
Thinklab help - 19 March 2015 1 / 42

Contents
Introduction to semantic meta-modeling with
Thinklab: a user’s guide......................2

Semantic meta-modelling....................2
Structure of this document.................2

Component 1: the collaborative, web-based
infrastructure................................3

Component 2: Semantic modeling and ontologies.3

Component 3: The Thinklab modeling language and
Thinkcap software environment.................4

A modeling workflow example...................4
Creating a context.........................4

Observing concepts in the context.............5
Qualities..................................5
Subjects, processes and events.............5

Module 2. Models as observations: subjects,
qualities and traits..........................6

Concepts and observables......................6
The primary observable.....................6
Keeping ontologies simple..................7
Identities managed by authorities..........8
Inherent qualities and subjects............8
Putting everything together................9

Module 3. Connecting data to models: semantic
annotation and observation semantics..........9

Choosing a concept...........................10

Choosing the data or subject source..........10
Values....................................10
Data sources..............................10
Subject sources...........................11

Observation semantics for qualities..........11
Ranking................................11
Measurement............................12
Count..................................12
Value..................................12
Classification.........................13

Direct classification...............13
Indirect classification.............13
Classifying values into observables or
traits..............................13

Proportion and percentage..............14
Ratio..................................14
Presence...............................14
Probability and uncertainty............15

Discretization............................15
Note: spatial densities and temporal rates
refer to observations, not observables....15

De-reification of subject models.............15

Module 4. Computing deterministic and
probabilistic observations...................16

Model syntax: observable, dependencies and

computations.................................17

The context of applicability for a model.....17

The observable in computed models............18

Mediation....................................18

Expression language..........................18
Using expressions in data models..........19
Limitations...............................19

Dependencies in detail.......................19
Quality dependencies......................20
Subject models and dependencies...........21
Resolving dependencies vs. making
observations in a context.................21
Automatically resolved dependencies.......22

Actions linked to transitions................22

Bridging to external computations............22
Multiple observables......................23

Module 5. How to make model choices depend on
context......................................23

Scale constraints for models and namespaces..24
Constraining a model......................24
Temporal coverage.........................25

Conditional choice of observer...............25

Lookup tables................................25

Scenarios....................................26

Influencing the model ranking: subjective
metrics of quality...........................27

Thinklab naming conventions..................30

Supplemental material........................30

Guidelines for Bayesian modeling (following
Marcot et al. 2006)..........................31

1. Develop the causal graph..................31

2. Discretize each node......................31

3. Assign prior probabilities................32

4. Assign conditional probabilities..........32

5. Peer review...............................32

6. Test with data and train the Bayesian
network......................................33

Parting thoughts.............................33

References...................................33

Thinklab cookbook............................33
Computing states..........................33

CODE ONLY....................................35

Thinklab help - 19 March 2015 2 / 42

Introduction to
semantic meta-
modeling with
Thinklab: a user’s
guide.
Modeling is the production of simulated observations of a system, meant to
help understand its structure or behavior. Armed with the power of creating
such observations, we can visualize and analyze the results of choices we
could make in real life before we actually make them. Modelling practice
has advanced to a point where very complex models can be described
succinctly using sophisticated mathematics. This sophistication, however,
usually applies to the mathematical instruments used but does not extend to
the semantics (conceptual description) of the systems under investigation.
The conceptual view of the system incorporated in a model is usually very
basic: time may be a number starting from zero, initial conditions are three-
letter “variable” identifiers hidden in configuration files that change
completely for each model, etc. The lack of a solid, systematic and self-
consistent conceptual description of the system modeled stands in the way
of model integration, internal consistency checking, communication and
validation of model structure, and ability to reuse models in different
contexts or together with others. All this diminishes the value of existing
models to the point that they can often only be used effectively by their
developers. Unless you have written a particular model (and you have done
it yesterday) extending or upgrading it is often difficult, time-consuming
and fraught with doubt about what the various model components actually
mean.

This documentation is an initial attempt to describe semantic meta-
modeling, a methodology that uses explicit semantics and machine
reasoning to support integrated, multi-paradigm, multi-scale model
development. The Thinklab language described here is the instrument we
are developing to make this vision practical. Please note that everything
about this notes (even the Thinklab name) is in its initial stages and should
be considered both confidential and subject to change.

The language, software and documentation have
been developed by Ferdinando Villa with the
collaboration of the ARIES project team, including
but not limited to Kenneth Bagstad, Brian Voigt,
Gary Johnson, Ioannis Athanasiadis, and Luke
Scott. Please consult with the first author at
ferdinando.villa@bc3research.org before sharing or
making any use of this material unless previously
coordinated.

Semantic meta-
modelling
Thinklab aims to address the task of “integrated modeling”, which
reconciles strong semantics with modeling practice, helping achieve
advantages (such as modularity, flexibility, validation, and integration of
multiple paradigms and multiple scales) that have remained largely

unrealized to this day. To achieve this goal, Thinklab keeps the logical
representation of the modeled world distinct from the algorithmic
knowledge that allows it to be simulated, and uses artificial intelligence to
assemble the latter into the best possible algorithms to simulate a system
described by users in a purely conceptual and much simpler way.

As suggested above, semantic modeling, or more accurately semantic
meta-modeling, uses the idea of observation as the unifying theme to
define a general way to model physical objects and phenomena (Fox and
Hendler 2009). A model is a strategy to produce observations of a concept
that comes from a shared knowledge base. In order for models to be
compatible and be capable of being used as component of the same
computation, it is sufficient that the abstract knowledge they represent
is compatible. Modern artificial intelligence provides algorithms and tools
to automatically validate the consistency of an abstract knowledge base.
This way, the approach enables the integration of many modeling
paradigms that are often applied separately, for example spatially-explicit
to process- and agent-based models, or probabilistic and deterministic
models. This conceptualization builds a natural path to reach goals in
modeling that have frequently been discussed, but not demonstrated to
their full potential, including modular modeling, multiple-paradigm
modeling, multiple-scale modeling and structurally variable modeling.

The logical representation is modeled using concepts and relationships that
comprise Thinklab’s abstract knowledge base, built out of ontologies (more
on this later). In the abstract knowledge base, concepts such as
“watershed,” “elevation,” or “temperature” are defined, along with
information on how they may relate to each other. No attempt is made to
indicate how their models may be computed.

The algorithmic knowledge base is where you can provide models so that
simulated “observations” can be computed. At the user’s request, the
artificial intelligence in Thinklab will choose algorithms from this
knowledge base and build an integrated algorithm by assembling them,
driven by the abstract semantics. The result of calibrating and running the
integrated model is the production of observations of the concepts
contained in the abstract knowledge base.

A model in Thinklab represents a strategy to observe a concept. Models
can consist of entire simulations, simpler algorithms, datasets, or even
simple numbers; from the Thinklab point of view, all these just represent
different ways to observe a concept. In striking difference from almost all
mainstream modeling approaches, numbers, data or equations have
absolutely no meaning by themselves, even with descriptive names or
associated with formal metadata: even the simplest number can only be
used in Thinklab if it has a concept associated with it. Thinklab forces you
to use concepts so that “metadata” in your models only document auxiliary
information as they should; the conceptual part of the knowledge base
serves automatically as the documentation of the models, while at the same
time providing a layer of “meaning” on which collaboration and model
integration are based.

Structure of this document

This documentation contains, for now, five main chapters and a glossary,
subdivided as follows:

1. Chapter 1, Collaborative infrastructure and the semantic
modeling workflow provides generalities about both the
Thinklab language and the collaborative environment it is
expected to support. Initial examples of semantic model
specification are illustrated.

2. Chapter 2, Models as observations: subjects, qualities and traits
introduces the semantic framework for observable concepts
that we adopt in Thinklab.

mailto:ferdinando.villa@bc3research.org
http://0102.html/
http://0101.html/
http://0101.html/
http://ontologies.html/

Thinklab help - 19 March 2015 3 / 42

3. Chapter 3, Connecting data to models: semantic annotation and
observation semantics introduces the semantics of observations
that can be connected to observables, and the language
statements that implement it. The examples concentrate on the
semantic annotation of existing information such as data.

4. Chapter 4, Computing deterministic and probabilistic
observations extends the material of Chapter 3 to the case of
computed information, which in Thinklab is uniform with data,
and to providing semantics for externally computed
information.

5. Chapter 5, Making model choices depend on context, details
the notion of scale in Thinklab, and the ways that specific
model choices made by the reasoning algorithms are made and
how they can be constrained to specific scales or otherwise
influenced. In the process, conditional models, scenarios and
the ways to influence Thinklab’s resolution of models to
concepts are described.

The chapters above provide a basic user guide to the new user of Thinklab,
meant to support in-class instruction, and are by no means exhaustive of
the system for either the conceptual side or the implementation. Not all
examples in the chapter are guaranteed to work at all times; links to
sections of this documentation that appear in the text may lead to non-
existing pages. Any new documentation will appear in this section of as it
is completed and reviewed.

The current documentation was written by Ferdinando Villa and reviewed
by the collaborators listed above, with the addition of Stefano Balbi, Aiora
Zabala Aizpuru, Elena Perez-Minana and Simon Willcock. The Bayesian
network primer was written by Kenneth Bagstad, who also compiled the
Glossary, with the collaboration of the authors listed. Gary Johnson wrote
the cookbook examples. # Module 1. Collaborative infrastructure and the
semantic modeling workflow.

Thinklab is a computer language and software toolset that supports a
modeling paradigm where carefully designed components can be shared
within a broad modeling community, without previous coordination. To
achieve this, all model components are semantically annotated, i.e.,
associated to generally recognized concepts, such as “watershed” or
“elevation.” The operation of annotation establishes, explicitly and
unambiguously, the identity of each modeled entity and its boundaries of
validity for it (e.g., a particular spatial region or temporal period). Using a
shared set of ontologies (computer documents that define concepts and
their relationships) ensures that independently developed model
components can be linked without ambiguity or error and be used by a
growing global research community.

The components needed to achieve this vision are:

1. A web-based infrastructure that connects model developers,
helps coordinate knowledge and model sharing, and controls
data access and distribution in a way that correctly supports
collaboration.

2. A suite of shared ontologies to ensure a stable common
language for data and models, modified only through a
carefully designed, collaborative workflow that facilitates
conflict-free ontology extension.

3. A modeling language and server (provisionally named
Thinklab), and an end-user software toolkit (Thinkcap),
which enable model development with semantic annotations
based on the shared ontologies. Thinkcap is a graphical user
interface (GUI)-based client that communicates with one or
more Thinklab servers to publish, run, and share models and
knowledge. The Artificial Intelligence for Ecosystem Services
(ARIES) project uses Thinklab for its underlying operation;
Thinkcap is the primary means of model development for
ARIES modelers. Other applications of Thinklab and Thinkcap

are possible outside the field of ecosystem services.

This document is the first of a suite of modules aimed to serve as reference
and guide for a brief course in semantic modeling. As this material is fairly
novel, do not worry if it is not totally clear after the first read. The text
below provides a brief introduction to the three key components listed
above.

Component 1: the
collaborative, web-
based
infrastructure
A complete semantic modeling platform can be installed on a desktop
computer and used by a single modeler. However, the full value of this
paradigm can only be achieved when the models and the knowledge they
represent are shared with a broad model developer community, so that each
researcher can concentrate on, and contribute scientific advances for, the
issues that reflect their expertise and interests. The semantic modeling
approach facilitates integration across all modeling disciplines through the
use of common concepts.

The collaborative infrastructure that supports this sharing is a web-based
application that allows the desktop application to synchronize with a
distributed set of common ontologies, data, and models. The
synchronization is automatic using the Thinklab/Thinkcap software suite,
and guarantees that the “core” concepts used by all model developers are
the same. Model developers can register to obtain official certification and
join specific modeling groups, which give access to different “views” of
the shared knowledge base. Each user in the same group will use the same
core ontologies, and the collaborative infrastructure grants access to public
models built by all model developers that belong to the same groups.
Groups can be hierarchically organized to fine-tune access to restricted
datasets without compromising access to core and public knowledge.

Use of the software requires registration at
[integratedmodelling.org/dashboard] and a request to the site administrator
for certification. Certification results in a certificate file being emailed to

the user, which is copied in the.thinklab/ directory under the user’s

home directory and is automatically loaded by the software to identify the
user and allow access to all shared resources for the groups s/he belongs to.

Component 2:
Semantic modeling
and ontologies
The central tenet of semantic modeling is to maintain the meaning of
anything being modeled. This emphasis on meaning facilitates model
sharing with other, independent modelers: if the meaning of concepts is
consistent throughout the modeling community (including, and not limited
to, their temporal and spatial properties, and all relationships between them

http://0105.html/
http://0104.html/
http://0104.html/
http://0103.html/
http://0103.html/

Thinklab help - 19 March 2015 4 / 42

and other concepts), the models developed for those concepts are
automatically compatible. The Thinklab system is specifically designed to
take advantage of this semantic modeling approach. Concepts are used to
describe each entity in a model using a programming language whose
syntax is optimized for this task.

The semantic modeling workflow differs from that of other, more common,
modeling approaches. Specifically, model development requires first of all
that a specific subject is identified that is described by a concept
representing thecontext for all subsequent modeling (e.g., a watershed).
This concept is crucial: describing an area as a “region” has a different
meaning than describing that same area as a “watershed”, as models that
work on a watershed (for example, to extract the stream channel network)
will not work on a region. Additional concepts can be identified to describe
each quality (e.g., elevation, slope), process (e.g. erosion, rainfall), subject
(e.g. household, city, river) orevent (e.g. inundation, fire) of interest.

Component 3: The
Thinklab modeling
language and
Thinkcap software
environment
The Thinklab modeler workflow uses the Thinklab modeling language to
create models for specific concepts and define their context of validity. For
most users, model development and testing will take place within the
Thinkcap software environment., which provides an intelligent editor for
the language and facilities to interact with servers to synchronize and
search knowledge, test, run and publish models. Thinklab also supports a
user workflow, which we will not discuss in these notes aimed to modelers:
this workflow is supported by a separate web application (in course of
development at the time of this writing) and is of much simpler nature,
aimed to allow non-technical users to search for concepts, define a context
and run models using simpler metaphors to use the library of knowledge
created by modelers without being exposed to model details.

Any model, with the exception of data (NOTE: in Thinklab, data are
models) may require the observation of further concepts, besides its own
observable, in order to be computed. For example, a model of vegetation
growth may require rainfall, soil and temperature observations. In
Thinklab, as mentioned, all these dependencies are expressed using
concepts; Thinklab applies search algorithms to iteratively match concepts
to models as many times as necessary, resolving concepts to models as new
dependencies are brought in by the models selected. Heuristics and
artificial intelligence are employed to define the most suitable model at
every step, based on both objective and subjective criteria (such as
modeler-defined data quality). This process, called resolution, enables
Thinklab to integrate a large and distributed model base and make it
accessible to non-technical users: since queries are performed onconcepts,
running any model is paramount to conducting a web search for the
concept(s) of interest. Indeed, the combination of a shared model base and
the Thinklab language and infrastructure can be thought of as a semantic
webimplementation specialized to handle and serve “live” model
knowledge.

A modeling
workflow example

Creating a context
As mentioned above, running a model requires establishing a context first
of all. A context can represent any kind of subject, but in our example we
will use mostly contexts that are associated to spatial locations, the most
useful for the type of ecoinformatics modeling we use in applications. So
we will talk about context regions, watersheds, villages and the like. The
spatial aspect of a subject pertains to its scale, as one of the extents in it;
those may also include time and potentially others, which will not be
discussed here. A geographic extent can be defined using Well-Known Text
(WKT) : see the glossary for a definition and example. A simple
geographical polygon using WKT can be written by listing a projection
code followed by sets of spatial coordinates, like in:

EPSG:4326 POLYGON((-70.8783850983603
-3.3045881369117316,-69.05465462961
-3.2661991868835875,-69.13155892648547
-4.575963434877864,-70.91683724679801
-4.630717874946029,-71.15853646554768
-4.263784638927346,-70.8783850983603
-3.3045881369117316))"

The above WKT can be used within a simple Thinklab statement to create

the Leticia region of Peru, using the subject typeim.geography:Region

(a concept from theim.geography ontology that defines a simple region

of geographical space – see below). The full statement is written as:

observe im.geography:Region leticia-peru over space(

 grid = "500 m",
 shape = "EPSG:4326 POLYGON((-70.8783850983603
-3.3045881369117316,-69.05465462961
-3.2661991868835875,-69.13155892648547
-4.575963434877864,-70.91683724679801
-4.630717874946029,-71.15853646554768
-4.263784638927346,-70.8783850983603
-3.3045881369117316))"
);

The observe statement instructs the system to create a region named
‘leticia-peru’, whose spatial scale will be represented by a 500-m cell size
over the polygon defined by the WKT. A couple things to note. First of all,
the identifier for a concept in the Thinklab language is composed of two
parts separated by a colon. The first is the namespace, which corresponds
to a single file that contains concepts and models for a particular topic
(e.g., im.geography). The second is the name of the concept within that
namespace (i.e. Region). Simply stated, the core concept Region, a
generalized geographic region, is found in the im.geography namespace.
(Naming conventions and a capitalization scheme have been adopted and
will be explained in detail later).

Another important point. It is easy to get confused by thinking of the
“polygon” as the “context”. Indeed, a context is the whole subject created

by the statement, and its identity is given by the im.geography:Region

concept – theobservable for this subject. We have said above that the whole
purpose of semantic modeling is to associate models to concepts. Indeed,
when the above statement is “run” to create the subject and make it the
context of further modeling, the resolution algorithms in Thinklab search

for models associated to the observable im.geography:Region. Since no

special semantics are attached to regions, no models are (by default)
associated to this concept, as a region is sufficiently specified by assigning
its spatial (and possibly temporal) scale. If, however, we had intended our
region of interest to be a watershed, we could have written instead:

http://www.spatialreference.org/
http://www.spatialreference.org/
http://0203.html/

Thinklab help - 19 March 2015 5 / 42

observe im.hydrology:Watershed leticia-peru over
space(

 grid = "500 m",
 shape = …
);

While the statement looks almost exactly the same, the meaning is very
different, as we are now defining a subject with much more conceptual
detail associated. If nothing special besides the scale is needed to

characterize a semantically consistent im.geography:Region, a

im.hydrology:Watershed has important restrictions: for example, the

watershed has a shape that excludes areas that are not hydrologically
reachable by rainwater. For all practical purposes, a watershed is a region,
but it has additional semantics: using the knowledge visualization facilities
in Thinkcap, you can explore the im.hydrology ontology to reveal that

im.hydrology:Watershed is indeed linked to im.geography:Region

by an is-a relationship, meaning that a watershed is a special region (but a
region is not a special watershed).

The result of this tiny change in the specification is quite dramatic. When
the watershed above is used as a context for modeling, Thinklab will check

the ontology (im.hydrology) and find that some functional properties are

required in order for a watershed to be semantically consistent. For
example, all hydrologic observations on a watershed require that a digital
elevation model, flow direction attributes and a stream network be defined.
Faced with this need derived only by semantic analysis, Thinklab will look
for a subject model that can produce these additional observations to
complete the definition of a watershed when it is created. You can provide
your own, custom-developed models for the same purpose, and tell
Thinklab in which conditions it should be used (you can do the same also
for a Region). As a default, the one model associated with

im.hydrology:Watershed will run the set of hydrological analyses that

comes with Thinklab, depending on being able to observe the elevation
over the spatial scale defined for the watershed. If the elevation concept

(im.geography:Elevation) can be resolved to a model in the

knowledge base, this model is run to observe it, and the Watershed model
is then run. The result is the computation of the basic hydrological
characterization of the watershed, which includes the pit-filled elevation,
the total contributing area for each point in the watershed, and the stream
network in the region. All this happens without any user intervention:
Thinklab simply recognizes that in order for a subject to properly represent
a watershed, these quantities must be known, and proceeds to observe them
based on the available knowledge base.

The modeling client software (Thinkcap) makes all these operations more
intuitive by providing a workflow to create subjects and making
observations in their context. Once the observe statement has been written,
a marker named ‘leticia-peru’ will appear in the Navigator window of the
Thinkcap interface. Dragging and dropping the ‘leticia-peru’ marker into a
“context” window creates a subject, named leticia-peru. If the watershed
version of the statement is used, this triggers the search for elevation and
the computation of hydrological properties. Now that a subject has been
created to use as a context, the interface will display the “root” subject

named leticia-peru. The map window of the interface will display the

area of interest. Dragging other concepts onto the map allows triggers their
resolution to models; if an adequate model is found, the concepts are
observed by computing the model, and visualized in the same interface.

