use of “change to” rather than “set to” in this model 
statement.

model 2000 named default-irrigation-amount as measure 
aries.water:IrrigationWaterUse in mm observing 
(LandCover as classify im.landcover:LandCoverType) 
named land-cover on definition change to 0 unless 
[land-cover == im.landcover:AgriculturalArea];

An example using the Normal distribution. This expresses the piecewise 
equation: Elevation = {0 if Normal(mean=542.0,std=223.3) < 500, 
Normal(mean=542.0,std=223.3) otherwise} Note the use of “change to” 
rather than “set to” in this model statement.

model rand.normal(mean = 542.0, std = 223.3) named 
random-elevation-filtered as measure im.geo:Elevation 
in m on definition change to 0 if [random-elevation-
filtered < 500];

An example using the Poisson distribution. This expresses the piecewise 
equation: ResidentialWaterUse = {0 if Poisson(lambda=12) <= 22, 
Poisson(lambda=12) otherwise} Note the use of “change to” rather than 
“set to” in this model statement.

model rand.poisson(lambda = 12) named random-
scattered-residential-users as measure 
aries.water:ResidentialWaterUse in mm on definition 
change to 0 if [random-scattered-residential-users <= 
22];

An example using the || operator to merge a River and Spring layer 
together. WaterPresence = true if RiverPresence or SpringPresence is true

model WaterPresence as presence of 
im.hydrology:WaterBody observing (RiverPresence as 
presence of im.hydrology:River) named stream, 
(SpringPresence as presence of im.hydrology:Spring) 
named spring // “presence of” is a boolean value, so 
we use the OR (||) operator here, true if either or 
both are true. on definition set to [stream || 
spring];

An example using a rank (unitless quantification) observation type. 
WildlifeSpeciesRichness = (AmphibianRichness + BirdRichness + 
MammalRichness + ReptileRichness) * 0.25

model WildlifeSpeciesRichness as rank 
aries.recreation:WildlifeSpeciesRichness observing 
(im.ecology:AmphibianRichness as rank 
im.ecology:AmphibianRichness) named amphibian-
richness, (im.ecology:BirdRichness as rank 
im.ecology:BirdRichness) named bird-richness, 
(im.ecology:MammalRichness as rank 
im.ecology:MammalRichness) named mammal-richness, 
(im.ecology:ReptileRichness as rank 
im.ecology:ReptileRichness) named reptile-richness on 
definition set to [(amphibian-richness + bird-richness
+ mammal-richness + reptile-richness) * 0.25];

geo:Elevation
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CODE ONLY
Creating a context

EPSG:4326 POLYGON((-70.8783850983603 -3.3045881369117316,-69.05465462961 
-3.2661991868835875,-69.13155892648547 -4.575963434877864,-
70.91683724679801 -4.630717874946029,-71.15853646554768 
-4.263784638927346,-70.8783850983603 -3.3045881369117316))"
observe im.geography:Region leticia-peru over space(
    grid = "500 m", 
    shape = "EPSG:4326 POLYGON((-70.8783850983603 -3.3045881369117316,-
69.05465462961 -3.2661991868835875,-69.13155892648547 
-4.575963434877864,-70.91683724679801 -4.630717874946029,-
71.15853646554768 -4.263784638927346,-70.8783850983603 
-3.3045881369117316))"
);
observe im.hydrology:Watershed leticia-peru over space(
    grid = "500 m", 
    shape = …
);

Module 2. Models as observations: subjects, qualities and traits.
Concepts and observables
The primary observable
Keeping ontologies simple

observe im:Annual im.hydrology:Watershed
    over space(...)
model ... as measure im.climate:Rainfall in mm;
model .... as measure im:Annual im:Average im.climate:Rainfall in mm;
model Elevation as classify (measure im.geography:Elevation in m) by 
im:Level into
    im:Low if 0 to 350,
    im:Medium if 350 to 1000,
    im:High if 1000 to 8000;

Identities managed by authorities

<abstract observable> identified as “<key>” by <authority>
count im.ecology:Individual identified as "5212442" by GBIF

Inherent qualities and subjects

model ... as measure im.geography:Elevation within im.geography:Region in
m;