Observing concepts
in the context.
Once a subject has been created, you have a context in which you can
observe more concepts if you want to. In the modeler software Thinkcap,
you can locate a concept (from the Navigator or the Knowledge Search

window) and drag it in to the context window; this is the equivalent of
attempting to observe it in that context. As a response, Thinklab will
evaluate whether the concept is able to be successfully resolved, i.e. a
model associated with the concept can be found and run. If a valid model
for a concept in that context is identified, it will be run and the results will
constitute new observations of that concept. Other observations may be
made during the computation, and those will also be available to visualize.
The resulting observations will be displayed in the interface once a model
has run to completion.

If the effort is unsuccessful, the model base doesn’t have a suitable model,
but you can write one and assign it to the concept. If you are interested in
observing a concept that you cannot find in the ontologies, both the
abstract knowledge (the concept, contained within ontologies) and the
model knowledge (models) will need to be defined. This documentation
emphasizes model development. However, the complete software
documentation contains details on creating abstract knowledge as well.

NOTE: Abstract knowledge plays a significant role
in this modeling approach and affects usability at all
levels. The creation of abstract knowledge should be
approached carefully and collaboratively to ensure
its utility extends beyond an individual modeling
effort.

Concepts may describe qualities, processes, events or subjects (there are
also traits which occupy a special niche and will be discussed later).
Observations of qualities correspond to what is commonly called data.

Qualities
Concepts that describe qualities (e.g., land cover type, temperature) define
entities that cannot “stand alone” (note: we’re playing with semantic fire
here, and we strive for consistency in using terms that are colloquial but
have special meanings in our discussion. We use the word entity to mean
anything, devoid of further significance. The topic does not leave the
luxury of using terms like thing or object without raising doubts, so we will
stick to that). Qualities mustinhere to a subject in order to be semantically
consistent. For example, land cover type can only exist on some kind of
“land” – so a geographical region (e.g., a country, a watershed) subject is
necessary. Temperature can only be measured within a specific realm (e.g.,

the lower atmosphere, the ocean’s surface). As a result, an observe

statement cannot be used with a quality concept where we put, for

example, im.geography:Region. Thinklab will show an error marker

and refuse to create your subject if an attempt is made to observe

anything that doesn’t describe a subject capable of standing alone as an
independent object.

Once a subject has been established, all concepts that are compatible with
being its qualities can be observed. The universe of concepts is held within
the core ontologies and can be added to using the Thinklab language. In
Thinkcap, the Knowledge Search view allows to search for concepts by
name; double-clicking a concept resulting from the search displays the
knowledge graph, which graphically relates the selected concept to the full
knowledge base.

Subjects, processes and events.

Subjects, processes and events are “identities” that can stand alone
semantically: you can recognize a subject or event without having to refer
to another subject as context. They can, of course, also be observed within
the context of another subject: for example, observing the subject concept

im.infrastructure:Bridge within a im.geography:Region, if

successful, will create all the Bridge subjects in that region, using the scale
of the region as a guide to find bridges that exist in that space and time.
While we do not discuss much detail here, the difference between the
different types above deserves some more explanation. These kinds of

http://020202.html/

Thinklab help - 19 March 2015 6 / 42

concepts can be observed in the same way, but the results of observing a
process or a subject are slightly different. While subjects have an identity
that persists beyond their observation (i.e., observing them creates subjects
that can be visualized independently and serve as individual contexts for
other observations), processes and events are inherent to the subject they’re
observed in: an ecosystem service, for example, is a process inherent to a
region that affects its subjects (ecological and social) and causes certain
qualities (e.g. environmental values) to exist for them. The most important
difference is that observing a process does not generate an independent
entity for it, because processes occur within subjects. The same applies to
events, which are really processes but are seen as atomic with respect to
time, and therefore treated differently with respect to the scale of the root
subject. When observing a process or an event within the context of a
subject, any qualities or subjects produced by the process will be assigned
to the context subject instead of the process itself.

Module 2. Models
as observations:
subjects, qualities
and traits.
Anything that happens in Thinklab is the result of choosing a model and
running it in order to create an observation. A model always stands
between the intent to observe a concept and the successful observation of
that concept. Models require a subject in order to observe anything, so a
model begins with the observe keyword, which can be thought of as the
declaration of the root subject. While most of the examples discussed in the
text present the root subject as a region of space, this is only due to the
nature of the examples. Space and time are special observation types, also
known as extents; one or more extents create a scale. Special observation
types will be discussed in greater detail in Module 5.

Because the observe statement does not specify how the subject should be
observed, Thinklab will identify an appropriate model that will, if
necessary, initiate any computation(s) required to create a semantically
consistent subject. In the case of subjects, a model does not need to exist in
the model base; if there is no model, a default set of actions will be taken,
according to the concept that the subject incarnates. At a minimum, a
simple subject will be created; this, as discussed in Module 1, is what will
happen for example for a im.geography:Region, which is simply expected
to be there and not required to have specific qualities. When, on the
contrary, the semantics of the subject defines specific constraints, more
observations may happen automatically. For example, observing a
watershed subject would trigger a basic hydrological characterization of
the watershed, consisting in observations of some qualities such as the flow
direction and the elevation.

In contrast to subjects, models of a quality, must exist in the knowledge
base: it is not possible to create a “default” elevation measurement or land
cover classification. The simplest (and, from an epistemological point of
view, also the best) model of a quality is evidence in the form of data. So
when observing a quality, the model base is first searched for a data model
(also called a data annotation) that matches that quality. If a data annotation
does not exist for the quality, Thinklab will look up a model that can
compute it based on an algorithm or other process.

Modeling in Thinklab entails writing model instructions that produce
observations of subjects and qualities. This includes annotating data
sources to turn them into models of shared, recognized concepts. An

important part of this process is understanding the criteria with which
Thinklab ranks models when more than one is found for a particular
concept. These criteria, discussed in detail in Module 5, ensure that the
most appropriate model will be selected to observe a concept in a specified
context.

A model statement can be run manually in Thinkcap, by dragging and

dropping it onto a context. While this is an appropriate way to test models,
it is important to remember that the ultimate purpose of a model is to be
considered during the resolution of the concept(s) it describes, so that
Thinklab can choose the most suitable model for an observation in the
specified context. In a collaborative effort, it is normal to have more than
one model for a concept (e.g., different data sources with different
resolution, coverage, currency). The criteria that negotiate the model
selection process selected are the subject of Module 5.

Concepts and
observables
At this point, it is important to understand the details of the concepts that
are used to specify the observable of a model, i.e., the concept that the
model will produce an observation of. Concepts live in ontologies and
Thinklab can be used to define them (a Thinklab namespace is indeed an
ontology, which can define semantics both for concepts and models). A
substantial set of concepts come with the integratedmodelling.org
certificate. The process of creating ontologies (or even new concepts in an
existing ontology) has its difficulties. Creating new concepts or ontologies
(as discussed in Module XXX), requires a deep understanding of the
contents of existing ontologies and a cautious approach which ensures
semantic consistency and avoids unintended consequences to the
collaborative modeling environment. Ontologies are, the fundamental
building blocks of the semantic modeling approach. The remainder of this
section describes how to use the knowledge that exists within the ontology
library.

Three fundamental aspects must be correctly specified to define an
observable:

1. The primary observable: it is a thing, process, quality or
event.

2. Any traits that further specify the primary observable and
influence the type of observation made;

3. The inherency of a concept to a subject, which further informs
the matching of concepts to models during resolution.

The primary
observable
There are two fundamental kinds of observables:

1. Those that specify entities that can be thought of as existing
autonomously (or, as some philosophers say, have unity): those
include entities that “are”, such as regions, human beings,
animals or plants, but also entities that “happen”, such as
events (e.g. an earthquake) or processes (e.g. “carbon
sequestration”). In the following, we use the convention of
referring to all of these with the term things.

http://0105.html/
http://0105.html/
http://0101.html/
http://0105.html/

Thinklab help - 19 March 2015 7 / 42

2. Those that specify qualities, which must refer to a thing in
order to exist as a meaningful concept for modeling. Those
include “properties” such as color, temperature, or density.

We say that an observable is concrete when it can be directly observed
without further specification: for example, “nitrogen amount” would be
concrete while “amount” would be abstract, the opposite of concrete. An
“amount” cannot be identified without specifying an identity for it that
“grounds” it to the physical world.

Because an identity clearly is also a concept but cannot be observed
without an observable to refer it to, we need to bring in another class of
concepts, which we call in general traits. Those are not observables: so
you cannot write a model for, say, a plant species or a chemical element.
Rather, they are used to qualify observables so that their observation
becomes unambiguous. We recognize three types of traits:

1. Identities, which have the property of being able to turn a
compatible abstract observable into concrete. An observable
can have one and only one identity – for example, a “cat
individual” or a “gold weight”. You cannot observe gold, but
you can observe its weight: to annotate this observation, you
use the abstract observable (weight, a quality) identified with
“gold” (a chemical identity).

2. Attributes that can only apply to concrete observables and
further specify them so that there is no ambiguity in
annotations. For example “annual rainfall amount” would be
observable without the attribute “annual”, but it would be
incorrect to mix annual measurements with monthly ones, so
we use the attribute to specify the annual character. There is a
vast taxonomy of attributes, many of which are collected in our
core ontologies so that the need for “inventing the wheel” is
minimized (along with the risk of making the wheel square).
An observable can have many attributes, but only one per
category: so we can see “annual average rainfall amount” but
not “annual monthly rainfall amount”.

3. Realms are special attributes that are very common in
modeling, so we have decided to give them a status of their
own. A realm refers to a broad subdivision of the physical
world (not necessarily geographically delimited) where a
particular observable is expected to be observed; for example,
geographical realms such as land, ocean, atmosphere, soil, or
biogeographical ones such as ecozones. They are conceptually
not very different from attributes and they work the same way
– many realms, but only one per category. Because modelers
often use realms, we conceptualize them separately so they can
be more easily catalogued and located.

Thinklab provides base semantics for several other kinds of observables,
such as basic physical properties (see Module 3. Still, the distinction
between things and qualities, complemented by traits, remains the
fundamental conceptual skeleton for the process of annotation. Any
confusion over what is a thing vs. what is a quality will lead to trouble.
When possible Thinklab will validate concepts so it should not be
allowable to use a thing concept when a quality concept is needed (or vice
versa). This is not universally possible, and observations resulting in
strange model behaviors will arise unless the distinction is clearly
understood.

Observing things and qualities works differently, and the observation of
each produces different outcomes.

• The observation of a thing, also known as a direct

observation, produces a virtual representation of one or more
things in a context. So for example, when observing a
watershed, an “object” tagged with the watershed concept is
created in the computer’s memory. Within the context of the
watershed it is possible to observe households, rivers or

bridges. The observation of those concepts will create new
objects, under the “ownership” of the containing watershed.

• The observation of a quality is an indirect observation. An

indirect observation produces an output (numbers, for example)
that indirectly describes the state of that quality in the context.
For example, consider the concept describing the amount of
annual rainfall in a watershed. Let’s assume that the watershed
context is distributed over an interpretation of space that
conceptualizes it as multiple cells or polygons (In Thinklab, the
temporal and spatial qualities of observations depend on the
specific characteristics of the context. This will be discussed in
greater detail in Module 5.) A successful observation of this
concept creates an observation of rainfall in the watershed,
most likely expressed in mm (expressing the density of the
water volume over space). The observation will take the form
of a map, attributing a number value to each subdivision of the
context. Each value expresses the rainfall amount indirectly,
referring to a known scale (how many mm, defined in the SI
system).

The interpretation of numbers (or other data types, e.g., categories) in an
indirect observation will depend on the defined observation semantics (for
example, a measurement in a particular unit). Units and observation
semantics are described in Module 3. For now, it is important to understand
that the observation of a quality can only happen within the context of a
thing. Temperature, a quality, cannot exist alone but only in reference to
the thing whose temperature is being measured. Choosing semantics to
match the desired level of detail enables semantic shortcuts with respect to
the physical world. For example, it is possible to measure the “atmospheric
temperature” of a “region” (a thing) instead of observing the “atmosphere”
in that region and contextualizing the temperature to it.

Thinklab offers the user extensive granularity when defining concepts with
its suite of existing ontologies. Things can be inanimate or reactive
(agents); processes and events are specialized things that will be discussed
in more detail later. For now, understand that most of what is referred to as
“data” are qualities in the Thinklab language, and a “dataset” (a collection
of different data relative to the same context) is what Thinklab considers
the observation of thething that has been chosen as the context, including
all of its observed qualities.

Keeping ontologies simple

We have discussed how traits work as “descriptors” to avoid confusion
with other incompatible concept. For example, when modeling rainfall on
an annual time scale, the results are presented as “annual rainfall” and
annual measurements are not mixed with monthly or daily measurements.
In a semantic world, it is also possible to represent such distinctions be

represented by using a separate concept: for example AnnualRainfall

andMonthlyRainfall, which could be specialized cases of

im.climate:Rainfall. it is important to minimize the size of ontologies

if they are to be used by wide communities, and because there are many
attributes that apply equally to concepts for many disciplines, traits offer a
way out of a potential semantic explosion that can lead to a complete lack
of interoperability. If it were necessary to define a version of all the
qualities that can be measured annually, the ontologies would rapidly
increase in both size and complexity (e.g., monthly measurements for each
month, daily measurements for each Julian date). Instead what is needed is
the specialization of a concept that uses a general “adjective”, such as:
-finite/infinite, -vulnerable/invulnerable, or -high/medium/low.

When looking up models, Thinklab prioritizes models that share the same
trait as the concept that is being observed, and ignoring those models that
feature a different trait of the same type. Traits can be added to concepts
simply by writing them along with the main observable, as it would be
done in English: for example adding the Annual descriptor to the context

(im.hydrology:Watershed) in the observe statement:

http://0103.html/
http://0105.html/
http://0103.html/

Thinklab help - 19 March 2015 8 / 42

observe im:Annual im.hydrology:Watershed

 over space(...)
model ... as measure im.climate:Rainfall in mm;

An “annual watershed” doesn’t make much sense by itself, but the Annual
trait refers to the observation of the watershed, ensuring that any model or
data selected to observe a quality in this watershed will be annual. So when
observing rainfall in this watershed using the model statement, only
observations of annual rainfall will be made. If a model is chosen to
resolve a process concept, for example “river flow,” only models with an
annual time step will be chosen. In other words, traits “percolate” through
the resolution process and influence the choice of models made so that the
result is always consistent with the observable concept.

Of course the observe statement above does not require any traits. They
can be added to the model statement instead. The process will work the
same way, and the resolution of an annual model will ensure that all
observations are made on annual data (or processes with an annual time
step). And, of course, it is critical to use appropriate traits when annotating
data. For example, some traits detail the data reduction choices made when
collecting data, such as average, minimum or maximum measurements. As
many traits as necessary should be used: restrictions on the types and
number of traits have been detailed before, but in general, only one identity
is admitted, and as many attributes or realms can be present as long as each
one belongs to a different abstract category. The following model statement
illustrates how to assign traits for average annual rainfall data:

model as measure im:Annual im:Average
im.climate:Rainfall in mm;

Traits are also useful when classifying observations. They can be used to
classify continuous data into discrete categories, which proves useful for
certain types of modeling (e.g., Bayesian modeling). In this case,

classifications can be done using the by keyword followed by the type of

trait:

model Elevation as classify (measure
im.geography:Elevation in m) by im:Level into

 im:Low if 0 to 350,
 im:Medium if 350 to 1000,
 im:High if 1000 to 8000;

Additional examples of this will be shown in detail later. For now, consider
the benefits of using the general trait im:Level, known to Thinklab as a
subjective trait, to classify a continuous quantity according to an
interpretation of the values. This style of model specification eliminates the
need for defining concepts like “HighElevation” and “LowElevation.”.

There are many predefined traits in the im ontology describing general

attributes such as regularity of occurrence (regular/irregular), frequency of
occurrence (ephemeral, rare, common or continuous) and origin
(endogenous/exogenous). Learning to use traits appropriately is the best
way to ensure data and model compatibility.

Identities managed by authorities

In most cases when an identity is used, there are many – and sometimes
infinite – possibile concepts, and the attribution of identity is normally
subject to great debate and change. For example, biological species have a
many-to-many relationship with the taxonomic concept they describe:
individuals of the same species may have been attributed to different ones
before realizing that they were two growth stages of the same, and there is
an enormous amount of species that grows every day. Chemical “species”
work similarly: the periodic table of elements is relatively stable, but
molecules are certainly not something we can classify in a single ontology,
and even if so, we certainly would not want the humongous chemical
ontology only to describe water and carbon dioxide.

Fortunately, we are not the only ones to need a stable reference framework
for this kind of “open-ended” identities, and organizations such as the
Global Biodiversity Information Facility have been established to provide
exactly such framework. Such organizations provide a vocabulary and a

process to assign a specific, stable identifier to a concept, so that it can be
“tracked” unambiguously throughout the changes that it has undergone
during its use in scientific practice. Similar organization promote unique
ways to define molecular structures, agricultural terms, etc. Thinklab
provides a way to define identities based on these identifiers, and the
software we provide links some authorities in so that annotation becomes
very simple and efficient. Authorities are identified by an uppercase string,
such as GBIF, and the syntax for an authority-backed identity is as follows:

<abstract observable> identified as “<key>” by
<authority>

For example, to annotate a model that observes the number of individual of
the fish species Argyrosomus hololepidotus, you can refer to the GBIF
identifier for the species and write

count im.ecology:Individual identified as "5212442"
by GBIF

The part starting at identified counts as the definition of an identity

trait, which is not specified directly as a concept, but by referring to an
identifier managed by the GBIF authority. The authority name must be
recognized and correspond to a plug-in installed in the language; use of
authorities comes with the integratedmodelling.org certificate. Thinklab
provides interactive search facilities and translation for some authorities:
for example, the specification above will create a concept that displays (for
example in data legends) as the common name of the species. Authorities
will be developed and made available to suit the user communities; at the
moment the three authorities available are

1. GBIF for taxonomic identifiers, as above;

2. AGROVOC (from FAO) for agricultural identifiers; and

3. IUPAC for chemical species identified by an InChl string.

Only the GBIF authority has search facilities associated for the time being.
For all others, identifiers can be retrieved by using the institutions’ web
sited. Requests for supporting other authorities can be sent
atintegrated.modelling@gmail.com.

Inherent qualities and subjects

In ontologies, properties are used to classify the type of relationship that
exists between concepts. The “specialization” property is frequently used

(e.g., a Car is-a (type of) TransportationVehicle) but there are many

others, both very general (e.g., Individual part-of Population) and

specialized (StreamReach has-slope Slope). Although properties can

be explicitly detailed in a concept specification, Thinklab can create and
validate properties automatically, to reduce the complexity for the modeler
and encourage shorter, more readable specifications. Yet, there are some
important logical implications to consider before connecting concepts and
making observations. One of which is determining the legal and illegal
properties of a subject: a Watershed has Rainfall and Elevation but no
Liver or Heart. Without having to explicitly create such constraints, which
would be difficult, it is possible to specify the allowable subject
observables to refer to, thereby avoiding improper usage in the model
resolution process. This type of specification is referred to as an inherency

specification, which in Thinklab is created using the keyword within. For

example:

model ... as measure im.geography:Elevation within
im.geography:Region in m;

Assume there is a dataset specification (as we will see in Section 2) instead
of an ellipsis, and consider only the observable of the model: a quality
(elevation) with an inherent subject (a geographical region). This

guarantees that any observation of Elevation will use data only if the

context of the observation is a Region. Note that this works for any kind

of region: for example, both a Watershed and a Country are specialized
types of Regions, so the data will satisfy a request for observing elevation
in both of these instances. Observing the elevation of a tree, however,
would not be possible using the data produced by the model above.

mailto:integrated.modelling@gmail.com
http://en.wikipedia.org/wiki/International_Chemical_Identifier
http://aims.fao.org/standards/agrovoc/functionalities/search
http://gbif.org/
http://gbif.org/
im:Level

Thinklab help - 19 March 2015 9 / 42

Inherent subjects are used to restrict the semantics of the model to an
appropriate set of applications.

Inherent subjects are used automatically during resolution: if there are two
datasets for a concept, one is inherent to a Region and the other is not, the
dataset inherent to the region will be given precedence during model
resolution (seeModule 5) for full details on prioritization in resolution). In
general, there should always be an inherent subject for all observables; but
the choice should be made intelligently, as it is always possible to choose a
subject so restricted that models become almost useless. For example,

identifying a LowerAtmosphere Region as the inherent subject for

Temperature data may make them less useful than simply using a Region,
given that the “default” meaning of temperature data refers to the Earth’s
surface. Both specifications, and probably many others, may be
conceptually correct, but the conceptual resolution of a model requires
careful thinking: over-specification of semantics should be avoided as
much as under-specification. If in doubt, remember that the same data can
be annotated as many times as necessary, and there is no reason not to
create both models if both observables have enough generality to be useful
and sufficiently distinct meanings to be both useful.

Putting everything together

To summarize, an observable is composed of:

1. one and only one observable concept - a quality, thing, process
or event;

2. if the observable is abstract, one and only one identity that
grounds it to reality. For example, a species for an individual or

group: im.agriculture:Cattle im.core:Group.

3. zero or more attributes and/or realms to complete the meaning
of the observable if necessary;

4. zero or one inherent subject type, which specifies the most
general kind of subject that this observable may refer to.

It is important that all the necessary concepts, and not one too many, are
included in each model. Thinklab, as illustrated in the examples throughout
this documentation, provides syntax to simplify the definition of an
observable (in a nutshell: just string together trait concepts with their

observable concept, and use the within keyword to introduce the inherent

subject type if one is present). Consider the observable, in its three
conceptual dimensions (observable/traits/inherency), as the “semantic
fingerprint” of the model or data being described. Decomposing the
observable keeps the ontology small - a parsimony principle which is
crucial to the usability of a collaborative modeling infrastructure. The
smaller the ontologies, the more useful and powerful they will be. Using
separate concepts instead of specialization to capture the key meaning of
observations avoids the explosion of the knowledge base and facilitates
opportunities for more modelers to contribute to it.

Module 3.
Connecting data to
models: semantic
annotation and
observation
semantics.
So far, we have seen that models produce observations of observables,
which can be specified using a concept, identified with an identity if
abstract, and optionally augmented with one or more attributes or realms
and an inherent subject. All observations, except the “root” one made with

the observe statement, happen in the context of a subject. A model

therefore represents a strategy to observe a concept in a context. The result
of the observation depends on the observable type (i.e., subject, process,
quality, or event): observing a quality results in “data” being produced to
represent a state, which will be distributed over the scale (space/time) set
for the subject.

Writing models is the way to extend the power of Thinklab. The more
inclusive the model library, the better the ability of the artificial
intelligence engine to select an appropriate model for the specified context
that best represents the observable. This definition of a model has the
following consequences:

1. “Raw” numbers can never be used to represent the result of an
observation in Thinklab: every number will always “be”
something, i.e., have an observable associated with it.

2. Models ‘annotate’ values, data sources, equations, or external
computations using the same syntax: in other words, data and
models are merely two different ways of observing an
observable (data are models).

3. In the case of computed models (e.g., equations), “inputs” are
expressed as concepts. Thinklab resolves the concepts at run
time based on the context.

Writing models consists of the following main steps:

1. Choosing the semantics for the observable.

2. Choosing and describing the “source” for the result of
observing the observable: e.g., a value, data set, equation,
external program.

3. Choosing the observation semantics, i.e., the type of
observation made. In the case of things this is trivial, as these
are direct observations, semantically equivalent to simply
acknowledging the thing observed. For qualities, observation
semantics requires more specification, for example of
measurements, classifications, rankings, as will be seen later.

4. Creating metadata to help Thinklab track the provenance (i.e.,
origin) of the information during resolution, and choose the
proper model when more than one model is available for the
same concept. This will also be discussed in detail in Module 5.

http://0105.html/
http://0105.html/

Thinklab help - 19 March 2015 10 / 42

Based on these principles, we see that an observation can be made in
different ways, including extracting numbers from a data file, computing
an equation, or calling an external program. This section only refers to
resolvedobservations, where the states of the observation (numbers,
categories, etc.) are known at the time the model is written: this applies
equally to simple data values as to external data files, databases or data
retrieval services. Module 4describes computed observations, which
depend on computations.

Choosing a concept
Choosing a concept is a fundamental topic that is covered more extensively
in the full documentation. For the purposes of this guide, it is important to
remember that extending Thinklab’s data and model integration capability
depends entirely on the reuse of the shared knowledge base. As each
Thinklab namespace is an ontology, concepts may be created at any point
and by anyone, and nothing prevents a modeler from creating a new
concept per each model without thinking of integration. But in a
collaborative environment, new concepts should only be added when
absolutely necessary and with community agreement on terminology and
meaning. Many concepts can be created by combining existing observables
with traits and inherent subjects as explained in Module 2. For the purposes
of this discussion, the reader is reminded of three key points:

1. Understand and properly use the fundamental types of
knowledge: subjects, qualities, processes, and events. Errors in
attributing these fundamental types are certain to lead to
trouble, both when running models and when interpreting
outputs.

2. Learn to use traits, fundamental physical properties, and
inherency. When in doubt, use a temporary concept that can
easily be traced, and ask the larger modeling community for
feedback.

3. Be mindful of common mistakes in attributing semantics to
either data or models. A list of common ontology-related
misunderstanding is in development to be integrated with this
documentation.

Choosing the data
or subject source
Models may have a pre-existing source of information for the semantics
they provide. These are referred to as resolved models. Ultimately, all
observations must end up as resolved models for each model input.
Information sources can be provided for both data and subjects: examples
include the value of a constant (e.g., the gravitational constant g or the
boiling point of water), data from datasets (e.g., a precipitation or
population density map), or subjects from datasets (e.g., villages,
watersheds, or roads). Examples of each are provided below to illustrate

how the model statement uses semantics to dress a “bare” reference to

different kinds of data (all specified immediately following the word

model).

Values
model 100 as measure im.chemistry:Water
im.physics:BoilingTemperature in Celsius;
model false as presence of im.theology:Satan;
model im:High as classify (probability of
im.climate:ClimateChange) by im:Level;

All these statements (which definitely belong to subjective scenarios!)
show how the bare value of a quality can be set to a constant, which the
resolver will take as the value in the context of validity of the previously
specified model. Normally this form, which shows the most direct example
of semantic annotation of data, is only used when testing or when creating
scenarios, and most likely only for parameters that models should use
under carefully controlled conditions: annotating constants as shown above
will rarely be used in other ways. More typically, data annotations point
Thinklab to data sets, which can be stored externally or directly stored with
the other files in a project. This is done in the language by using functions
that can define both data and subject sources, as shown below.

Data sources

Functions are identifiers followed by lists of named arguments within
parentheses:

<function-name> (<argument-name> =
“parameter_value”, …)

The list of arguments may be empty, but if it is not, each argument will

have a name and a value separated by an equal (=) sign. The function

names and parameter names are not keywords of the language, so they may
change and new functions may become available at any time. Thinklab
provides a variety of functions, capable of bridging to several commonly
used file formats and web-based data retrieval services; each function has
its own argument names and rules for validation of arguments. To date, the
most commonly used functions in Thinklab connect to spatial data. The
following examples detail functions to access raster data from a Web
Coverage Service (WCS) and from the filesystem on a user’s computer,
respectively:

model wcs(urn=”im:global.geography:dem90m”, no-data
= -32768.0) as measure im.geography:Elevation in m;

model raster(file="data/landcover.tif") as

 classify im.landcover:LandCoverType into
 im.landcover:Urban if 200,
 im.landcover:Agricultural if 201,

 ;

Like the ‘raster’ function above, the ‘vector’ function can also be used with
a ‘file’ argument to point to a file stored on a local disk within the user’s
project directory. Employing local files limits opportunities for
collaboration and sharing, and it is very onerous to handle for the modeling
engine. It is therefore recommended that they should only be used during
model testing and development. Importantly, models that refer to local data
files should not be shared in the integratedmodelling.org knowledge
repositories, as all the data sources referred to in shared models must be
accessible to everyone who shares the model itself.

Vector data often specify subjects, like roads or bridges, but sometimes
they define distributed qualities in a more compact data storage form than
raster data. For example, it is common to find vector representations of
land cover type, although each polygon in the coverage is not a “subject”
in a strict sense. Thinklab can use such data for qualities, as long as an
attribute in them contains information in a recognizable form. In the
following example, the attribute luc_id from the AFRICOVER vector
dataset for Tanzania is accessed using the Web Feature Service (WFS)
function:

http://0202.html/
http://0105.html/
http://0102.html/
http://0104.html/

Thinklab help - 19 March 2015 11 / 42

model
wfs(urn="im:af.tz.landcover:tanzanialandcover",
attribute="luc_id") as

 classify im.landcover:LandCoverType into
 im:Agricultural if "AG",

 ;

When the resolver decides to use vector data in a grid spatial context, it

will automatically rasterize the polygons, extract the value of the luc_id

attribute, convert it into the concept indicated in the classification, and
attribute it to each point of the grid. A numeric attribute would be required
to provide a value for a numeric quality like slope or rainfall quantity. Note

that the states of the observation will be unknown (a kewyword that

expresses the notion of ‘no data’ in Thinklab) where no polygon covers the
context.

Subject sources

In many cases, data sources can be seen as providing things rather than
qualities. For spatial data, a common occurrence is vector files (such as
shape files) where each record represents one distinct object, such as a road
or a bridge. Not all vector files represent objects – some just use a vector
representation as a convenience to lump together qualities that have the
same values – but many do. In such cases, the models can annotate the

sources as subject sourcesusing the keyword each and avoiding the

observer statement after as:

model each wfs(urn =
"im:global.infrastructure:global_rail_merge")
named railroad-global
as im.infrastructure:Railway;

When located within a subject model (with the each keyword and only a

subject concept after as), the source will be interpreted as a source of

subjects. Observing the im.infrastructure:Railway concept in a

context covered by the data above will generate as many railway subjects
as there are in it, clipped to the context as necessary.

There is much more to be said about subject models, specifically about
quality models that can be automatically inferred from them. We will
briefly discuss some examples after the discussing observation semantics
for quality models. Another topic that will be discussed farther along is
how models can be written to specify what to do when the subject is built –
which enables what is commonly called agent-based modeling in Thinklab.
We will leave details on this advanced aspects for a further section.

Observation
semantics for
qualities
Observing qualities produces what we usually refer to as data, i.e.,
information that approximates the value of the state of the observable by
referring it to a known set or scale. This “external” reference system is
what we refer to when saying that qualities produce indirect observations.
For example, elevation needs to refer to a unit of measure such as meters
before a model can observe “how many units” of elevation are in a given
location. Consider a 1 x 1 km region of land. Observing the elevation
quality at the 100-m resolution will produce as many of these “data” as
needed to cover the scale of the context - e.g., 100 numbers. In Thinklab,
this set of 100 numbers counts as oneobservation of elevation in that

context.

Thinklab provides a number of observer statements that help the user to
specify the system of reference for a quality observation. This is equivalent
to specifying the observation semantics for the observation. In Thinklab the
observation semantics are, in general, only described through the observer.

So, for example, a concept called Measurement will not be found in the

Thinklab ontologies and no concepts of this kind should be added. For all
practical purposes, the semantics of the observable and that of the
observation are independent, and this is an important founding principle in
semantic modeling. Some validation steps are taken to ensure that
observables are appropriate for the observation and some exceptions exist
to the above rule; still, observation types are best thought of as not directly
implied by the observable concept

Data models are typically used by Thinklab when a computed model
defines a dependency for an observable. This will be shown in detail later,
but many models will state a dependency like:

model

 as
 using
 (Elevation as measure
im.geography:Elevation in m) named el,

 ... instructions to compute the result
based on 'el';

In this case, the code instructs the Thinklab resolver to look for the most
appropriate model that satisfies it. If a data model is available for the
observable, it will be chosen preferentially. Otherwise a computed model
will be chosen if available, and its dependencies will be resolved in the
same way. Observations made in different units can be converted when
their relationships are clear: for example, a dependency on a measurement
of elevation in meters may be matched to a data model for elevation in feet,
and Thinklab will automatically translate the units.

Thinklab provides semantics for the following observation types: ranking,
measurement, count, valuation, classification, proportion, percentage,
probability, ratio and uncertainty. Each observer type has a correspondent

statement that must be used after the keyword as (e.g., ‘as rank’, ‘as

measure’, ‘as count’), in any model that has a quality as its observable.
Observers create values for the states of the concept they describe that may
be different for different observers. In the sections that follow, each
observer type is explained, including a description of the values produced,
a description of how these data models will be used when matched to a
dependency, and examples of use.

Ranking
Rankings produce numeric values that may use a scale (e.g. 0 to 1 or 1 to
10) or be unbounded, may be restricted to being integer numbers, and are
meant to describe qualities for which a higher rank means a higher “level”
for the observable concept. They do not have units (they often translate
what is referred to as “arbitrary units” colloquially), and as such they
should only be used when measurement or valuation observers are not an
option. Rankings are typically used to express preferences or survey data,
where the quality described uses an arbitrary numeric scale.

model wcs(...) as rank ...;

model wcs(...) as rank ...:PerceivedDanger 1 to 5;

This annotation will produce floating point numbers or integers if
requested. If a range is given, values outside of that range that are produced
by the data source will generate a runtime error, indicating a mismatch
between the data source and its intended semantics. Some data source
functions may offer the possibility of restricting the output range. This

http://0104.html/
http://0104.html/

Thinklab help - 19 March 2015 12 / 42

annotation will match any dependencies for a ranking of a compatible

observable. Note that: * If a rankstatement in a dependency does not

specify a scale, both ranking models with and without a scale will match it;

* If a rank dependency defines a scale, only rankings with a scale will

match it; if the observables match, the scale is seen as a “unit” of sorts, so
the matched ranking may have a different scale, and the values which will
be converted to the scale of the dependency before being used; *
Dependencies that define a scale will not be matched to rankings of a
compatible observable that do not define a scale.

Measurement

Measurements indicate physical properties, such as mass, energy, or
entropy. Currently Thinklab will only generate a warning when a
measurement is defined for a quality that is not a physical property, to give
the modeler time to define concepts and still be able to test models.
However, properly heeding the warning means that no user should ever
“publish” a model with that warning to a public namespace.

More information about physical properties (and their fundamental
distinction in being intensive or extensive, which is very important for their
aggregation) is available here. For this module, it is important to
understand that physical properties are measured and quantifying the
measurement relies on the use of a reference system with standard units
(e.g., mm, kg, ha). Thinklab requires the user to specify units according to
a well-identified syntax and will validate units in both the client and the
server.

measure ...

This annotation will produce floating point numbers in the specified unit of
measure. This annotation will match any dependencies with a compatible
observable. Units will be converted as necessary. If the annotation is
correct, compatibility of observables should guarantee compatibility of
units, and this compatibility is enforced to some extent in Thinklab, but not
yet to a level that guarantees full coherency and safety. Consider the points
made previously about aggregation and the use of distributed extents in
defining the observables to be certain that observables and units are
properly aligned.

Note that scientific practice and published metadata are often sloppy in
defining units, both in terms of syntax and in using units for qualities that
are not actually measurements (e.g. “10 people” or “20 EUR”). A semantic
modeling system cannot afford that, so the appropriate observers must be
used to handle qualities that could be called measurements (Note: the two

examples above are a count and a value respectively - see below).

Additionally, the raw values of some spatial data may require a conversion
factor (e.g., multiplying by 0.01) to express the data in standard units. Such
conversions can easily be conducted during data annotation; for example:

model wcs(urn =
"im:na.us.climate.annual:annualprecip")

 named precipitation-annual-2007-usa
 as measure im:Annual
im.hydrology:PrecipitationVolume in mm

 over time (year = 2007)
 on definition change to [precipitation-annual-
2007-usa * 0.01];

When in doubt, and particularly if modeled values appear to be
consistently ‘off’, check the metadata.

Count

Counts are often considered measurements in common practice, but they
are semantically unique, as they refer to a set of countable objects of a
common type, and define the very particular quality that comes from

counting them. The Thinklab count observer is special because it requires

its argument to be a subject and produces a different concept. For example,

when counting im.demography:HumanIndividual, the resulting observable
(a quality) will be im.demography:HumanIndividualCount. Two additional
observers, ‘presence’ and in some instances, ‘classify’, may also produce
new semantics. At a minimum, only the subject need be provided to the
count observer:

model 1 as count Universe;

If, however, a count that is distributed over space, time, or both, is desired,
a unit to define the extent of the distribution is required. For example:

model wcs(urn="aries:global-populationdensity-2006")
as

 count im.demography:HumanIndividual per km^2
 over time (year = 2006);

Using the per syntax dictates the unit that would otherwise represent the

denominator if the annotation (incorrectly) specified the count as a
“measurement … in people/km^2”.

This annotation will produce floating point numbers, although this is a bit
of a semantic blasphemy, as countable subjects should not normally
maintain identity when split, so only integer values are semantically
correct. The ability to automatically account for densities or rates when the
context is spatial or temporal requires enabling fractional counts. Note that
the quality resulting from this model will be represented by a different
concept, created (if necessary) by appending “Count” to the subject
concept. This annotation will match any other count of the same observable
over compatible extents. Units will be converted appropriately and
automatic aggregation will take place.

Value

It is common to see metadata referring to value observations as
“measurements” of value - either monetary or in “arbitrary units.” A
semantic system needs to do better than that: value is semantically very
distinct from the generic measurement. It entails both subjective and
objective comparison between different quantities and the value system
that underlies valuation is much more fluid and culturally dependent than a
physical measurement.

Value is commonly assessed monetarily, but that is by no means the only
way to observe value. Thinklab allows the specification of monetary or
conceptual currencies.

Currently, the use of the value observer should be considered experimental
and support for value conversion in Thinklab (i.e., in converting between
currencies or within a single currency to account for inflation) is limited.
The syntax allows currencies to be specified like so:

model ... as value of ...:PropertyParcel in
USD@2004;

Because values can be non-monetary, the specification of the currency does
not need to be monetary. If a currency is given, it must be qualified by the

year (or month/year) after the @ character, as the definition of any currency

is meaningless without an historical context (which is independent of the
possible temporal context). If the currency is not monetary, a concept
expressing the type of value should be specified (e.g. “Affection”). In all
cases, some currency is necessary, and the semantics defined by this
statement will reflect both the observable and the way it is valued.

Note that while Thinklab is expected to enable automatic currency
conversion, this feature is in development and is not available yet. For all

practical purposes, value will behave the same as a measurement

without a scale even when a temporally-specific currency is specified.

This annotation will produce floating point numbers. This annotation will
match any value that has the same currency and year, or the same currency
concept. In the future, translation to other currencies and years will be
provided.

http://0201.html/
http://en.wikipedia.org/wiki/Intensive_and_extensive_properties

Thinklab help - 19 March 2015 13 / 42

Classification

Classifications are often used in modeling to define categorizable attributes
of a common type (e.g., land cover type) or to “discretize” continuous
values into discrete levels that can be more easily understood or fed into
computations that require categorical data. In a semantic system, we need
to unravel the meaning of categories, and using string values won’t do us
any good - but in the semantic world, the idea of “categories” corresponds

very closely to ontologies and concepts. Indeed, the classify observer

produces concepts, and it is carefully designed to be able to express all the
semantic nuances described for observables: types, traits, and discretized

levels. As a result, the classifyobserver has several options, although all

should read naturally.

In a classification, the state of the indirect observation is a concept. This
corresponds to what is commonly called a categorical observation. Because
in Thinklab nothing can be devoid of semantics, it is not possible to
produce categories that are simply strings (e.g. “high” and low“). Any
categorization must have clear semantics, so any time models call for
categories, a classification must define the categories in the terms of an
explicit concept hierarchy.

Classify has three different forms, which are used in different
circumstances. Direct and indirect classifications simply define the list of
concepts that make up the classification, and are used when the concepts
are produced directly in the model, for example through an algorithm.
Classification using observables or traits is used when the concepts are
produced by reclassifying some other observation; classification rules are
defined to produce each concept. The latter form can use a trait as the basis
for classification.

As a special case, the classify keyword can include only the observable

concept when stating a dependency. This special case will be explained in
Module 4.

Direct classification

In a direct classification, the concepts that form the concept space are listed

directly after the observable concept and the keyword into:

model ManureType as

 classify im.agriculture:Manure into PigManure,
CattleManure, PoultryManure

 observing
 (PigManureProportion as proportion of
im.agriculture:Pig in im.agriculture:Manure
im.core:Mass) named pig-manure,

 (CattleManureProportion as proportion of
im.agriculture:Cattle in im.agriculture:Manure
im.core:Mass) named cattle-manure,

 (PoultryManureProportion as proportion
of im.agriculture:Poultry in im.agriculture:Manure
im.core:Mass) named poultry-manure

 using rand.select(
 distribution = (pig-manure cattle-manure
poultry-manure),

 values = (PigManure CattleManure
PoultryManure)

);
This model creates four concepts: ManureType, PigManure, CattleManure,
PoultryManure in the namespace where the model is declared. The last
three concepts are children of the first. The concepts are produced directly

by therand.select accessor (which selects one of the child concepts

based on the probabilities specified by each of the observed dependencies)
there is no need to specify any other criterion for classification. The
specifics of the rand.select accessor are treated elsewhere.