Module 3. Connecting data to models: semantic annotation and observation semantics.
Choosing a concept
Choosing the data or subject source
Values

model 100 as measure im.chemistry:Water im.physics:BoilingTemperature in 
Celsius;
model false as presence of im.theology:Satan;
model im:High as classify (probability of im.climate:ClimateChange) by 
im:Level;

Data sources

<function-name> ( <argument-name> = “parameter_value”, …)
model wcs(urn=”im:global.geography:dem90m”, no-data = -32768.0) as 
measure im.geography:Elevation in m;

model raster(file="data/landcover.tif") as 
    classify im.landcover:LandCoverType into
        im.landcover:Urban        if 200,
        im.landcover:Agricultural if 201,
        ....
        ;
model wfs(urn="im:af.tz.landcover:tanzanialandcover", attribute="luc_id")
as 
    classify im.landcover:LandCoverType into
        im:Agricultural if "AG",
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        ....
        ;

Subject sources

model each wfs(urn = "im:global.infrastructure:global_rail_merge") 
named railroad-global
as im.infrastructure:Railway;

Observation semantics for qualities

model .... 
    as ....
    using
        (Elevation as measure im.geography:Elevation in m) named el,
        ....
        ... instructions to compute the result based on 'el';

Ranking

model wcs(...) as rank ...;

model wcs(...) as rank ...:PerceivedDanger 1 to 5;

Measurement

measure ...
model wcs(urn = "im:na.us.climate.annual:annualprecip")
    named precipitation-annual-2007-usa
    as measure im:Annual im.hydrology:PrecipitationVolume in mm
    over time (year = 2007)
    on definition change to [precipitation-annual-2007-usa * 0.01];

Count

model 1 as count Universe;
model wcs(urn="aries:global-populationdensity-2006") as
    count im.demography:HumanIndividual per km^2
    over time (year = 2006);

Value

model ... as value of ...:PropertyParcel in USD@2004;

Classification
Direct classification

model ManureType as 
    classify im.agriculture:Manure into PigManure, CattleManure, 
PoultryManure
  observing 
        (PigManureProportion as proportion of im.agriculture:Pig  in 
im.agriculture:Manure im.core:Mass) named pig-manure, 
        (CattleManureProportion as proportion of im.agriculture:Cattle in
im.agriculture:Manure im.core:Mass) named cattle-manure, 
        (PoultryManureProportion as proportion of im.agriculture:Poultry 
in im.agriculture:Manure im.core:Mass) named poultry-manure
    using rand.select(
        distribution = (pig-manure cattle-manure poultry-manure),
        values = (PigManure CattleManure PoultryManure)
    );    

Indirect classification

model data.wcs(id = "europe:corine2000", no-data = 255) named corine-2000
    as classify im.landcover:LandCoverType according to im:numeric-
encoding;
...
class LandCoverType 
    has children
        ...
        (DiscontinuousUrbanFabric with metadata { im:numeric-encoding 112
})),
        (class IndustrialCommercialTransport
            has children
                (class IndustrialCommercialUnits with metadata 
{ im:numeric-encoding 121 }),
                (class RoadRailNetwork with metadata { im:numeric-
encoding 122 }),
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                (class PortArea with metadata { im:numeric-encoding 
123 }),
        ...

Classifying values into observables or traits

model wfs(urn = "im:af.tz.landcover:tanzanialandcover",
        attribute = "lc") 
named tanzania-lulc
as classify im.landcover:LandCoverType into
    im.landcover:AgriculturalArea        if "AG",
    im.landcover:ForestSeminaturalArea   if "NVT",
    im.landcover:VegetatedStillWaterBody if "NVW",
    im.landcover:UrbanFabric             if "UR",
    im.landcover:WaterBody               if "WAT";
model wcs(...) as classify im.policy:Poverty of 
im.demography:HumanPopulation by im:Level into
        im:High     if 4,
        im:Moderate if 3,
        im:Low      if 2,
        im:Minimal  if 1;
model wcs(...elevation data...) as measure im.geography:Elevation in m
    discretized by im:Level into
        im:High if > 2000,
        ....                     (An INCORRECT example)
namespace my.namespace using im.geography;