Indirect classification

The indirect classification assumes that all the concepts in the concept
space have already been defined and tagged with metadata. The metadata
field is used to link the appropriate concept to the value extracted from a
data source or observed by a mediated observation. The link is established

with the according to keyword sequence followed by the metadata field

that contains the linking value. Concepts with established numeric
encoding, like those used in numerically classified land-cover or soil order
data, offer significant time savings and limit the ability of the user to
introduce error in the coding scheme:

model data.wcs(id = "europe:corine2000", no-data =
255) named corine-2000

 as classify im.landcover:LandCoverType
according to im:numeric-encoding;

This will only work if the children of the observable concept (in this case

im.landcover:LandCoverType) are tagged in the respective ontology

with an im:numeric-encoding field that specifies the number that will

be extracted from the data.wcs(...) data source. An example

LandCoverType ontology snippet is below:

...
class LandCoverType

 has children
 ...
 (DiscontinuousUrbanFabric with metadata
{ im:numeric-encoding 112 })),

 (class IndustrialCommercialTransport
 has children
 (class
IndustrialCommercialUnits with metadata
{ im:numeric-encoding 121 }),

 (class RoadRailNetwork with
metadata { im:numeric-encoding 122 }),

 (class PortArea with
metadata { im:numeric-encoding 123 }),

 ...
This approach transfers the burden of annotating the encoded value for a
datasource from the model to the concept. This is worth doing if the
concepts are used for more than one data source; otherwise the effort is the
same and it’s just a matter of stylistic preference whether to use this form
or the mediating classification discussed next.

Classifying values into observables or traits

The most complete classification specifies classifiers that attribute the
result concept according to results of the “incoming” information (e.g., the
values that come from a dataset). A common use of classifiers is to
annotate a data source:

model wfs(urn =
"im:af.tz.landcover:tanzanialandcover",

 attribute = "lc")
named tanzania-lulc
as classify im.landcover:LandCoverType into

 im.landcover:AgriculturalArea if "AG",
 im.landcover:ForestSeminaturalArea if "NVT",
 im.landcover:VegetatedStillWaterBody if "NVW",
 im.landcover:UrbanFabric if "UR",
 im.landcover:WaterBody if "WAT";

The classifier, the part that follows the if keyword in each row, can

accommodate many kinds of expressions, discussed in detail in Module 4
and demonstrated further in the Cookbook. Numbers, strings or concepts
can be matched using ‘is’, numeric intervals using a syntax like ‘1 to 10’,
or partial intervals using operators like ‘< 10’ or ‘>= 4.3’.

Data often represent a classification according to a specific aspect of the

http://0302.html/
http://0104.html/
http://0104.html/

Thinklab help - 19 March 2015 14 / 42

main observable, one that is best described with an attribute. In such cases,
classifications should be annotated using the main observable and instead
of defining its subtypes in the classifiers, use the ‘by’ keyword and mention
the specific trait being observed. Then, the classifiers will be defined by the
appropriate attributes. A typical case is when data describe a discretization
in subjective levels:

model wcs(...) as classify im.policy:Poverty of
im.demography:HumanPopulation by im:Level into

 im:High if 4,
 im:Moderate if 3,
 im:Low if 2,
 im:Minimal if 1;

Note that if data are available and the modeler wants a discretization of

known numbers, the proper annotation is not classify but the actual

numeric observer; models without data sources can be used later to
discretize the value. For example, if a discretization of
im.geography:Elevation is needed, do not annotate a data source as:

model wcs(...elevation data...) as measure
im.geography:Elevation in m

 discretized by im:Level into
 im:High if > 2000,
 (An INCORRECT
example)

This would make available a model of elevation data that ranks it into
subjective values that only make sense for a specific application, losing the
numeric information in the data. This model would match any dependency
for elevation data, and produce discretized midpoint numbers when the
requesting side wants numbers, with a great loss in precision. A proper way
would be to just provide the undiscretized measurement in a public
repository, and create a local model that translates it in the same namespace

where it will be used, marked private to ensure that nothing else will use

it:

namespace my.namespace using im.geography;

(RIGHT, BUT STILL NOT PERFECT)

private model Elevation as

 classify im.geography:Elevation by im:Level
 im:High if > 2000,
 ;

We will see in Module 4 that this kind of requirement can be stated directly
as a dependency, eliminating the need for a private model (and the risk of

forgetting the private, making it available for others with potential

problems) and keeping all the subjectivity nicely encapsulated within the
context where it is needed.

Values in the data source that fall outside the space defined by the

classifiers in a classify statement will appear as unknown, in the final

observation, the Thinklab definition of “no data”. This is sometimes a
handy way of selecting only a few categories or values from a data source.
Operations, such as sums or subtractions, which have an unknown operand
will result in an unknown result.

Proportion and percentage

Proportions and percentages are two almost identical ways of referring to a
quantity that represents a portion of an implicit “whole” amount. The
semantics of the quantity and the total amount usually only differs by a
trait, with the amount at the numerator being more specific than the one at
the denominator - for example, the proportion of “vulnerable” land over
the total land. Thinklab allows both to be specified:

model ... as percentage of im.agriculture:Pig in
im.agriculture:Manure im.core:Mass;

In the case above, the quality concept is stated in the second part

im.agriculture:Manure im.core:Mass: an abstract quality (mass)

qualified with a Manure identity. The “specific” case that is compared with

the less specific manure mass is identified by another identity after in. The

whole statement read as “annotate these data as the percentage of manure
mass that can be attributed to the Pig identity”.

You can use the keywords percentage or proportion to annotate data

that contain numbers in the interval [0-100] or [0-1], respectively. Thinklab
will match proportions and percentages to each other, converting the
numbers as necessary.

Some concepts may be inherently defined as proportions or percentages:
for example, ecologists are accustomed to work with “canopy cover”,
which represents the proportion of land covered by the tree canopy in a
forest when seen from above. In such cases, when you certainly don’t want
to think about the “generic ground” and the “canopy” that covers it, you

can simply use the concept without specifying of and in:

model … as proportion im.ecology:CanopyCover;

Note that in such cases, the concept will be validated as actually expressing
a proportion, and an error will be flagged if that’s not the case. In other
words, Thinklab will let you use a simpler semantics only if the semantic
groundwork has already been done correctly in the ontologies you are
using.

Ratio

Ratios are interesting because they don’t have one observable but two.
Indeed, our definition of an observable is something that is “grounded” in
reality; while ratios only exist as comparative observations of two
observables. There are no true ratios in nature. For this reason, we provide
only the full form of the observer where both compared qualities are
annotated independently:

model … as ratio of im.ecology:Soil
im.chemistry:Carbon im.core:Mass to im.ecology:Soil
im.chemistry:Nitrogen im.core:Mass;

Because there are no concepts that can be seen as natural ratios, we do not
provide a simpler form as we did with proportions and percentages. This
model will match any ratios of compatible observables and produce
floating point numbers. An appropriate concept will be created by the
annotation: in the case above, the concept will look a bit complicated –
something like

im.ecology:SoilCarbonMassToSoilNitrogenMassRatio.

Fortunately you can state your dependencies using the ratio observer, and
never have to write that.

Note that knowing the ratio of two quantities allows an intelligent software
to infer one quantity when the other is known. So for example the above
model should be enough to satisfy an observation of carbon mass in the
soil when a model producing the nitrogen mass in the soil exists. This
capability is in development in Thinklab.

Presence

Presence is the quality corresponding to a subject, process or event “being

there” in the context. As such, it can only take the values true or false.

Presence is the observational equivalent of a “boolean” value in data-
oriented languages.

Thinklab provides a simple statement to annotate presence data:

model … as presence of im.infrastructure:Building;

Note that the concept after of must be a thing and can not be a quality, as

there is no such things as “presence of a temperature” for example. If you
need to know, for example, whether temperature is above 25 Celsius, the

statement you are looking for is not a true or false statement, but a

http://0104.html/

Thinklab help - 19 March 2015 15 / 42

classification of a restricted conceptual hierarchy that classifies
temperature into “above 25” or “below 25”.

Like in proportions and percentages, it is possible to encounter concepts
that are semantically defined as types of presence, so the form without the

of is admitted with validation. Note, however, that this is rare and the form

above is the most common one.

This model will match any dependency requiring presence of a compatible

observable. The values resulting from it will be true or false, and a

quality concept such as im.infrastructure:BuildingPresence will

be created if not already existing. Note that if you have annotations of the
subjects themselves (e.g. a vector file of buildings) it is usually not
necessary to provide a presence annotation, as that is automatically inferred
by Thinklab: see the section on de-reification below for details.

Probability and uncertainty

The last two observers refer to the observation of the likelihood of
something happening or being observed correctly. They are provided to
simplify annotation of risks and to make it easy to track model and data
uncertainty.

The probability observer has both the explicit form

model … as probability of im.physics:Fire within
im.ecology:Forest;

and a simpler form for concepts that are naturally probabilities, such as

risks. In the explicit form, the observable after of must be something that

happens: an event or a process. Again, you may be tempted to
conceptualize probabilities of qualities or subjects as semantic shortcuts,
but Thinklab will not allow that. The observer will produce numbers in the
range [0-1] and will flag as errors any data output that falls outside this
range. The direct form will produce a concept such as

im.physics:FireProbability.

The uncertainty observer refers generally to the spread of a value around
its maximum likelihood estimator, but does not mandate any specific type
of uncertainty: simply the meaning for it, producing a numeric expression
that means “less certainty” when it is higher. It is used often to annotate
expected outputs from external models that produce estimates of
uncertainty along with values, such as Bayesian networks. It is more rarely
used to annotate data, as few direct estimates of uncertainty are available.

Like probability, it has a direct form with of and an indirect one for

observables that are defined as uncertainties. Unlike probability, it has no
constraints on the type of observables that can be used: you can estimate
the uncertainty of anything, including another uncertainty. Also unlike
probability, it can produce floating point numbers in any positive range.
The observer will create a concept such

asim.ecology:CanopyCoverUncertainty if that does not exist

already.

Discretization

All numeric observers (rank, measure, value, ratio, proportion,

percentage, count, probability and uncertainty) can be

discretized into discrete levels. The most common way to do it is by using
a trait, often usingim:Level or a trait that derives from it:

model wcs(...) as measure im:Length of
im.ecology:Leaf in cm

 discretized by im:Level as
 im:Low if < 10,
 im:Medium if 10 to 30,
 im:High if > 30;

In this case, the output of the model is a concept as in a classification, but
the quantitative meaning is not lost: when used in a numeric context, the

values will be automatically converted in the midpoint of the intervals as
long as the boundaries are finite (they are not in the example above). When
specifying a discretization, the classifiers must be continuous (the
endpoints must touch): the convention for intervals specified as above is
that the interval is closed at the beginning and open at the end.

Note: spatial densities and temporal rates refer to observations, not
observables

It is important to distinguish between the primary identity of what is to be
observed and those secondary aspects of the observation that depend on
being distributed over space or time when defining the semantics of an
observable. It is common to encounter concepts like “population density,”
for example, whose definition as a “density” depends on the observation
being made over a spatial context (e.g., “per hectare” or “per square
kilometer”). In Thinklab, space and time are part of the context; for this
reason they don’t enter the semantics of an observable, but are
automatically handled when they are observed over space, time, or both.
Confusion in semantic modeling is likely when the common attribution of
concepts used in data or models implies that they are distributed over a
specific type of context (spatial or temporal), even though they may be
used in others. So for example, a concept named PopulationDensity (which
implies that applied to the population observable is distributed in space)
should be avoided, in favor of the generic semantics of population without
such implications. In Thinklab, the appropriate observable for this case is
acount of people, expressed for example as

model as count im.demography:HumanIndividual
per km^2;

Only subjects can be counted, so this model, which contains all the
semantics of what population density is (a count of individuals over
space),requires a subject concept (im.demography:HumanIndividual). The
model implies a density, but only when the data source is spatially explicit.
Thinklab will, if necessary, aggregate densities automatically into total
numbers of individuals when the model is matched to a context that is
spatial but not distributed in space (e.g. a city defined with only a single
polygon without grid cells). The same applies to rates, which are the
equivalent of densities with respect to time. Observables and observations
are independent, and their semantics should not be “contaminated” by
concepts that have to do with the characteristics of the context of
observation. Avoiding references to spatial densities and temporal rates
will maintain semantic consistency and help to minimize confusion.

De-reification of
subject models
Having discussed quality models in detail, we can go back for a moment to
subject models. Observations of subjects are direct, so it is not necessary to
state anything more than the subject type. Direct observations simply
create subjects. So an object source such as a shapefile can be annotated to
create subjects as seen above. In addition, the existence of a subject also

implies certain qualities: an obvious one is the presence of the subject,

which takes the values true or false according to a subject being in a

point of the context or not. Thinklab will automatically generate quality
observers for presence whenever a subject annotation is encountered, so

that observation of presence of im.infrastructure:Railway will

be made automatically by rasterizing the line contexts coming from the

subject annotation above, and returning true for each point where a

railway is present.

Further, semantics can also be used to specify the qualities referring to
each subject. Thinklab expects that subjects produced by a subject source

im:Level

Thinklab help - 19 March 2015 16 / 42

may come with attributes, Adding observers (see below) to the subject will
determine their qualities. Consider this example:

model each wfs(urn =
"im:global.infrastructure:grand_reservoirs_v1_1")
named reservoirs-global
as im.hydrology:Reservoir
interpret

 GRAND_ID as im:name,
 AREA_SKM as measure im.core:Area in km^2;

In the example above, the interpret keyword introduces a list of

attributes and the ways they should be interpreted when creating subjects.

As each reservoir subject comes with an attribute (AREA_SKM) that

contains a measurement of its area in its original source, we specify the
second attribute with a quality observer for it. This has two effects in
resolving dependencies:

1. any dependency for a Reservoir subject that is satisfied by the
subject source will create reservoirs that contain the quality of
Area;

2. a quality dependency such as measure im.core:Area

within im.infrastructure:Reservoir … will be

satisfied by a model inferred from the above specification. The
model will be matched to the context of observation: for
example, when asked to measure reservoir area over a spatial
grid context covered by the subjects above, Thinklab will

automatically rasterize the AREA_SKM attribute and if

necessary, convert the values in the units requested.

This ability of creating qualities from things is called de-reification
(removing the “thing-ness” in things) and is very useful to make the most
out of data. You could also annotate each quality explicitly:

model wfs(urn =
“im:global.infrastructure:grand_reservoirs_v1_1”,
attr=”AREA_SKM”)

 named reservoirs-area-global
 as measure im.core:Area within
im.hydrology:Reservoir in km^2;

But this is made unnecessary by the subject annotation, which provides this

and an automatic presence of im.hydrology:Reservoir along with

the subjects themselves – three birds with a stone.

You may have noticed the GRAND_ID attribute, annotated as just providing

a single metadata property, im:name. That will not produce any
observation, but tells Thinklab that the subjects should have metadata
reflecting the content of that attribute. You cannot observe a name – no
physical reality in that – but each reservoir produced can be given the name
specified in the attribute, a useful property for visualization. That is the

equivalent of the name you specify in an observe statement – subjects

have individuality, so they can have their own metadata.

Module 4.
Computing
deterministic and
probabilistic
observations.
What is most commonly referred to as a model (outside of
Thinklab/ARIES) is actually an algorithm that computes quantities that
describe “virtual observations,” which reflect a hypothesis about the
observable that is expressed in equations or other processes. Such
modeling relates the state of the observable to that of other observables.
For example, we can interpret tree biomass as dependent on precipitation,
soil type, and incoming solar radiation present or past. With this in mind,
we can define the two main differences between “data” and “models” in
Thinklab. Models, but not data, can:

1. Define an equation, algorithm, or external process to compute
the state of the observable;

2. Have dependencies, i.e., the statement of other observables that
need to be observed before the state of the model’s observable
can be computed using some type of algorithm.

These two points introduce additional specification requirements, rather
than structural changes, when compared to data models, i.e., data, in
Thinklab. We have defined data as resolved models before, because data
don’t require any other observable to be computed before them. Therefore
it is guaranteed that data will produce observations when used in a
compatible context. Because the definition of a computed model is just like

that of data with some added specifications, we use the model statement to

annotate both data and models. Data are effectively a pre-computed model
of the observable, which does not require any further observations but is,
like any model, dependent on scale, assumptions, etc. Data models may
also include equations, which are useful when, for example, when we wish
to modify raw data before it is used as the state for an observation.

Because Thinklab is a semantic system, each dependency is defined
semantically, i.e., by providing the details about the identity of what needs
to be observed, not by giving the system equations or other information
concerning how to compute it. For this reason, models in Thinklab are
usually small; the final, integrated algorithm that computes a top-level
observable concept (e.g., “climate”) is defined by resolving each
dependency to models, a process that may bring in new dependencies as
models are chosen. Observation of a complex observable is successful
when all the “end points” of the model chain are resolved models. At that
point, Thinklab can create a data flow from the model chain, and run that to
compute the states of every observable involved, creating the final subject
that contains observation for qualities and other subjects as its semantic
constraints require.

http://0103.html/
im:name

Thinklab help - 19 March 2015 17 / 42

Model syntax:
observable,
dependencies and
computations.
A simple computed model may sum the state of its dependent qualities to
obtain the state of its own quality observable:

namespace my.namespace using im, im.agriculture;

...

model SummerCropYield as

 measure im:Summer im.core:Yield of
im.agriculture:Crop in t/km^2

 observing
 (JunCropYield as measure im:June
im.core:Yield of im.agriculture:Crop in t/km^2)
named jun-yield,

 (JulCropYield as measure im:July
im.core:Yield of im.agriculture:Crop in t/km^2)
named jul-yield,

 (AugCropYield as measure im:August
im.core:Yield of im.agriculture:Crop in t/km^2)
named aug-yield

 on definition set to [jun-yield + jul-yield +
aug-yield];

There are several new things to note in this example:

1. Instead of a data source, we specify a name after the model

keyword, using the capitalization conventions used for
concepts. Indeed, we are creating a concept. Essentially this
model is an ontological statement: we define the concept

my.namespace:SummerCropYield while giving an

interpretation of how it should be computed (i.e., as the sum of
crop yields in June, July, and August). As noted in the
introduction, each Thinklab namespace is an ontology: the

im.namespace ontology that is created by Thinklab reading

this statement contains the new concept.

2. A new keyword, observing, is followed by a comma-

separated list of dependencies. Each dependency is a mini-
model itself, but without computational details. Within each
parenthesis, there is a concept ID for the observable and the

full semantics of what is observed. The keyword named is used

to give the dependency a name, which will only be used within
this model and won’t be recognized by other models, even
those in the same namespace. This name is used to refer to the
value of the observation in equations and conditions. The

im.namespace ontology will also contain the three concepts

corresponding to the first identifier, and a dependency
relationship that links them to the main observable
(SummerCropYield).

3. The last line, whose syntax we will describe later, shows the
simplest way to compute a quality in Thinklab: an expression,
defined within square brackets, that returns the value of the
observation. In this simple expression, we use the names we
defined above to refer to each operand (jun-yield, jul-yield, and
aug-yield).

The context of
applicability for a
model
At this point, it may be unclear how this model handles time and space,
because there are no time or space specifications in it. In Thinklab, when
temporal and spatial constraints are not specified, it means that the model
applies to any time and any location. In data models, the data source may
implicitly contain a temporal and/or spatial context, which automatically
becomes the context of validity for the model. For example, if an annotated
dataset contains a raster map of elevation that covers Spain, Thinklab will
not use it to resolve a context located in Greece. But the SummerCropYield
model doesn’t have a data source, so the model, as stated, covers every
situation: not only every part of the world, but also any definition of
SummerCropYield that has no associated space or time. Methods to
instruct Thinklab on where and when this model should apply are covered
in Module 5.

There is, however, one other important consideration to correct the
SummerCropYield model presented above. The units used throughout the
module are t/km^2 - implying a dependence on space and no dependency
on time. So if this model was used in a non-spatial context (for example

created with an observe statement without an over space ... clause),

it would produce the wrong results, returning a spatial density of yield (in
t/ha) when a total yield (in t) is wanted. Indeed, the proper way to specify
this model is

model SummerCropYield as

 measure im:Summer im.core:Yield of
im.agriculture:Crop in t/km^2

 observing
 (JunCropYield as measure im:June
im.core:Yield of im.agriculture:Crop in t/km^2)
named jun-yield,

 (JulCropYield as measure im:July
im.core:Yield of im.agriculture:Crop in t/km^2)
named jul-yield,

 (AugCropYield as measure im:August
im.core:Yield of im.agriculture:Crop in t/km^2)
named aug-yield

 over space
 on definition set to [jun-yield + jul-yield +
aug-yield];

Adding the over space statement, without further specification, ensures

that whatever the usage of this model, it will only apply to a context where
any kind of space is defined. In anticipation of Module 5, it should be
fairly intuitive that following the ‘over space’ statement with a polygon, as

in an observe statement, will also limit the use of the model to contexts

that cover that particular space.