(RIGHT, BUT STILL NOT PERFECT) 

private model Elevation as 
    classify im.geography:Elevation by im:Level
        im:High if > 2000,
        ....;

Proportion and percentage

model ... as percentage of im.agriculture:Pig  in im.agriculture:Manure 
im.core:Mass;
model … as proportion im.ecology:CanopyCover;

Ratio

model … as ratio of im.ecology:Soil im.chemistry:Carbon im.core:Mass to 
im.ecology:Soil im.chemistry:Nitrogen im.core:Mass;

Presence

model … as presence of im.infrastructure:Building;

Probability and uncertainty

model … as probability of im.physics:Fire within im.ecology:Forest;

Discretization

model wcs(...) as measure im:Length of im.ecology:Leaf in cm
    discretized by im:Level as
        im:Low    if < 10,
        im:Medium if 10 to 30,
        im:High   if > 30;

Note: spatial densities and temporal rates refer to observations, not observables

model .... as count im.demography:HumanIndividual per km^2;

De-reification of subject models

model each wfs(urn = "im:global.infrastructure:grand_reservoirs_v1_1") 
named reservoirs-global
as im.hydrology:Reservoir
interpret
    GRAND_ID as im:name,
    AREA_SKM as measure im.core:Area in km^2;
model wfs(urn = “im:global.infrastructure:grand_reservoirs_v1_1”, 
attr=”AREA_SKM”) 
    named reservoirs-area-global
    as measure im.core:Area within im.hydrology:Reservoir in km^2;

Module 4. Computing deterministic and probabilistic observations.
Model syntax: observable, dependencies and computations.

stefano.balbi
Highlight
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namespace my.namespace using im, im.agriculture;

...

model SummerCropYield as
    measure im:Summer im.core:Yield of im.agriculture:Crop in t/km^2
    observing
        (JunCropYield as measure im:June im.core:Yield of 
im.agriculture:Crop in t/km^2) named jun-yield,
        (JulCropYield as measure im:July im.core:Yield of 
im.agriculture:Crop in t/km^2) named jul-yield,
        (AugCropYield as measure im:August im.core:Yield of 
im.agriculture:Crop in t/km^2) named aug-yield
    on definition set to [jun-yield + jul-yield + aug-yield];

The context of applicability for a model

model SummerCropYield as
    measure im:Summer im.core:Yield of im.agriculture:Crop in t/km^2
    observing
        (JunCropYield as measure im:June im.core:Yield of 
im.agriculture:Crop in t/km^2) named jun-yield,
        (JulCropYield as measure im:July im.core:Yield of 
im.agriculture:Crop in t/km^2) named jul-yield,
        (AugCropYield as measure im:August im.core:Yield of 
im.agriculture:Crop in t/km^2) named aug-yield
    over space
    on definition set to [jun-yield + jul-yield + aug-yield];

The observable in computed models
Mediation

namespace my.namespace;

...

model ElevationLevel as
    classify (measure im.geography:Elevation in m) by im:Level into
        im:High if > 1000,
        im:Low  if < 1000;
model ElevationLevel as
    classify ElevationLevel by im:Trait into im:High, im:Low
    observing
        (Elevation as measure im.geography:Elevation in m) named 
elevation
    on definition set to [
        elevation < 1000 ? im:Low : im:High
    ];

Expression language
Using expressions in data models

 model wcs(...) 
    named ghg-emissions-usa
    as measure im.policy:GreenhouseGasEmissions in t/ha*year
    on definition change to [ghg-emissions-usa * 0.0001];

Limitations
Dependencies in detail

…
observing
        (Elevation as measure im.geography:Elevation in m) for 
im.geography:hasElevation named elevation

Quality dependencies

observing
    (Elevation as measure im.geography:Elevation in m) optional named 
elevation
namespace my.namespace using im, im.geography;

private model SoilPH as
    classify (rank im.geography:Soil im.chemistry:PH) by im:Level into
        im:High if > 5,
        im:Low otherwise;

model SomethingDependentOnPH
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    as ...
    observing
        SoilPH named soil-ph
    ... ;
private model SoilPH named the-ph-we-want as
    classify (rank im.geography:Soil im.chemistry:PH) by im:Level into
        im:High if > 5,
        im:Low otherwise;

model SomethingDependentOnPH
    as ...
    observing
        the-ph-we-want named soil-ph
    ... ;
namespace my.namespace using im, im.geography, (the-ph-we-want) from 
my.ph.models;

...

model SomethingDependentOnPH
    as ...
    observing
        the-ph-we-want named soil-ph
    ... ;
model SomethingDependentOnPH
    as ...
    observing
        (SoilPH as
            classify (rank im.geography:Soil im.chemistry:PH) by im:Level
into
                im:High if > 5,
                im:Low otherwise) named soil-ph
    ... ;
...
im.ecology:Forest by im.conservation:DegradationLevel
...

Subject models and dependencies

model ...
    observing im.infrastructure:Road;
model …
    observing im.demography:Family at each im.demography:Household;

Resolving dependencies vs. making observations in a context

model ... 
    observing im.geography:Elevation;

Automatically resolved dependencies

    thing Watershed is im.geography:Region
        requires StreamNetwork;

Actions linked to transitions

model ....
    over time
        integrate population-size as [population-size + birth - death],
        change land-use to im.landcover:Urban if [population-size > 100];
model AdministrativeRegion 
    observing
        Household at each HouseholdLocation,
        Administration at each CapitalCity;

....

model Household
    ....
    over time (step="1 day")
        ....;

model AdministrativeRegion
    ...
    over time (step = "30 day")
        ...;

Bridging to external computations
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model SoilCarbonStored as
measure aries.carbon:SoilCarbonStored in t/ha
discretized by im:Level into 
   im:VeryHigh if 200  to  520,
   im:High     if 110  to  200,
   im:Moderate if  90  to  110,
   im:Low      if  50  to   90,
   im:VeryLow  if 0.01 to   50,
   im:Minimal  if 0    to  0.01
observing
   im.geography:Slope by im:Level,
   im.soil:SoilPh by im:Level,
   ....
using bayesian(import="bn/madagascar/sink.xdsl");
model im.hydrology:Watershed,
    //  pit-filled land elevation.
    (im.hydrology:Elevation as measure im.hydrology:Elevation in m),
    (im.hydrology:FlowDirection as measure im.hydrology:FlowDirection in 
degree_angle),
    (im.hydrology:TotalContributingArea as measure 
im.hydrology:TotalContributingArea in m^2)
    ...
    observing
        (Elevation as measure im.geography:ElevationSeaLevel in m)
    over space
    using hydrology.watershed();

Multiple observables
Module 5. How to make model choices depend on context.
Scale constraints for models and namespaces
Constraining a model

model wfs(urn = "im:af.tz.landcover:tanzanialandcover",
        attribute = "lc") 
named tanzania-lulc
as classify im.landcover:LandCoverType into
    im.landcover:AgriculturalArea        if "AG",
    im.landcover:ForestSeminaturalArea   if "NVT",
    im.landcover:VegetatedStillWaterBody if "NVW",
    im.landcover:UrbanFabric             if "UR",
    im.landcover:WaterBody               if "WAT";
model wcs(id = "san_pedro:swregap_lulc")
named vegetation-type-swregap
as classify aries.carbon:VegetationType into
    ...
over space (shape = "EPSG:4326 POLYGON((-114.816209 42.002018,..))");
namespace aries.carbon.local.sw-north-american-deserts
    using im, im.hydrology
    covering space( shape = "....");
namespace aries.carbon.locations;

define COASTAL_CALIFORNIA as
    space(shape = "EPSG:4326 POLYGON((-122.01075303165209 
38.46721456396898, ...))");

define MADAGASCAR as
    space(shape = "EPSG:4326 POLYGON((52.778320305152796 
-27.644606378394307, ... ))");

define NORTHERN_ROCKIES as
    space(shape = "EPSG:4326 POLYGON((-111.05 45.01, -104 45.01, ...))");

define ONTARIO as 
    space(shape = "EPSG:4326 POLYGON((-95.35682310773775 
50.520669204331895,...))");
namespace aries.carbon.local.northern-rockies
    using (NORTHERN_ROCKIES) from aries.carbon.locations,im.soil, im, 
im.hydrology
    covering NORTHERN_ROCKIES;