Importantly, because a quality has a value over the whole context, this
computation will be repeated as many times as necessary to cover a
distributed context. So if, for example, this model is chosen to compute a
dependency on SummerCropYield in another model that is run over a
10x10 km spatial grid using a 1 km^2 resolution, the equation will be
computed 100 times (once for each of the 100 grid cells), each time with
the value of the dependencies computed by another model or data in the
same cell.

The identification of an observable as a density (e.g.,
SummerCropYieldDensity) should be avoided for the reasons discussed in
Module 2 and further explained in the discussion on scale in Module 5.
SummerCropYield should be called a density if the observable was

http://0105.html/
http://0102.html/
http://0105.html/
http://0105.html/
http://0204.html/

Thinklab help - 19 March 2015 18 / 42

semantically a density, independent of the context; for example, the density
of water. The fact of being distributed over a context that is aware of space
makes the observable a density only when observed in that context, not by
nature. Aggregation, which in Thinklab is managed automatically, would
remove the density “character” from the observation. The same
considerations apply to time: if distributed over time, the units must have a
temporal unit in the denominator, but it would be inappropriate to name the
concept a SummerCropYieldRate.

The observable in
computed models
The most obvious difference between a “resolved” model that annotates
data and one that is “unresolved” model is that the latter includes an

observable concept definition after the model keyword. Indeed, a

computed model creates new knowledge (or “reinterprets” it), and the
concept statement defines its semantics. The concept may be defined
before the model, or more than one model may be provided for the same
concept; the first time an unknown name is encountered, a concept will be
created with the semantics that depends on its use. Successive uses of the
same name will need to be consistent with that semantics.

In some situations(detailed below), this concept can be written without a
colon-separated namespace identifier, which we use to qualify an external
ontology in the Thinklab naming conventions. This defines a concept that
is “local” to the namespace within which the model is defined. So the
model in the example above will in fact create the
my.namespace:SummerCropYield concept. If the model has an observer,
this concept will be a specialized version of the observable defined for it.
So SummerCropYield will be in a “is-a” relationship with the

SummerCropYield concept created by the measure statement inside the

model, and will inherit all the traits from it.

Compare the model above to a “resolved” data model described in the
Module 3: only the observer semantics is stated for a resolved data model,
because the data source takes the place of the top-level observable. Indeed,
we areannotating data so that specification is all we need. When we
compute data, we are defining new knowledge, hence the need for a

concept after model.

When the primary observable is local to the namespace, we expect that the
concept will only be useful inside of it, for example to use as a dependency
in other models in the same namespace. This is done commonly when a
namespace contains models for many different observables, all of which
are used in a final model that brings the whole conceptualization together.

In other situations, the models can use a primary observable concept that
has been defined outside the namespace. This choice is normally made
when the namespace is meant to provide an “alternative” way of observing
a concept that is localized to a particular scale – for example to a given
geographical region. In such cases, observations of the observable will
only be made with these models where the constraints are met – which may
even be only a subsection of a full context of observation. This is discussed
more in detail in the next sections; however, just note that models with a
“known” (external) observable are typically useful in a shared context,
while models with “local” observables are usually written to provide
clarity and internal organization in namespaces that want to keep most of
their models private. In the examples below, we only create knowledge in
the local namespace, which can be used in outside models only when
qualified with the full name for the concepts (e.g.
my.namespace:Elevation).

Mediation
Mediation is mainly used with classifications. It is a way to chain different
observers together for use in models. Mediation introduces an implicit
dependency for “another view” of the same observable. A typical example
is:

namespace my.namespace;

...

model ElevationLevel as

 classify (measure im.geography:Elevation in m)
by im:Level into

 im:High if > 1000,
 im:Low if < 1000;

This kind of specification nests a dependency within an observer, without
assigning it a concept and a name. The example defines a classification that
depends on observing a measurement of elevation. The part within
parentheses is indeed a dependency, but because the semantics of the
“inner” observation relates directly to that of the observable, and we don’t
need to preserve the value of the measurement for any computation, we can
more simply set it in place of the concept to be observed by the
classification. This kind of statement is a shorter, more intuitive and a more
“fluent” idiom than the equivalent model expressed with dependencies.
While the model below will produce the same results as the one above, it is
longer, more complex, and less readable, so the above model would be
highly preferable:

model ElevationLevel as

 classify ElevationLevel by im:Trait into
im:High, im:Low

 observing
 (Elevation as measure
im.geography:Elevation in m) named elevation

 on definition set to [
 elevation < 1000 ? im:Low : im:High
];

For this reason, mediation should always be used when it’s appropriate, in
place of a less readable model with one dependency.

Expression
language
The next few sections provide some guidance on how to write the
expressions between the square brackets and where to learn more about
them. The language used for these expressions is parsed by a Groovy
interpreter, after being pre-processed by Thinklab so that concepts and
identifiers known to Thinklab can be used without error.

Groovy is a superset of the Java language, with less strict syntax rules and
optimized for use in scripts and expressions, but containing all the power
of Java plus numerous enhancements. More details about the language are
outside the scope of this guide, but it is important to know that the
language is much more powerful than the simple expressions we use as
examples can show. Exploiting this power obviously requires programming
skills. For the interested, there are many resources about the Groovy
language, both on the Web and in print.

The main things to know about the way Thinklab and Groovy interact are:

http://groovy.codehaus.org/
http://0103.html/

Thinklab help - 19 March 2015 19 / 42

1. The identifiers used after the named keyword in dependencies

can be used in Groovy as variables that contain the value being
computed for that dependency (in each state determined by the
scale, e.g., in each grid cell, with one expression evaluation per
state). The naming conventions used in Thinklab (lowercase
and dash-separated) are not compatible with Groovy, which
does not use dashes within identifiers. The names that are
declared are automatically substituted in the expression before
Groovy sees them, but if the wrong identifier is provided (i.e.,
due to a typo) that contains a dash, Thinklab will not substitute
it, and Groovy will interpret that as a subtraction of two
variables, yielding a potentially confusing error that will hint at
only one part of the variable name being undefined (e.g.
“population” when the expression contains “population-
density” but that has not been defined as the name of a
dependency).

2. The “no data” value, indicated in Thinklab with the keyword

unknown, is the equivalent of “null” in Groovy and Java, and

will be translated to that before the expressions are passed to
Groovy for calculations. If an expression has a chance of

encountering an unknown value (e.g., from no-data points in a

data source) it should be prepared to handle it. Groovy allows
null values to be added and subtracted, making the result null
without error; but multiplications, for example, will break the
computation and produce an error. We are working on solutions
to this problem, but for now statements may need to be “null-
proofed” like this:

[(a == unknown || b == unknown) ? unknown : a*b]

The ternary operator above (C ? Y : Z) will return Y if the condition C is
true, or Z if it is false. In English, it is the equivalent of saying “is a
unknown or b unknown? then return unknown; otherwise return the

product of a and b”. Either unknown or null can be used interchangeably.

Note the two equal signs - Groovy, like most languages, uses a single equal

sign for assignments to variables, and the equality operator is ==. If you

need more complex expressions, please refer to Groovy documentation for
details on syntax, which is compatible with the better known Java, and for
functions you may call (e.g. mathematical functions).

3. The Groovy type of the values assigned to dependency names
will be 1) a floating point number if it comes from a numeric
observer (rank, measure, value, count, percentage, proportion,
ratio, uncertainty); 2) a boolean (true/false) value if it comes

from a presence observer; or 3) a concept if it comes from a

classify observer. For those who can negotiate a

Java/Groovy interface, concepts conform to the IConcept java
interface described in the Thinklab API documentation.
Proficiency in Java/Groovy allows access to many functions
related to concepts, but for the uninitiated, it is usually enough
to know that the operator “is” can be used for a concept,
followed by a literal concept identifier, like so:

[(land-cover-type == unknown || land-cover-type is
im.landcover:Urban) ? 10 : 20]

The Thinklab cookbook included in this documentation contains examples
of expressions of common usage.

Using expressions in
data models
Expressions can be used to modify or create the value of resolved models
as well. It is quite normal to link to a data source that requires some

processing before it can fully express the desired observation semantics. In
such cases, a model this can be used:

 model wcs(...)
 named ghg-emissions-usa
 as measure im.policy:GreenhouseGasEmissions in
t/ha*year

 on definition change to [ghg-emissions-usa *
0.0001];

The above model will work as a data annotation, but will transform the
value into a tenth of a thousand of what the WCS data source contains
before producing the observation. Similar expressions can be used for more
complex transformations or for filtering of values. Models can have both
data sources and dependencies. Each model dependency will itself need to
be resolved, but the final value can be assigned using expressions that take
into account both the value of the data source and that of the dependencies.

Limitations

Processing of expressions in Thinklab is still fairly primitive, so there are
several limitations that will be removed in future versions. The most
important are:

1. Square brackets ([,]) can only be used within an expression if
the closing bracket is quoted using a backslash character, as in

\]. If this is not done, the closing bracket will be interpreted as

the end of the expression. This makes the use of the standard
array notation with Groovy a bit awkward, although this is only
of concern for modelers with coding skills. This limitation will
be removed in the future.

2. The pre-processing of Thinklab concepts and symbols within
expressions uses a fairly unsophisticated pattern matching
algorithm, which may fail when identifiers contain other
identifiers (for example, if dependencies have very simple
names like “a” or “b”). When in doubt, use longer, more
descriptive names and provide space around all identifiers. We
will soon switch to a parser that has no such limitations.

3. The content of the expressions is not analyzed by Thinklab in
the same way that rest of the model syntax is. The expression
code is only parsed the first time when the model is run, so it is
possible to write completely incorrect expressions that will not
show errors in the editor yet produce errors at runtime. When
models containing wrong expressions are run, errors will be
reported that should be easy to relate to the offending
expression. In the future, the expression parser will be
integrated more deeply in the language so that syntax errors in
expressions can be seen during editing.

Of course, no language analysis can identify logical errors in the
expressions. So always test models with particular care and under different
scenarios of use when they contain expressions.

Dependencies in
detail
As we have seen above, a list of dependencies is introduced by the

keyword observing. In order to compute the observable, the

dependencies in the list must first be observed. This applies to both
qualities and subjects, as it may be desirable to observe subjects (e.g.,
households or bridges) in order to observe a larger-scale subject, for

http://0302.html/
http://0204.html/

Thinklab help - 19 March 2015 20 / 42

example a region, that contains them. On the other hand, remember that
any dependency is also a semantic statement of a relationship between the
observable of the model and that of the dependency. Based on our
definition of a quality, it is pointless to depend on subjects when the
observable is a quality. For this reason, Thinklab does not allow qualities to
be part of a list of model dependencies, although qualities held by subjects
may be referenced through the de-reification mechanism discussed above
for subject models.

One general, but advanced, semantic specification that applies to both
subject and quality dependencies is that of the property that Thinklab adds
to the underlying ontology to capture the semantics of the dependency. By
property we refer to the ontological specification of the semantics for the
connection between the two concepts. We have not discussed properties in
these beginner-level modules, and this point can be safely skipped if it

comes out as confusing. Otherwise, the specification uses the for

keyword, like so:

…
observing

 (Elevation as measure
im.geography:Elevation in m) for
im.geography:hasElevation named elevation

This specification is necessary only when full control of the model
semantics is desired. Thinklab will create a property automatically if one is
not supplied, and in common modeling practice the specification is not
required.

Quality dependencies
In quality models, dependencies are a fairly simple affair: in addition to the
local concept, the observer and a name, an optional status can also be
specified:

observing

 (Elevation as measure im.geography:Elevation
in m) optional named elevation

This allows Thinklab to compute the model even if that dependency cannot

be resolved to a model (a mandatory keyword is also provided for

completeness, but it’s the default setting).

When an optional dependency cannot be resolved, the corresponding value

will be unknown. In a deterministic calculation, this makes the result of

any expression where it is used unknown,, even if other values are valid.

In aBayesian network (BN) model the BN will use prior probabilities
instead of data; a result will be calculated but it will carry greater
uncertainty than one where values can be resolved for all model
dependencies. In the current Thinklab implementation there are some
limitations to this behavior: for example multiplications do not yet allow
unknown values. Such situations should be handled using the strategy
explained in the expressions section below. This situation may arise even
when the dependencies are resolved, e.g., when a dependency is resolved
to data that contain “no data” values. So it’s important that the expression
code, or any other selected computation, is prepared to handle the resulting

unknown value.

It is acceptable to specify the dependent observer and concept in an
independent model as long as it is in the same namespace and defined
before the model that uses it. For example:

namespace my.namespace using im, im.geography;

private model SoilPH as

 classify (rank im.geography:Soil
im.chemistry:PH) by im:Level into

 im:High if > 5,

 im:Low otherwise;

model SomethingDependentOnPH

 as ...
 observing
 SoilPH named soil-ph
 ... ;

can be written using the name of the model (SoilPH) in place of a full
definition of it in parentheses. This is mostly useful when the same model
needs to be reused in the dependencies of several models below it. When

using this syntax, dependent models should always be declared private,

to ensure that they are not inadvertently used to resolve a dependency in
another namespace. In most cases, based on this example, the choice of
whether pH is high or low should be decided in the context of the model
using those subjective levels. If other models use the same
conceptualization of high or low pH, the above approach will ensure that
the same interpretation is used throughout (or simply to save some typing).
In a collaborative context, however, subjective definitions should not be
allowed to potentially “contaminate” other namespaces by being available
to interpret soil pH, even if it would only be used if my.namespace:SoilPH
was referenced in a dependency. For example, other people may search for
the concept and (inappropriately) use it based the fact that the name
matches a modeling need of theirs, when the more correct approach would
be for each modeler to define their own private models (Note: There will
be cases where it is entirely appropriate to reuse a model in diverse
contexts. This is why it is so important that the applicable context of each
model be accurately recorded).

This syntax can also be used to “force” the use of a specific model to
resolve a dependency, instead of letting Thinklab resolve the concepts
itself. This should be reserved for special situations, as doing so “wires”
models together in a rigid way, deactivating much of the utility of semantic
modeling. If it is deemed desirable to wire models together this way, a
better way would be to refer to the models by name:

private model SoilPH named the-ph-we-want as

 classify (rank im.geography:Soil
im.chemistry:PH) by im:Level into

 im:High if > 5,
 im:Low otherwise;

model SomethingDependentOnPH

 as ...
 observing
 the-ph-we-want named soil-ph
 ... ;

This linkage is guaranteed to work even if there are other models for the
same concept in the same namespace (e.g., assigned to different spatial
locations). As shown above, the name of a model is specified using the

named keyword that follows the observable. As per Thinklab naming

conventions, lowercase, dash-separated names are used for such identifiers.
If needed, a model from another namespace can be used as long as it has

been imported in thenamespace declaration at the top of the namespace

(the list following the word “using”):

namespace my.namespace using im, im.geography, (the-
ph-we-want) from my.ph.models;

...

model SomethingDependentOnPH

 as ...
 observing
 the-ph-we-want named soil-ph
 ... ;

http://0301.html/
http://0203.html/

Thinklab help - 19 March 2015 21 / 42

A list of symbols within parentheses can be used to identify imported
identifiers (multiple identifiers can be included in that list, separated by

commas). An asterisk (*) can be used to import all symbols from a

namespace, although this can generate confusion and unexplained errors
(e.g., symbol redefinition) when either namespace is changed, so this
should not be done routinely. When no list of symbols is given, as we
normally do with imported ontologies, the system merely records the
dependency of the namespaces, and ensures that the dependency is read
before the namespace that depends on it is parsed. Note that circular
dependencies should be avoided: the system will not complain about them,
but the results may be unpredictable and symbols or concepts that are
expected to be defined may not look so when circular dependencies are
defined.

Again, the direct use of models in dependencies is a special situation that
shouldn’t be the norm. In the normal case, when an observer is specified
with the dependency, quite a bit of information can be embedded in the
dependency statement. This is helpful to “localize” subjective
interpretations to the model they’re meant for. This comes in handy for
example when using a subjective trait like im:Level, which is likely to only
have a precise meaning within each computation. The example above, for
instance, can be written in one single model:

model SomethingDependentOnPH

 as ...
 observing
 (SoilPH as
 classify (rank im.geography:Soil
im.chemistry:PH) by im:Level into

 im:High if > 5,
 im:Low otherwise) named
soil-ph

 ... ;
This way, the SoilPH concept will only have the semantic scope of the
model it’s in, and will never be used outside of it or appear in searches.
This is the safest way to specify dependencies on observables that are
interpreted in ways that only apply to one or a few models in a namespace;
this approach should thus be adopted as a default.

A special syntax can be used when defining a dependency - a classification

by trait:

...
im.ecology:Forest by
im.conservation:DegradationLevel
...

Because the word by is reserved for classifications according to a specific

subjective trait, the statement above can be used without ambiguity instead

of a much more verbose classify statement. The output of this

dependency will be one of the possible values of im:DegradationLevel

(im:Low, im:Medium, ….) when matched to a model that defines that trait

for a im.ecology:Forest. This alternative syntax may help make model

specification as parsimonious and intuitive as possible.

Subject models and dependencies

Subject models instruct Thinklab to observe subjects within the context of
interest. At this point it may be difficult to understand what a subject model
does: indeed, subjects are created more than computed, so what are subject
models for?

As suggested above, subject dependencies are only admitted in subject
models, because there is a contextual relationship between the dependent
and the observable that makes no sense for a quality. For example,
temperature can be observed in the context of a region, based on the
observation of the region, but the region to which a temperature refers
cannot be observed based on a measure of temperature.

Because subject observations are direct and do not need observers, their
use as dependencies is fairly simple. For example, the following statement:

model ...

 observing im.infrastructure:Road;
is all it takes for Thinklab to look up a model that annotates a source of
subjects annotated with the Road concept, e.g., a vector file. will lookup
data or models that can produce roads in the context, and if found, the
roads will be created. Each road is a subject in itself, linked to the root
subject.

Like with qualities, a property (for keyword) and an optional status for the

dependency can be specified. Adding a name (named) is possible, but not

useful, because the model will not refer to the “value” of a subject in any
expression, and it’s possible for zero subjects to be obtained as the result of
the observation (e.g., roads can be observed in a region that has no roads,
and a perfectly good observation of no roads can be obtained). Names for
dependent subjects should be attributed, when appropriate, directly in the
subject sources using attributes, as in the example we showed in the
previous section.

The same syntax works with concepts describing events and processes,
since each of these observers “stand alone” and are observed directly.

When the dependency is on a subject, process, or event, there is another,
very useful syntax that enables complex agent-based models to be
initialized in a very simple way. It is quite common for a model to want to
create subjects where no subject sources are available, but where subject
sources may provide a context for the subjects we want. For example, we
may have subject sources for households (say a vector file with a point per
household) but want a model containing agents for the families inside

them. The use of the keyword each, which we have seen in subject models

before, inside the dependencies allows to specify that:

model …

 observing im.demography:Family at each
im.demography:Household;

This dependency will first try to observe households in the context of
observation; if any are found, Thinklab will extract the context (e.g. the
location in space) for each of them, and create a Family at that same
context. As with any regular subject, the family semantics will be used to
define any further observation; for example, if we have told Thinklab that
each family must have an income quality associated, then Thinklab will
attempt to observe that income for each family generated (this is explained
in more detail below). If the knowledge base contains models for a Family,
the most appropriate for the context will be retrieved and used to initialize
each family, which may also create qualities or subjects (e.g. individual
members) in each Family subject. Backed by a knowledge base with
contributions from many collaborating participants, the single line
dependency above may build a whole simulated world.

Resolving dependencies vs. making observations in a context

By this point it may be evident that the modeling workflow we outlined in
Module 1 (creating a subject then observing concepts of interest within it)
is an exact equivalent of writing a model with all the concepts of interested
as dependencies then observing that model in the context of the root
subject. The only difference is that in the second case, a generic quality is
observed without specifying its observer. For example, if the Elevation
concept is modeled in a region, the output will be the best observation of
Elevation there, whether in feet or meters. By stating a dependency with its
observer, specific observation semantics are guaranteed. Obviously this is
crucial if the resulting values need to be used in equations, so it would not
be acceptable in such a model to write:

model ...

 observing im.geography:Elevation;
because there would be no control over the meaning of the numbers output

http://0101.html/
http://0102.html/
im:Level

Thinklab help - 19 March 2015 22 / 42

by such a model. The form above is, however, fine for subjects, because
subjects are observed directly, so there is no interpretation for their values.
As a result, Thinklab only allows the extremely simple syntax shown
above when the concept specifies a subject.

Automatically resolved dependencies

In some cases, the ontologies (i.e., abstract knowledge) contain conditions
for some observable’s semantic coherence that require particular
observations to be made. For example, the definition of a concept for a
Watershed may include a restriction that a watershed must have a spatial
configuration that allows a stream network to exist within it. This can be
expressed in the ontologies using statements that look like:

 thing Watershed is im.geography:Region
 requires StreamNetwork;

If such requirements are present, Thinklab will automatically try to make
the necessary observations when a subject like a Watershed is observed.
This is because everything in Thinklab is semantically explicit, and the
statement above says that no watershed can exist if it does not have an
observable stream network. By using semantic restrictions, many tasks that
are usually done explicitly by modelers become automatic. When a concept
like a Watershed is used as the inherent context of the observable (e.g.

Runoff of Watershed), it is guaranteed that the Runoff model will be

able to access the stream network. If the model is run at all, it will run in a
Watershed, and a Watershed can only exist if a StreamNetwork can also be
observed.

Actions linked to
transitions
The examples so far have been fairly simple; however, complex operations
used in other modeling systems can also be used within Thinklab, such as
temporally explicit simulation specifying discrete differential equations for
rates of change, or agent-based models.

All these functionalities are enabled in Thinklab by connecting actions to
transitions. The full set of possible actions and transitions is both under
active development and beyond the intended level of these modules. We
will introduce the ideas here for completeness, though they are currently
not fully functional and the final syntax may differ.

Module 5 describes how scale is represented in Thinklab, but we have
already encountered examples where we assign spatial and/or temporal
extents to subjects. Those extents may be represented in a way that implies
multiple states (e.g., grid cells or polygons for space, time steps for time).
In such cases, Thinklab will choose a computation sequence for these
multiple states, and carry on the observation by generating scale
transitions. The moment when the simulated time moves from t to t+1 is a
time transition.

Dynamic simulation gets is power by attaching actions to time transitions.
That is specified using a statement we have seen already:

model

 over time
 integrate population-size as
[population-size + birth - death],

 change land-use to im.landcover:Urban if
[population-size > 100];

Agent-based modeling is accomplished by providing syntax for dependent
subjects to make changes and to access their own observed world from

within expressions.

The ‘over time/space/…’ syntax allows a full specification of scale for each
individual model. This allows a fully multi-scale system to be specified
very simply. It works very nicely with subject models like so:

model AdministrativeRegion

 observing
 Household at each HouseholdLocation,
 Administration at each CapitalCity;

....

model Household

 over time (step="1 day")
 ;

model AdministrativeRegion

 ...
 over time (step = "30 day")
 ...;

This example illustrates in a simple way how each model can specify a
different temporal resolution, which will be automatically negotiated by
Thinklab. Of course all these models are linked automatically through the
resolution process. Thinklab may thus choose a different household model
for only some of the households, say for example when the poverty level is
above a threshold. These examples show how the investment in learning to
“think semantically” pays off in simplicity. Because the meaning of all
involved entities are specified fully and unambiguously, the software can
wire components and data together properly, accomplishing difficult tasks
that would normally fall to the modeler.

The on definition syntax previously seen in the section on data

annotations is a special case of a transition: the difference is that when we

say on definition, we refer to the initialization transition, which brings

the model from the uninitialized to an initialized state, just before the

temporal component of a simulation begins. The on definition syntax

allows a list of actions just like over However, some transitions that

require the existence of time (e.g., integrate) are not allowed.

Bridging to
external
computations
Expressions in Thinklab are full Groovy programs, with which complex
models and strategies can be coded. Yet, that requires programming skills,
and deferring the logics of complex models to Groovy code is certainly not
the primary reason for Thinklab to exist. In fact, many computations that
are of interest to modelers are handled by external software, and when
possible it is much simpler and cheaper to reuse external modeling
software than to write new code to use inside Thinklab – particularly when
the modeling software has an independent history and is maintained by
others. For this reason, Thinklab provides a mechanism for a model to
bridge to any external software that can be run from a language supported
by the Thinklab implementation. This includes nearly all non-GUI based
programs, as a modeling engine can easily integrate software and run
external executables - but cannot as easily click buttons or fill forms.

http://0103.html/
http://0103.html/
http://0105.html/

Thinklab help - 19 March 2015 23 / 42

The link between Thinklab and external computations is established using

function syntax that follows the using keyword:

model SoilCarbonStored as
measure aries.carbon:SoilCarbonStored in t/ha
discretized by im:Level into

 im:VeryHigh if 200 to 520,
 im:High if 110 to 200,
 im:Moderate if 90 to 110,
 im:Low if 50 to 90,
 im:VeryLow if 0.01 to 50,
 im:Minimal if 0 to 0.01
observing

 im.geography:Slope by im:Level,
 im.soil:SoilPh by im:Level,

using bayesian(import="bn/madagascar/sink.xdsl");

The last line includes the bayesian function, which defines what we call a

state accessor. This particular accessor is initialized by reading the file

specified with the import argument from the project where the model is

defined. The file specifies a Bayesian network which is then used to
compute the value for each point in the context. The accessor will be
passed the value of all dependencies and will compute the
SoilCarbonStored result.

There are many accessors available in Thinklab in addition to the Bayesian
one illustrated above. They include random number generators, table and
spreadsheet readers, random choosers for outcomes based on probability
distributions that can be parameterized using observed dependencies, and
GIS operations. The existing ones are listed in the full documentation.
Because function names are not keywords of the language, it is very easy
for a developer to add new functions when needed, and the list of available
accessors will keep growing with time.

Just as quality models can use the using syntax to pass off the

computation of values to an external accessor, subject models can have
subject accessors that operate on the subject as a whole, after all its quality
dependencies have been initialized. For example, this is the current
definition of the Watershed module included in the Thinklab hydrology
ontology:

model im.hydrology:Watershed,

 // pit-filled land elevation.
 (im.hydrology:Elevation as measure
im.hydrology:Elevation in m),

 (im.hydrology:FlowDirection as measure
im.hydrology:FlowDirection in degree_angle),

 (im.hydrology:TotalContributingArea as measure
im.hydrology:TotalContributingArea in m^2)

 ...
 observing
 (Elevation as measure
im.geography:ElevationSeaLevel in m)

 over space
 using hydrology.watershed();

The bulk of the hydrological computations is not specified as a giant
expression at the end, but is left to the subject accessor named in the last
line, which will be passed the full digital elevation map (guaranteed to be a

map by theover space clause) and produce all the outputs indicated in

the list. Subject accessors provide convenient ways to encapsulate complex
computations in clean “packages” that can be written as Thinklab plug-ins
in a variety of languages, providing unlimited points of extension
associated to specific semantics while keeping the code clean and readable.

Multiple observables
A model doesn’t necessarily have only one output: indeed, most non-trivial
models, such as the watershed model shown above or any Bayesian
network with intermediate nodes, usually have more than one. If we want
to keep results for future analysis beyond the “primary” observable that

comes after the keyword model, we must provide observers for all the

qualities that the model produces (subjects are directly observed, so they
don’t require further specification). In the example above, we have used
the same syntax that we used for dependencies to provide an observer for
each additional output we want to keep. The accessor will be passed a list
of the inputs and outputs, and will negotiate with the underlying model
code to ensure that these can be produced and passed to Thinklab once
computed, to become part of the final “dataset” represented by the subject.

The same specification can be used for anything computed by a state
accessor. For example, a Bayesian network can be provided with observers
for all the computed intermediate nodes and their relative uncertainties,

using theuncertainty observer. The implementation of the accessor will

ensure that the passed observers correspond to nodes in the network that
can be computed, and will then create the corresponding observations.

Each of the observables in a model can be used to resolve dependencies
within other models on its observable. All else being equal, Thinklab will
try to minimize the number of models used, choosing a single model that
produces two required observables over two models that produce the same
observables independently, unless the latter are “evidence” (data) models.

Module 5. How to
make model
choices depend on
context.
In previous modules, we have often hinted that “Thinklab chooses the best
model” to observe concepts directly requested by the modeler or model
dependencies. We have not, however, described in detail how that process
occurs, or how to instruct Thinklab under what conditions a given model
should be used. This section explains how models are chosen and how to
control the model selection process.

Five fundamental topics will explain this process:

1. How to restrict the scope of a model to a specific scale (i.e.,
space or time; in this module we will only give examples about
spatial regions);

2. How to use conditional statements to choose between different
observers at each computed state;

3. How to use lookup tables to direct model selection when
multiple methods exist to observe an observable;

4. How to use scenarios to “force” the use of certain models when
particular model elements in an observation should reflect non-
default assumptions;

5. How to tell Thinklab how much to trust a given dataset or
model, which can become a factor in the resolution process.

Thinklab help - 19 March 2015 24 / 42

Scale constraints
for models and
namespaces
One of the most useful things in modeling, particularly when we contribute
to a shared model base, is to constrain a model for use only in a particular
region. By region we refer to any constraints on the model’s scale, so we
could refer to a particular extent of space or time (e.g., falling within a
certain polygon or temporal period), to a given resolution of either, or both.
Thinklab uses a very general definition of scale, which extends to time,
space, and even other “conceptual” dimensions, such as the hypothesis
space (or multiple spaces) that is reflected in a model’s assumptions. Those
aspects are experimental and not discussed here, so in this documentation,
we only describe how to set spatial constraints. The remaining aspects of
scale and scale constraints will be covered in the full documentation.

The following examples describe spatial coverage and constraints, with
limited discussion of temporal specifications. In general, anything that we
say for space can be applied to time in a similar way, but the resolver may
not be yet prepared to deal with all cases of temporal specification.

Constraining a model
When data, or an object source, are inherently spatial or temporal, it may
not be necessary to specify constraints on the model’s usage. In this case,
their coverage is automatically recorded by Thinklab and becomes the
“default” spatial or temporal constraint for all models that annotate it. For
example, since the following data specification:

model wfs(urn =
"im:af.tz.landcover:tanzanialandcover",

 attribute = "lc")
named tanzania-lulc
as classify im.landcover:LandCoverType into

 im.landcover:AgriculturalArea if "AG",
 im.landcover:ForestSeminaturalArea if "NVT",
 im.landcover:VegetatedStillWaterBody if "NVW",
 im.landcover:UrbanFabric if "UR",
 im.landcover:WaterBody if "WAT";

specifies WFS access to a vector file for Tanzanian land cover, the
bounding box reported by the WFS service for it will be used as its spatial

constraint. Because of this, the tanzania-lulc model will only be used

as a candidate for resolving the observable concept

im.landcover:LandCoverType when the context of the request

overlaps this bounding box. This is usually enough for raster spatial
sources, whose coverage is exactly that rectangular bounding box – or
should be (“no-data” borders are a different issue that can be dealt with
using conditional statements, discussed later).

In some cases, it may be necessary to “correct” the coverage, either
because 1) the data contain regions where they are unreliable, or 2) because
(e.g., in a vector file covering a region that is far from rectangular) we want
to ensure that other models will be used in regions covered by the
bounding box of a preferred dataset, where we know that the first dataset is

unavailable or unreliable. In such cases, we can use an over space

keyword in a similar way as theobserve statement:

model wcs(id = "san_pedro:swregap_lulc")
named vegetation-type-swregap

as classify aries.carbon:VegetationType into

 ...
over space (shape = "EPSG:4326 POLYGON((-114.816209
42.002018,..))");

(other ways to specify polygons aside from WKT include the use of
shapefiles stored either 1) locally on the user’s machine, 2) within a
Thinklab project, or 3) on a GeoServer; complete descriptions and
examples are provided in thefull documentation). Importantly, the spatial

coverage specified after over space is intersected with the coverage of

the namespace, when one has been given. That is, if a data source is used
that does not cover the given polygon at all, the intersection will be empty
and Thinklab will generate a warning message. Otherwise, the model will
only be used in this example to resolve

aries.carbon:VegetationType in the intersected spatial coverage.

This can be useful when it is desirable to select only a specific portion of a
larger coverage.

When not working with a data source (i.e., when annotating an unresolved
model), nothing changes, except that there will be no native coverage with

which to intersect. The over space notation can still be used, and the

model will only be applied within the specified polygon.

A very common use of scale constraints occurs when annotating computed
models that are meant to be used only in a specific region. This could
either be a large range such as the tropical or temperate zone, or a smaller
range where certain assumptions about a model’s applicability can be
considered valid. The cleanest way to do that is to constrain the whole
namespace, adding additional constraints to individual models when

necessary. The syntax for that is similar but uses the keyword covering:

namespace aries.carbon.local.sw-north-american-
deserts

 using im, im.hydrology
 covering space(shape = "....");

Because WKT specifications can be long and messy, a common strategy to
keep the code clean is to use a specific namespace in a project to hold
definitions for these locations:

namespace aries.carbon.locations;

define COASTAL_CALIFORNIA as

 space(shape = "EPSG:4326 POLYGON((-
122.01075303165209 38.46721456396898, ...))");

define MADAGASCAR as

 space(shape = "EPSG:4326
POLYGON((52.778320305152796 -27.644606378394307, ...
))");

define NORTHERN_ROCKIES as

 space(shape = "EPSG:4326 POLYGON((-111.05
45.01, -104 45.01, ...))");

define ONTARIO as

 space(shape = "EPSG:4326 POLYGON((-
95.35682310773775 50.520669204331895,...))");

then import the needed definitions into namespaces that need them, using
defined identifiers to reference them:

namespace aries.carbon.local.northern-rockies

 using (NORTHERN_ROCKIES) from
aries.carbon.locations,im.soil, im, im.hydrology

 covering NORTHERN_ROCKIES;
The extended form of the using clause in the ‘namespace’ statement has

been seen before, and can also be used to import symbols such as model
names. In addition to improved readability, the ‘using’ clause has the
advantage that definitions need be provided only in one place (i.e., per
Thinklab project). If it is changed later (e.g., to a detailed polygon after
testing it with a simple polygonal bounding box), it will automatically

Thinklab help - 19 March 2015 25 / 42

affect all the namespaces that use it.

When a namespace is constrained to a particular region, all the models
within it will be constrained to that region. If a model in a constrained

namespace also incorporates an over space statement, Thinklab will

intersect the namespace-level coverage with the model-specific one, further
restricting its coverage, as seen before for data sources. So a namespace
coverage can be restricted but not redefined on a model-by-model basis.

Temporal coverage

While we don’t yet provide full support for temporal constraints, the over

time statement should be used when appropriate to specify the time period

covered by models or data. The most typical example is to identify the year
to which a data source refers:

model ...
over time(start = 1995)

This indicates that the data are valid from 1995 onwards: they will not be

used if the context has an over time definition that specifies an earlier

year. An end year can also be specified, as can both a ‘start’ and an ‘end’

year. When faced with a choice of two models that are both temporally
suitable to resolve a concept, Thinklab will give preference, all else being
equal, to the most current one. If the context is temporal, this will be the
one whose date is closest to the context’s time; otherwise the model with
the most recent start date will be used.

The time syntax is much more powerful than indicated here. It is possible,

for instance, to specify full dates and times, resolutions etc., but as
mentioned above, temporal support in Thinklab is still under development
and full details will be provided in a future release.

Conditional choice
of observer
As we learned earlier, any computations specified for quality models are
carried on each state implied by the scale of the context. For example, a
10x10 spatial grid will be computed 100 times, once per cell, and the
observer will be called upon to produce a value every time. So far we have
seen models in the form:

 model <quality observable>
 as <observer> ;

Quality models may have more than one observer, which computes the
value in different ways. We can thus assign conditions for choosing an
observer, which may depend on other observations. These observers must
be compatible, i.e., produce the same kind of observer/observation type.
For example, measurements and proportions cannot be mixed, because that
would break the model’s semantic consistency. The general form for these
conditional models is:

model <quality observable>

 [observing
 <model dependency> named <name>,]
 as
 (<observer 1>) [if <condition>],
 ;

where the part in square brackets should be read as “optional.” Each
observer is in parentheses and may optionally be followed by the keyword

if and an expression (using the square bracket notation). If the set of

dependencies following the observing keyword is given before any

observers are specified (i.e., before the as keyword), they will be

computed before the observers are called in, and their value will become
available for use in the expressions. The next example should clarify the
syntax. In the (rather twisted!) model below, elevation and slope data are
queried and the model will return values of zero, except where elevation is
greater than 1000 m, where it will return the elevation as a value:

model CrazyElevation

/*

 * model dependencies - used only to select
observers..

 */
observing (Elevation as measure
im.geography:Elevation in m) named el

/*

 * two observers with conditionals. Parentheses are
not required in this

 * case but are good practice, as the condition for
the observer could be

 * wrongly attributed to the preceding observer's
action if the action

 * itself is unconditional.
 */
as

 (measure im.geography:Elevation in m
 observing
 (Slope as measure
im.geography:Slope in degree_angle) named pslope1

 on definition
 change to 0 if [pslope1 < 10])
 if [el < 1000],

 (measure im.geography:Elevation in m
 observing
 (Slope as measure
im.geography:Slope in degree_angle) named pslope2

 on definition
 change to 0 if [pslope2 > 10])
 otherwise;

(note that everything between /* and */ is interpreted as a comment, i.e.,

ignored by Thinklab). This example also shows how otherwise can be

used as a catch-all condition instead of if. Both the if part and the model

dependencies are optional; the behavior of this form when neither are
supplied is very useful, because the “chain” of observers will be followed
in the specified order until one of the observers produces a valid result.
This is very useful to yield an alternative model when the preferred one

produces unknown (no data) values, as it often happens when using spatial

datasets. This form can also be used in resolved models. The only thing
that cannot be done is to use incompatible types of observers as
alternatives.

Lookup tables
While the conditional form shown above is useful, in some cases it will be
easier and cleaner to just tabulate alternative values. Thinklab provides a
powerful lookup table syntax, where the values in a column of the table
can be returned on the basis of values in other columns.

Here is an example of a lookup table:

Thinklab help - 19 March 2015 26 / 42

Landcover Slope Erosion factor
Rock * 0.0
Sand < 1 0.2
Grassland < 1 0.04
Sand 1 to 4 0.4
Sand 4 to 7 0.6
Sand > 7 0.8
In a model, it might be desirable to produce erosion factors that correspond
to dependencies for land cover and slope. The standard statement to define
a lookup table is similar to a function. It can be used directly in a model or

as the argument of a define statement, to be referenced in other models

and namespaces as shown earlier in the specification of spatial constraints.
The previous definition can be stated as follows:

define EROSION_TABLE as table (landcover, slope,
erosion-factor):

 Rock, *, 0.0,
 Sand, < 1, 0.2,
 Grassland, < 1, 0.04,
 Sand, 1 to 4, 0.4,
 Sand, 4 to 7, 0.6,
 Sand, > 7, 0.8;

and used in a model as follows:

model ErosionFactor as

 proportion ErosionFactor
 observing
 (LandCover as classify
im.landcover:LandCoverType) named land-cover,

 (Slope as measure im.geo:DegreeSlope in
degree_angle) named slope

 using lookup (land-cover, slope) into
EROSION_TABLE;

While the form above should be intuitive, there are several things to note.
First of all, table definition can be set directly in the model if it is only
needed there, by typing the ‘table’ and what follows instead of the
EROSION_TABLE identifier:

 model ErosionFactor as
 proportion ErosionFactor
 observing
 (LandCover as classify
im.landcover:LandCoverType) named land-cover,

 (Slope as measure im.geo:DegreeSlope in
degree_angle) named slope

 using lookup (land-cover, slope) into table
(landcover, slope, erosion-factor):

 Rock, *, 0.0,
 Sand, < 1, 0.2,
 Grassland, < 1, 0.04,
 Sand, 1 to 4, 0.4,
 Sand, 4 to 7, 0.6,
 Sand, > 7, 0.8;

The choice of which syntax to use is only one of convenience, and should
be dictated by the need to reuse the table elsewhere. In general, inline
(latter, model-embedded) specifications should be used unless the table is
“official” (e.g., reflects accepted standards) or would need to be reused
through the code.

The rows of the table can contain simple values to be matched, but it is

also possible to use a classifier specified with the classify statement as a

table entry. Each dependency will be matched following the order of the
column list indicated after the keyword ‘lookup.’ In the previous example,
the land-cover value for each point within the context will be matched to
values in the first column and the slope to values in the second. The result
of the lookup operation will yield values in the last column for the first row

that matches both classifiers.

The lookup values to be computed as output can be associated with a

column other than the last one by using the ? identifier in the lookup call.