Temporal coverage

model ...
over time(start = 1995)

Conditional choice of observer
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    model <quality observable>
        as <observer> .... ;
model <quality observable> 
    [observing
        <model dependency> named <name>, ....]
    as
        ( <observer 1> ) [if <condition> ], ....
    ;
model CrazyElevation 

/*
 * model dependencies - used only to select observers..
 */
observing (Elevation as measure im.geography:Elevation in m) named el

/*
 * two observers with conditionals. Parentheses are not required in this
 * case but are good practice, as the condition for the observer could be
 * wrongly attributed to the preceding observer's action if the action
 * itself is unconditional. 
 */
as
    (measure im.geography:Elevation in m
        observing 
            (Slope as measure im.geography:Slope in degree_angle) named 
pslope1
        on definition
            change to 0 if [pslope1 < 10] )
    if [el < 1000],

    (measure im.geography:Elevation in m
        observing 
            (Slope as measure im.geography:Slope in degree_angle) named 
pslope2
        on definition
            change to 0 if [pslope2 > 10] )
    otherwise;

Lookup tables

define EROSION_TABLE as table (landcover, slope, erosion-factor):
    Rock,        *, 0.0,
    Sand,      < 1, 0.2,
    Grassland, < 1, 0.04,
    Sand,   1 to 4, 0.4,
    Sand,   4 to 7, 0.6,
    Sand,      > 7, 0.8;
model ErosionFactor as
    proportion ErosionFactor 
    observing
        (LandCover as classify im.landcover:LandCoverType) named land-
cover,
        (Slope as measure im.geo:DegreeSlope in degree_angle) named slope
    using lookup (land-cover, slope) into EROSION_TABLE;
  model ErosionFactor as
    proportion ErosionFactor 
    observing
        (LandCover as classify im.landcover:LandCoverType) named land-
cover,
        (Slope as measure im.geo:DegreeSlope in degree_angle) named slope
    using lookup (land-cover, slope) into table (landcover, slope, 
erosion-factor):
            Rock,        *, 0.0,
        Sand,      < 1, 0.2,
            Grassland, < 1, 0.04,
            Sand,   1 to 4, 0.4,
            Sand,   4 to 7, 0.6,
            Sand,      > 7, 0.8;

Scenarios

scenario aries.ipcc.scenarios.hadley.b2 
   using im.geography;

model wcs(id = "usa:sum_hi_wint_lo_hadley_B2")
    named summer-high-winter-low-hadley-b2-north-america
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    as measure im.geo:SummerHighWinterLow in Celsius;

...
scenario aries.ipcc.scenarios.hadley.b2 
    disjoint with aries.ipcc.scenarios.hadley.a2, 
aries.ipcc.scenarios.hadley.b1
            using im.geography;

...

Influencing the model ranking: subjective metrics of quality

    model 
        ..... (full model definition)
    with metadata {
        dc:originator "NCAR GIS Climate Change Scenarios"
        dc:url "http://www.gisclimatechange.org"
        im:reliability 75
        im:distribution "public"}
    ;
namespace my.namespace
    resolve using {
        im:lexical-scope 1
        im:evidence 3
        im:trait-concordance 2 
        im:subjective-concordance 4
        im:scale-coverage 5
        im:scale-specificity 6 
        im:inherency 7
        im:scale-coherency 8
        im:network-remoteness 0
        im:reliability 100
    };
    namespace picky.namespace1
        resolve from
            good.namespace1,
            good.namespace2

    namespace picky.namespace2
        resolve outside
            bad.namespace1,
            bad.namespace2;
    namespace my.namespace
        resolve from
            good.namespace1,
            good.namespace2
        using {
            im:lexical-scope 1
            im:evidence 3
            im:trait-concordance 2 
            im:subjective-concordance 4
            im:scale-coverage 5
            im:scale-specificity 6 
            im:inherency 7
            im:scale-coherency 8
            im:network-remoteness 0
            im:reliability 100
        };
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