For example, the call above is equivalent to lookup (land-cover,

slope, ?) and the ? could be used in any position (i.e., land-cover, ?,

erosion-factor). This way, a lookup table can be used with greater
flexibility.

A * classifier will match any value. Be careful when using it - it should

always be the last choice within each set of otherwise equivalent
combinations, which can be ambiguous when there are several columns.
When in doubt, remember that choices are always matched top to bottom.

The names chosen for the columns after the table keyword do not

influence the way the lookup table works: the list is only used to define the
_number of elements required for each row. This is crucial to the proper
functioning of the table, as Thinklab does not rely on or mandate
indentation and formatting. As with any component of a semantic modeling
system, however, it is important that descriptive, unambiguous names are
used for column headings, so that the meaning of the table is clear to
anyone reading it.

Lookup tables can be even more powerful because each classifier or value
can also be an expression. Expressions are normally used to compute the
values to be returned; in such cases, they will be computed before the value
is assigned, and these computations can use all the model dependencies. If
they are matched instead, the match will be successful only when the
dependency associated with the column and the result of evaluating the
expression is the same.

The choice of whether to use a lookup table or a conditional statement
(described earlier in this module) depends on the context. One approach or
the other may be the cleaner method depending on the model, its purposes,
and the modeler’s preferred coding style.

Scenarios
Scenarios in Thinklab are sets of alternative models used only when the
scenario is explicitly activated. When one or more scenarios are active, the
models within them will always be chosen preferentially to resolve their
concepts. Conversely, models in scenarios that are not active will never be
used. For example, a climate change scenario may contain alternative
datasets for temperature, precipitation, or other climatic variables.
Activating this scenario will guarantee that any observation of precipitation
and temperature will reflect the scenario’s assumptions. As a concept can
describe observables at any level in the model dependency chain, applying
a scenario can affect an entire modeling session or just limited elements of
it.

Specifying a scenario in Thinklab is as simple as creating a namespace
using the keyword scenario instead of namespace in the first statement.

scenario aries.ipcc.scenarios.hadley.b2

 using im.geography;

model wcs(id = "usa:sum_hi_wint_lo_hadley_B2")

 named summer-high-winter-low-hadley-b2-north-
america

 as measure im.geo:SummerHighWinterLow in
Celsius;

...

Scenarios are activated explicitly by the modeler (in the Thinkcap GUI this
is done by ticking the appropriate checkbox for the scenario in the
“Scenarios” view) before observing the concept(s) of interest. When

Thinklab help - 19 March 2015 27 / 42

observations are made with any scenarios active, any dependency
associated with the concepts modeled in the scenarios will then be resolved
using the scenario instead of the “regular” knowledge base. If, for example,
a scenario contains a land cover change model that observes the
im.landcover:LandCoverType concept, any model that depends on
im.landcover:LandCoverType will link to that land cover change model,
attempting to resolve it using data or models from the scenario namespace,
before resorting to the standard data layers. No models or data included in
scenarios will ever be used unless the scenario is active.

Some scenarios are inherently incompatible with others; for example,
different climate change scenarios should not be mixed together, because
they reflect different assumptions about emissions trajectories. Other
scenarios could be appropriate for combined use. For example, it might be
appropriate to run a scenario for climate change and one for land cover
change individually and then in combination to explore their synergistic
effects. When scenarios are mutually exclusive, as in the case of multiple
climate or land-cover change scenarios, the disjoint with clause can be
added to the scenario specification to ensure that the listed scenarios are
mutually exclusive:

scenario aries.ipcc.scenarios.hadley.b2

 disjoint with aries.ipcc.scenarios.hadley.a2,
aries.ipcc.scenarios.hadley.b1

 using im.geography;

...

As explained, the navigator in the modeler interface we provide (Thinkcap)
has a “Scenarios” view with checkboxes that allows their activation. Since
we defined the IPCC scenarios as disjoint, ticking the checkbox for one of
them will automatically deselect the others. Scenarios not declared disjoint
can be used together without restrictions.

Influencing the
model ranking:
subjective metrics
of quality
Thinklab uses a fairly sophisticated ranking algorithm to select which
model to use when more than one model is found that could observe an
observable. We do not give full details on the algorithm here, though it is
important to list the criteria that it uses. One of these criteria can be
influenced by the user-supplied metadata for each model, reflecting the
modeler’s “rating” of e.g., data quality or model reliability, so we will
explain how to use this feature. Modelers can influence the ranking
algorithm in much deeper ways, but that’s an advanced (and potentially
dangerous) topic that we will not discuss here.

Thinklab currently uses the following criteria to rank models. Criteria are
listed in the default order of importance that Thinklab gives them when
computing the rank of a model (note that this is a very active area of
development, so the criteria, ordering, or definition may change):

1. lexical scope reflects whether the model is in a scenario, in the
same namespace of the dependency that makes the observation,
or in the same project; models that are located “closer” to
where they are needed are given preference. Models that are in
active scenarios are always chosen above all others. Otherwise,
for instance, a model in the same namespace as one that

requires its observable will be preferentially chosen.

2. trait concordance reflects the number of attributes (traits) that
the candidate model’s observable shares with the observable to
be resolved. Attributes “percolate” through a model chain
starting with the context. So if we are modeling in a
im.geography:Region that has been tagged with an attribute
(e.g., im:May), models that share that attribute (e.g., data that
refer to the month of May) will be chosen preferentially.

3. scale coverage reflects how much of the scale defined in the
selected context is covered by the model.

4. scale specificity reflects the ratio between the total coverage of
the candidate model vs. that of the context. Models that are
more specific will be prioritized over models that have been
constrained to larger contexts or have not been constrained at
all. For example, a regional-scale model (dataset) would
typically be selected ahead of a national-scale model, which
would be selected ahead of a global-scale model.

5. inherency: models that are specifically meant to be observed in
the particular type of context being used will be chosen
preferentially over more general models.

6. subjective concordance: this criterion uses a multiple-criteria
ranking of user-defined metadata vs. a weight structure that can
be redefined on a namespace-by-namespace basis (see below).

7. evidence: resolved models with data sources will be chosen
preferentially vs. computed models.

Aside from the choice to activate or deactivate scenarios, number 6 is the
only criterion that is under direct user control, i.e., the “subjective
concordance” criterion. These can be defined by users, but the current
convention in Thinklab uses only one criterion on a routine basis, named
“im:reliability.” Such criteria are specified in metadata at the end of a
model statement (before the final semicolon), like so:

 model
 (full model definition)
 with metadata {
 dc:originator "NCAR GIS Climate Change
Scenarios"

 dc:url "http://www.gisclimatechange.org"
 im:reliability 75
 im:distribution "public"}
 ;

Metadata specification is fairly flexible, and any metadata tag or value
could theoretically be used without generating a syntax error (though a
consistently defined and applied set of metadata conventions is of course
highly desirable in a collaborative modeling environment). For these
criteria, we use the convention of specifying values using positive integers
between 1 and 100. The default intermediate value for any criterion that is
evaluated but not given in metadata is 50. So each model will have
im:reliability = 50 unless the modeler enters a different value. Unless the
default ranking priorities are changed (see below), user-specified reliability
will then be used as the value to assess the above-defined criterion 6. If a
model is thought to be of particularly poor quality (e.g., coarse resolution,
minimally documented, or with other known limitations), it should receive
a lower value; models of high quality should receive a higher one.
Conventionally we have preferred using the 25-75 range, leaving extreme
values for special situations, though for certain well-known,
methodologically robust data or models higher values (e.g., 90) may be
warranted.

Thinklab provides a vocabulary for other criteria, including for example
“openness” that may be used to nudge the model choice towards those that
are open source. The current version, however, only uses im:reliability.

im:reliability
im:reliability
im:reliability
im:May

Thinklab help - 19 March 2015 28 / 42

Each namespace can redefine the entire ranking strategy using the
following syntax:

namespace my.namespace

 resolve using {
 im:lexical-scope 1
 im:evidence 3
 im:trait-concordance 2
 im:subjective-concordance 4
 im:scale-coverage 5
 im:scale-specificity 6
 im:inherency 7
 im:scale-coherency 8
 im:network-remoteness 0
 im:reliability 100
 };

where each criterion name not corresponding to one of the “core” criteria
(1-7 above) [CLARIFY] is matched to the metadata using the indicated
weight. Use of this form is very dangerous unless the implications of
doing so are well understood. If multiple subjective criteria are present,
they will be aggregated using a multiplicative weighted multiple criteria
algorithm that we do not discuss here. The modified ranking strategy will
be used to resolve any model included in the namespace for which the
modified ranking has been created.

Lastly, “blacklist” and “whitelist” namespaces can be added for use in
model resolution by using the following syntax:

 namespace picky.namespace1
 resolve from
 good.namespace1,
 good.namespace2

 namespace picky.namespace2
 resolve outside
 bad.namespace1,
 bad.namespace2;

The blacklist (resolve outside…) and whitelist (resolve from…)

are not needed together, as the whitelist will select only those namespaces
for resolution. It will effectively ignore the blacklist, which tells Thinklab
to avoidresolving from blacklisted namespaces. Conversely, using only a
blacklist would eliminate models in blacklisted namespaces from use,
making a whitelist unnecessary. When ranking instructions are provided

together with a black/white list, resolve is only used once:

 namespace my.namespace
 resolve from
 good.namespace1,
 good.namespace2
 using {
 im:lexical-scope 1
 im:evidence 3
 im:trait-concordance 2
 im:subjective-concordance 4
 im:scale-coverage 5
 im:scale-specificity 6
 im:inherency 7
 im:scale-coherency 8
 im:network-remoteness 0
 im:reliability 100

 };
Using such specification can give provide power and flexibility to over the
way in which a model is resolved. However, it is also likely to lead to
situations that are confusing and difficult to manage unless great care is
taken, so we suggest that they be avoided by all but expert users. #
Reference sheets

This part of the documentation contains quick reference sheets that can be
useful during modeling practice.

The unit reference details the syntax for units of measurement understood
by Thinklab’s unit parser. The function reference briefly describes the most
common functions in Thinklab and their arguments. The glossary lists the
terms used most often in Thinklab documentation and provides a brief
definition for each of them.

This section is far from complete and cannot substitute person-to-person
instruction yet. # Unit of measurement: reference chart # Thinklab
functions: reference chart # Glossary of terms used in Thinklab/ARIES
modeling

Abstract knowledge: Concepts; abstract knowledge provide a general
definition of each concept and is contained within ontologies.

Accessor: A function that links Thinklab’s core code and functionality to
an external method or program for data and model handling. The accessor
transfers inputs from Thinklab to the external program and returns outputs
to Thinklab for analysis by the modeler.

Action: A change in the state of a model element that may occur, for
example, during a transition.

Annotation property: [UPDATE DEFINITION]

Bayesian network: A probabilistic graphical model (a type of statistical
model) that represents a set of random variables and their conditional
dependencies via a directed acyclic graph.

Bayes’ Theorem: A mathematical theorem that allows estimation of the
likelihood of one event that is conditional on another. It allows the
probabilities of linked events to be updated from a state where information
about the likelihood of events is lacking (and only prior probabilities exist)
to a state where an outcome is known (evidence of an event is submitted
and posterior probabilities are estimated via Bayesian updating).

Bayesian updating: The process by which prior and/or conditional
probabilities are replaced by evidence (knowledge of the state of an event),
and are updated using Bayes’ Theorem to become posterior probabilities.

Child node: A child node in a Bayesian network is influenced by the state
of one or more parent nodes via an edge (arrow) that indicates influence.
Child nodes may include intermediate nodes whose outcomes determine
the state of additional child nodes and top nodes whose states do not
influence other nodes, and are typically a final output of a Bayesian
network model.

Computed observation: An observation that has been calculated
deterministically, i.e., using equations.

Concept: The description of an entity [UPDATE DEFINITION]

Conditional probability: The probability of outcomes in a child node,
which depend on the states of all possible combinations of values for the
parent nodes. Conditional probabilities are updated to posterior
probabilities once evidence is submitted, during the process of Bayesian
updating, and can also be updated by training the Bayesian network.

Context: The conditions under which a model may be run (in Thinklab
terms, conditions under which an observable may be observed). In
Thinklab this will most commonly be a set of geographic and/or temporal
constraints under which a model may be run.

http://0203.html/
http://0202.html/
http://0201.html/

Thinklab help - 19 March 2015 29 / 42

Data model: A model statement that directly references a specific dataset
to be observed, as opposed to a model that requires Thinklab to search for
other means to resolve the concept.

Deterministic model: A model where every set of outcomes is determined
by predefined model parameters and input data states, and identical results
are obtained every time when input data values are the same.

Event: An observable that has both a subject and a temporal component.
[UPDATE DEFINITION]

Extensive physical property: When measuring an extensive property, the
amount of the substance being measured (or more frequently in Thinklab,
the area over which it is measured) greatly matter. Mass and volume are
examples of extensive physical properties – so when aggregating e.g., tons
of biomass or volumes of water, the extent of the analysis must be very
carefully considered.

Extent: In Thinklab, a given subset of time and/or space that can be used
to generate the scale under which a model can be run.

Identity: [UPDATE DEFINITION]

Indirect observation: Qualities produce indirect observations: since a
quality cannot be observed without an associated subject, an observation of
a quality with an associated subject is an indirect observation. [UPDATE
DEFINITION]

Inherency: The association of specific qualities or properties with a given
subject.

Intensive physical property: When measuring an intensive property, the
amount of the substance being measured (or more frequently in Thinklab,
the area over which it is measured) does not matter. Temperature or density
are examples of intensive physical properties.

Knowledge graph: A graphical display in Thinkcap that shows the
relationship between a selected concept and all other related concepts (i.e.,
within an ontology).

Literal: [UPDATE DEFINITION]

Mediation: A method for defining different states that could be observed
for a model, typically used with classifications, in a way that links an
observable to traits and inherencies to produce more readable, compact
modeling statements.

Model knowledge: Models; each piece of model knowledge describes a
potential way to resolve a concept (i.e., through data or models). Models
may: 1) directly reference and annotate a piece of data (which is itself
simply a way to observe an observable) or 2) include equations,
algorithms, or external processes to compute an observable, which may
include dependencies on additional observables to compute the state of the
model’s observable.

Namespace: Each project in Thinkcap can contain multiple namespaces –
individual files that contain abstract and model knowledge. A namespace
can be thought of as an individual file within a folder (i.e., Thinkcap
project).

Object: [UPDATE DEFINITION]

Observable: A subject, process, quality, or event that could be viewed and
quantified using a model.

Observation: The viewing and quantification of a concept within a given
context. A modeling process may yield multiple observations (i.e.,
instances) of the concept within a given context. Multiple methods may
also exist to observe an observable (i.e., various data and models).

Observer: Thinklab uses seven observer types, which are included in an
observer statement for each model. Observer types include rankings,
measurements, counts, values, classifications, proportions, and ratios.

Selection of the appropriate observer type for each data or model is critical.

Ontology: A file that contains abstract knowledge of concepts. This
includes definitions for concepts, spatial and temporal constraints on
concepts, and relationships between concepts. Ontologies in Thinklab are
organized by general thematic areas (e.g., hydrology, landcover, soils).

Parent node: A parent node in a Bayesian network influences the state of
one or more child nodes via an edge (arrow) that indicates influence. The
state of the parent node is, however, not influenced by the state of any
other node.

Posterior probability: The probability of outcomes following Bayesian
updating, which occurs once evidence is submitted for one or more nodes
in the Bayesian network. Following the updating process, posterior
probabilities thus replace prior and conditional probabilities.

Prior probability: The probability of the occurrence of different states of a
parent node, prior to the submittal of evidence on the Bayesian network.

Probabilistic model: A model where input data are defined using
probability distributions rather than constant values. Monte Carlo
simulation and Bayesian modeling are two examples of common
probabilistic modeling approaches.

Process: A process always has an inherent subject. [UPDATE
DEFINITION]

Project: A Thinklab project can contain multiple namespaces, as well as
other files. Thinklab currently contains several core projects (im and
org.aries), a tutorial project (thinklab.tutorial), and individual projects that
contain data and models for various ecosystem services (org.aries.carbon,
org.aries.sediment, org.aries.water, etc.). Additionally other projects may
be created as testing and development spaces.

Property: [UPDATE DEFINITION]

Quality: The result of a process; qualities are indirect observations of
phenomena and cannot “stand alone” in observations. For example, the
sediment load of a river would be a quality (the sediment load is the quality
and cannot be independently observed without a subject, in this case the
river).

Raster data: A cell-based configuration for spatial data, where the extent
covered by the data includes a grid of cells at a specified spatial resolution
(e.g., 25x25 m), and each cell carries a certain value (e.g., for elevation,
land cover, or precipitation).

Reification and De-reification: [UPDATE DEFINITION]

Resolution: The process by which Thinklab applies search algorithms to
iteratively match concepts to models as many times as necessary, and uses
heuristics and artificial intelligence to define the most suitable models at
each step. Once the appropriate model(s) are selected, they will be run and
the appropriate observations will be passed back to the modeler. Successful
resolution of the model yields a resolved observation.

Restriction: Within ontologies, a restriction specifies a “requirement” for a
concept that links together related concepts. [CLARIFY]

Scale: In Thinklab, the spatial and/or temporal constraints on a model, i.e.,
conditions under which it can be considered valid to run a given model to
generate observations.

Semantic modeling: A paradigm that maintains the meaning of all entities
being modeled through the use of ontologies that provide clear, consistent
definitions of concepts and the relationships between concepts (i.e., entities
that can be modeled, and data and models to observe them).

State: Successful observation of a concept will produce a state for each
observation. Individual observations of this state will be distributed across
the spatial and temporal scale set by the context of analysis.

Thinklab help - 19 March 2015 30 / 42

Structural learning: An advanced form of Bayesian training where an
algorithm determines the structure of the Bayesian network (i.e.,
dependencies between parent and child nodes) based on the data, as well as
their associated probabilities. Structural learning is a complex process and
is not planned for integration with ARIES/Thinklab in the near future.

Subject: The thing to be observed during the modeling process. Subjects
may also have associated qualities or properties, some of which may be
inherent to a specific subject.

Thinkcap: A graphical user interface (GUI)-based client run within the
Eclipse software development environment. Thinkcap communicates with
the Thinklab server, which parses and runs the Thinklab modeling
language.

Thinklab: A semantic modeling language and the system that parses and
runs it (i.e., the Thinklab server).

Training:The application of an algorithm, e.g., expectation maximization,
to learn and quantify the relationships between the nodes of a Bayesian
network based on data for at least one parent and one child node within the
network. Training replaces user-supplied conditional probabilities with
those derived from the data.

Trait: A trait provides further descriptive information about an observable,
yielding semantic precision while keeping the size of Thinklab’s core
ontologies tractable. Traits can be used, for example, to provide finer
temporal specification or to specify levels or frequencies of the observable.

Transition: A change from one state to another. For example, in a
temporally dynamic model, a transition marks the movement of a
simulation from one time step to the next, and is associated with an action
that is coded into the model for a given transition.

Uninformed prior: A state of total absence of knowledge about a system,
in which the likelihood of each of several states are equal (i.e., given four
possible states, each would be assumed to have a probability of occurrence
of 0.25).

Vector data: A non-cell based configuration for spatial data. Data may
take the form of polygons, lines, or points. Each of these features will have
one or more associated attributes.

Thinklab naming
conventions

Supplemental
material
This section contains material that relates to the practice of modeling with
Thinklab but is not directly related to the language or its implementation.

At the moment the only content available is a primer on Bayesian
networks, given the common usage of these methods in models developed
with Thinklab.

We also added the beginning of a Thinklab cookbook to show some
examples of commonly used expressions and programming patterns. This
section will be expanded with time. # Using Bayesian networks for

ecosystem service modeling in ARIES

Bayesian network models (BNs, also called Bayesian belief networks) are
a class of probabilistic models that can aid in quantifying ecosystem
services – particularly their source, sink, and use conditions. BNs have
been applied to a wide variety of research problems across the sciences,
and others have used them in ecosystem services assessments, but ARIES
was one of the first tools to explicitly incorporate BNs. However, it is
critical to note that ARIES is amodeling platform that integrates multiple
modeling paradigms – both probabilistic and deterministic. BNs are but
one approach to quantifying ecosystem services and like any modeling
approach have their strengths, weaknesses, and contexts where their use
will be more or less appropriate. ARIES therefore integrates probabilistic
OR deterministic models as appropriate to the context of interest to the
modeler. However, since most modelers are more familiar with
deterministic modeling approaches, we are providing this module to
familiarize new users with Bayesian modeling approaches.

In mathematical terms BNs are a probabilistic graphical model (a type of
statistical model) that represents a set of random variables and their
conditional dependencies via a directed acyclic graph. A BN specifies a
joint distribution in a structured form; dependence between the variables is
represented by a directed graph. Random variables are represented by
nodes, and edges indicated direct dependence. “Directed” refers to the fact
that certain factors influence others (via direct correlation or causal
influence) in a directional way. One or more parent nodes thus influence
each child node in a BN model. Each parent and child node carries with it a
set of probabilities that it will take a certain value or state. For parent nodes
this is termed the prior probability and for child nodes it is termed the
conditional probability (i.e., the probability of its value is conditional on a
set of outcomes for its parent nodes). The BN is acyclic because it cannot
account for feedback loops in the way that some types of deterministic
models do. BNs use Bayes’ Theorem to update the probability (yielding
posterior probabilities of the distribution of values for a child node when
new evidence (i.e., data) is submitted for the state of its parent node(s), and
vice versa).

There are at least three important benefits associated with Bayesian
modeling:

1. Bayesian models explicitly account for and communicate
uncertainty in their results. However, they only handle
uncertainty related to missing data; it is not possible for them to
account for uncertainty associated with the underlying model
structure (with the exception of advanced approaches such as
structural learning that are not planned for immediate
integration into Thinklab so will not be discussed in depth
here).

2. Bayesian models can operate under conditions where
deterministic models do not exist or are known to perform
poorly. For example, the Revised Universal Soil Loss Equation
(RUSLE) was developed to quantify and map soil erosion. It
has been tested and performs particularly well on relatively
level slopes and in agricultural systems. It performs more
poorly on steep slopes (>20%), on geologically young,
mountainous soils, and in quantifying rill, gully, and
streambank erosion. In ecosystems where ecological
production functions are poorly known, or in social systems
where demand for an ecosystem service is minimally
understood, Bayesian networks may provide a superior
approach for ecosystem service mapping and quantification. A
productive way forward within ARIES could thus be to
combine known, well-tested deterministic models (e.g.,
RUSLE) in locations where their performance is well accepted,
and to pair these with probabilistic (Bayesian) approaches
elsewhere.

3. Bayesian models can operate under conditions where data are
missing or incomplete. For example, if an input spatial dataset

http://yudkowsky.net/rational/bayes
http://0302.html/
http://0301.html/
http://0301.html/

Thinklab help - 19 March 2015 31 / 42

for a region of interest covers only half of that region, the
model will use the data for the half of the region where it
exists, and will use the prior probabilities (further discussed
below) for the part of the region where no data exist. Results
will be generated for the entire region, though they will have
less uncertainty where data exist and greater uncertainty where
data do not.

Below, we present general guidelines for developing BNs, drawn from an
excellent article by Marcot et al. (2006). We do not, however, present a
step-by-step guide to using a particular BN editing software. A variety of
BN editing software platforms are available, including both commercial
software packages such as Netica (https://www.norsys.com/), Agenarisk
(http://www.agenarisk.com/) and freeware, such as GeNIe
(http://genie.sis.pitt.edu/index.php/downloads); we encourage the reader to
consult the help documents and tutorials supplied by these software
providers.

Guidelines for
Bayesian modeling
(following Marcot
et al. 2006)
Construction, testing, and use of Bayesian models entails six steps:

1. Develop the causal graph

2. Discretize each node

3. Assign prior probabilities

4. Assign conditional probabilities

5. Peer review

6. Test with data and train the Bayesian network

1. Develop the
causal graph
The first step in BN construction is to develop what can be called a causal
graph, influence diagram, or “alpha-level model.” Through consulting with
experts or the literature, the modeler gains an understanding of what inputs
or variables influence a system’s behavior. These include parent nodes
whose values influence the likelihood of a distribution of outcomes for one
or more child nodes (intermediate nodes may also be used to aggregate the
influence of multiple parent nodes, themselves influencing an ultimate
“top” child node). Influence is indicated by an arrow pointing from the
parent to the intermediate or top node, and indicates a causal relationship;
unlinked nodes are assumed to be unrelated.

Best practices for developing causal models include:

1. Keeping the number of parent nodes and the number of their
discrete states (more on this to follow) low enough that

conditional probability tables (CPTs) remain tractable. As a
rule of thumb, Marcot et al. suggest limiting each child node to
no more than 3 parent nodes and each parent node to no more
than 5 discrete states (this is where intermediate nodes can be
valuable in keeping CPTs tractable). The number of
combinations required to complete a CPT will be the number of
states of each parent node multiplied by each other. So if a
model has three parent nodes, with two having two discrete
states and the third having five discrete states, 20 different
probability combinations will need to be entered in the CPT. It
is thus easy to see how CPTs can become intractable when too
many parent nodes and states are added to the model. As
always, model simplicity (i.e., parsimony) is generally a
desirable goal!

2. Ensuring that each node corresponds to an observable, i.e., a
unique, semantically specified thing, quality, process, or event.
Typically these will correspond to spatial data. In some cases
intermediate nodes can be used to aggregate parent nodes in
“fuzzier” concepts that help to keep BN CPTs tractable, but
overreliance on this approach is undesirable. In cases where
data for an observable do not exist but data for a related proxy
do, an additional parent node can be added to correspond to the
proxy dataset, and an appropriate degree of uncertainty can be
added to the intermediate node being approximated by that
proxy dataset.

3. Not developing models that are overly “deep,” i.e., contain too
many layers of nodes (Marcot et al. suggest using four or fewer
layers). Too deep a model often indicates an undesirably high
level of complexity; additionally, the effects of submitted
evidence (data) for parent nodes on the state of the top child
node is watered down by the presence of intermediate nodes, so
the model may become unresponsive to changes in input data.

4. Always documenting models, particularly the chosen rationale
for model construction choices. This may involve citations of
the literature or a list of experts consulted on model structure.
See Bagstad et al. (2011) for example documentation of past
ARIES models.

5. BNs should be constructed at the appropriate scale. In ARIES,
BNs have been constructed to quantify source, sink, or use
values or inputs to those final values; however a different class
of flow models are used to link source, sink, and use regions,
so sources, sinks, and uses should typically not be mixed
within the same BN.

2. Discretize each
node
Once the causal model is complete, every node must be classified into a set
of discrete states. While some BN modeling platforms support the use of
continuous data nodes, GeNIe (the BN modeling software used to date
with ARIES) does not, so discretization is a necessary next step. Very
often, these will be related to traits (e.g., present/absent or
high/moderate/low, which is often appropriate for discretizing continuous
data), though they could also be categorical (e.g., soils group or land cover
type). It is important to strike the right balance between precision, over-
simplification, or over-complication of the model. As a general rule, if a
different value of the input data would produce a different outcome, those
input data states should take separate discrete states in the BN. When
multiple states of the input data are expected to yield the same results,
these states could be combined into a single discrete state in the BN.

http://genie.sis.pitt.edu/index.php/downloads
http://www.agenarisk.com/
https://www.norsys.com/

Thinklab help - 19 March 2015 32 / 42

In addition to defining the number and names of each discrete state in the
BN, the modeler must also define how data for the appropriate observable
will yield values for each possible discrete state. For instance, continuous
data must be discretized to as many non-overlapping ranges as there are
discrete states for the data. Discretized categorical data may entail a list of
unique categories if the modeler expects each category to yield different
results or a combination of categories (i.e., into multiple groupings of soil,
vegetation, or land cover types) if (s)he expects all members of each group
to produce similar model behavior. If certain data values exist for the
region of interest but they are not included in the discretization, ARIES
will assume there are no data for those locations. It is thus important that
the entire range of values be included within the discretization. Generally,
information from past ecological production function studies is the best
way to discretize data. When such studies are absent, as is often the case, it
may be sensible to explore the data for the modeler’s region of interest in
GIS and to use an algorithm (e.g., Jenks natural breaks, equal interval) to
discretize continuous data.

Accurate discretization of data for the top node of a model is extremely
important. The possible values for discrete states of the top node should
correspond to those the modeler expects to observe in their region of
interest where the model will run. Particularly if training data are
unavailable at the needed spatial and temporal resolution, knowing the
possible range of outputs in the context of interest is critical. If done
correctly, high and low model output values will thus be realistic for the
context of interest. When adequate training data are absent, data ranges can
be derived from coarser resolution data, published field or modeling
studies, or expert elicitation.

3. Assign prior
probabilities
For parent nodes, prior probabilities must next be assigned. Prior
probabilities are the expected likelihood of a particular discrete state
occurring in the absence of data. Obviously, both prior and conditional
probabilities must sum to 1 across all the discrete states. Three general
approaches can be used to set prior probabilities – 1) use existing data (i.e.,
look at the data for a similar region of interest and determine the frequency
at which each discrete state occurs), 2) use expert elicitation, or in the
absence of either, 3) use uninformed priors. The latter are simply 1 divided
by the number of discrete states (i.e., if there were 5 discrete states, each
would be set to 0.2). Uninformed priors represent a total absence of
knowledge about the system. Remember, when input data exist for all or
part of a region of interest, the BN will be set to the corresponding discrete
state from the data for that location; priors will be used only where data do
not exist (i.e., for incomplete or patchy datasets).

4. Assign
conditional
probabilities
Conditional probabilities define the probability distribution of the states of
a child node for each potential combination of parent states. As discussed
previously, a large number of parent nodes and/or discrete states for those
nodes will result in very complex CPTs, increasing the burden on the

modeler to generate well documented, defensible contingent probabilities.

If an equation exists that defines the relationship between parent and child
nodes, it is possible to use it to calculate values for the child node CPT.
Otherwise, when using expert elicitation, a common approach is to “peg
the corners,” defining the highest and lowest potential combinations of
values from the parent nodes. These cases are set to 0% and 100%, and the
modeler gradually interpolates values for the intermediate cases.

Copying and pasting probabilities to a spreadsheet program can often be a
helpful approach to completing CPTs. The modeler can sum the rows for
each combination of parent node states, ensuring that all values sum to 1 -
a necessary condition for all prior and contingent probabilities, based on
the definition of a probability distribution of a discrete random variable. If
the modeler knows that a certain parent node is more influential in
determining the value of the child node, that information should be
represented in the CPT. For instance, imagine a 3-node BN where we must
complete a CPT for a child node with two parents, each parent having 3
discrete states (yielding a 9-column CPT). The modeler could start by
pegging the corners for just the most influential parent node, completing a
simple 3-column CPT. (S)he could then determine how much the less
influential parent node influences the value of the child node, and adjust
the values for the six additional columns in the final, 9-column CPT.

In a few cases, it may be appropriate to simplify complex CPTs using a
noisy max algorithm. Rather than allowing every possible combination of
values of the parent nodes to exist (which can quickly result in very
complex CPTs), noisy max nodes simplify the CPT by considering only the
possible states for each individual parent node – not their interactions. We
have used noisy max nodes, for example, in viewshed and open space
proximity models where objects in a field of view or nearby open space
types are either mutually exclusive or the most dominant characteristic
determines the outcome for the child node, rather than a combination of the
interacting values from multiple parent nodes. For instance, in a model of
visual blight we assume that for each cell where the model is run, a
highway, commercial development, or a transmission line will each
degrade a viewshed to a certain degree individually, rather than in
combination. The “leak” column specifies the likelihood that each discrete
state of the child node would occur when all parent node conditions are
absent.

Once the CPTs are populated the “alpha-level” model has been completed.
The modeler should test the BN, setting evidence for the different input
nodes and updating the model to ensure that the intended behavior is
expressed within it. Changes in evidence for more influential relationships
should yield greater changes to the model’s output, and vice versa. If
unexpected behavior occurs, model structure and/or probabilities should be
adjusted.

5. Peer review
To generate a “beta-level model,” the network structure, prior and
contingent probabilities, and model behavior should be reviewed by a
subject matter expert who was not involved in the initial construction of
the BN. This person can either agree with or recommend changes to all or
part of the BN, yielding a more robust model.

Thinklab help - 19 March 2015 33 / 42

6. Test with data
and train the
Bayesian network
The final step in BN construction and testing – generation of the final
“gamma-level model” – entails training the model to actual data. Assuming
we have data that correspond to multiple parent and child nodes, the
process of BN training uses an algorithm, e.g., expectation maximization,
to “learn” the relationships between the nodes, replacing the CPTs, which
are often subjective or expert-driven, with probabilities derived directly
from data. This is the true “data-driven modeling” approach that BNs bring
to probabilistic modeling. Some more complex algorithms derive the
structure of the BN as well as the values of the CPT for a given set of input
data (i.e., structural learning). However, this is a complex process and
Thinklab support for structural learning is not planned for the near future.

While BN training is an extremely desirable last step in model
development and testing, it will not always be possible. Even if datasets
that correspond to the concepts expressed by all or most parent and child
nodes in the BN exist, they must be of adequate quality for the training to
succeed. Data that vary too widely in their temporal currency will be more
likely to introduce error into a trained BN, since different layers will
represent conditions at different times. Another frequently encountered
problem occurs when data occur at varying spatial resolutions. When one
or more coarse resolution datasets are trained along with one or more fine
resolution datasets, many different values from the fine resolution dataset
may be matched to a single value from the coarse resolution dataset. For
example, if a 25x25 m and a 1 km^2 dataset are used to train a BN, 160
different possible inputs from the 25x25 m dataset may be matched to a
single value of the 1 km^2 dataset. This can yield a trained BN that may be
quite insensitive to changes in its input data. In such cases, an untrained but
well-vetted and documented BN may be preferable to a BN trained using
poor quality data.

Parting thoughts
As previously noted, BNs are not a panacea for ecosystem service
modeling (nor is any single modeling approach or paradigm). BNs can,
however, be very useful particularly in places where data are scarce, trusted
deterministic models do not exist, or such models are known to perform
poorly. When the opposite conditions hold, deterministic models are likely
to outperform probabilistic models; as always, a best practice is for the
modeler to know his/her system and to carefully choose the most
appropriate data and models for that system. Once they are semantically
annotated, ARIES is equally capable of handling probabilistic and
deterministic models, and the ARIES resolver will be able to select the
most appropriate model for the modeling problem of interest.

References
Bagstad, K.J., F. Villa, G.W. Johnson, and B. Voigt. 2011. Artificial
Intelligence for Ecosystem Services (ARIES): A guide to models and data,
version 1.0. ARIES report series n.1.

Marcot, B.G., J.D. Stevenson, G.D. Sutherland, and R.K. McCann. 2006.
Guidelines for developing and updating Bayesian belief networks applied

to ecological modeling and conservation. Canadian Journal of Forest
Research 36: 3063-3074.

McCann, R.K., B.G. Marcot, and R. Ellis. 2006. Bayesian belief networks:
application in ecology and natural resource management. Canadian Journal
of Forest Research 36: 3053-3062.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of
plausible inference. Morgan-Kaufmann: San Francisco.

Vigerstol, K.L. and J.E. Aukema. 2011. A comparison of tools for modeling
freshwater ecosystem services. Journal of Environmental Management
92(10):2403-2409.

Yudkowski, E.S. 2003. An intuitive explanation of Bayes’ Theorem.
http://yudkowsky.net/rational/bayes

Thinklab cookbook
This section is meant to support a “learn by example” paradigm for task of
common occurrence. These examples are mostly meant to show
expressions and their use, and use simple semantics that should not be
taken as indicative of good semantic modelin practices. In semantic
modeling, more than anywhere else, it is fundamental to use examples to
learn, not to cut and paste from - the practice is bad everywhere, but
particularly so in a paradigm that is founded on what things mean: cutting
and pasting is the opposite of thinking!

Computing states
The examples shown below illustrate how to build analytic (i.e., algebraic)
models using the Thinklab language. The keys to this are two clauses:

on definition set to [some formula of the dependent
concepts]

on definition change to [some formula of the dependent
concepts]

The “set to” clause assigns the value to be a function of the dependent
concepts referenced in the observing clause. The “change to” clause uses
the dependent concepts to modify the state of the top-level observable.

Importantly, if “change to” is used, the system will expect a previous value
for the observable to be defined at the time the expression is evaluated, and
will try to resolve it using data or other models; the formula may contain
the model name to refer to the unmodified observable. If “set to” is used
instead, the model is expected to produce the value directly and will work
as long as all the dependencies are resolved, and the use of the model name
in the formula is an error.

Note that within the square brackets [] any valid Groovy code may be
evaluated, provided that it returns a value that matches the model type. For
more information on the Groovy language, see http://groovy.codehaus.org

To model a concept as an analytical function of the values of one or more
other concepts:

model newConcept as measure newConcept in

Example using the above model statement to express the equation:
TotalCarbonStorage = VegetationCarbonStorage + SoilCarbonStorage

http://groovy.codehaus.org/
http://yudkowsky.net/rational/bayes

Thinklab help - 19 March 2015 34 / 42

model TotalCarbonStorage as measure
aries.carbon:TotalCarbonStorage in t/ha observing
(VegetationCarbonStorage as measure
aries.carbon:VegetationCarbonStorage in t/ha) named
vegetation-c, (SoilCarbonStorage as measure
aries.carbon:SoilCarbonStorage in t/ha) named soil-c
on definition set to [vegetation-c + soil-c];

Another example which expresses the equation: GreenhouseGasEmissions
= PopulationDensity * 0.04

model GreenhouseGasEmissions as measure
im.policy:GreenhouseGasEmissions in t/ha*year
observing (PopulationDensity as count
im.policy:Population per km^2) named population-
density on definition set to [population-density *
0.04];

Another example which expresses the equation: YieldUse =
PopulationDensity * YieldUseCoefficient

model YieldUse as measure ia.agriculture:YieldUse in
kg/year observing (ia.agriculture:PopulationDensity as
count im.policy:Population per km^2) named population-
density, (YieldUseCoefficient as ratio
YieldUsePerPerson) named yield-use-coefficient on
definition set to [population-density * yield-use-
coefficient];

Another example which expresses the equation: LiveStockWaterUse =
CowDensity * WaterUseCoefficientCattle + SheepDensity *
WaterUseCoefficientSheep + GoatDensity * WaterUseCoefficientGoat

model LivestockWaterUse as measure
aries.water:LivestockWaterUse in mm observing
(CowDensity as count im.agriculture:Cattle per km^2)
optional named cow-density, (SheepDensity as count
im.agriculture:Sheep per km^2) optional named sheep-
density, (GoatDensity as count im.agriculture:Goat per
km^2) optional named goat-density,
(WaterUseCoefficientCattle as ratio
aries.water:WaterUsePerHeadOfCattle) optional named
water-use-coefficient-cattle,
(WaterUseCoefficientSheep as ratio
aries.water:WaterUsePerSheep) optional named water-
use-coefficient-sheep, (WaterUseCoefficientGoat as
ratio aries.water:WaterUsePerGoat) optional named
water-use-coefficient-goat on definition set to [(cow-
density * water-use-coefficient-cattle) + (sheep-
density * water-use-coefficient-sheep) + (goat-density
* water-use-coefficient-goat)];

A tricky example which expresses the piecewise equation:
IrrigationWaterUse = {2000 if LandCover = AgriculturalArea, 0
otherwise} Note the use of “change to” rather than “set to” in this model
statement.

model 2000 named default-irrigation-amount as measure
aries.water:IrrigationWaterUse in mm observing
(LandCover as classify im.landcover:LandCoverType)
named land-cover on definition change to 0 unless
[land-cover == im.landcover:AgriculturalArea];

An example using the Normal distribution. This expresses the piecewise
equation: Elevation = {0 if Normal(mean=542.0,std=223.3) < 500,
Normal(mean=542.0,std=223.3) otherwise} Note the use of “change to”
rather than “set to” in this model statement.

model rand.normal(mean = 542.0, std = 223.3) named
random-elevation-filtered as measure im.geo:Elevation
in m on definition change to 0 if [random-elevation-
filtered < 500];

An example using the Poisson distribution. This expresses the piecewise
equation: ResidentialWaterUse = {0 if Poisson(lambda=12) <= 22,
Poisson(lambda=12) otherwise} Note the use of “change to” rather than
“set to” in this model statement.

model rand.poisson(lambda = 12) named random-
scattered-residential-users as measure
aries.water:ResidentialWaterUse in mm on definition
change to 0 if [random-scattered-residential-users <=
22];

An example using the || operator to merge a River and Spring layer
together. WaterPresence = true if RiverPresence or SpringPresence is true

model WaterPresence as presence of
im.hydrology:WaterBody observing (RiverPresence as
presence of im.hydrology:River) named stream,
(SpringPresence as presence of im.hydrology:Spring)
named spring // “presence of” is a boolean value, so
we use the OR (||) operator here, true if either or
both are true. on definition set to [stream ||
spring];

An example using a rank (unitless quantification) observation type.
WildlifeSpeciesRichness = (AmphibianRichness + BirdRichness +
MammalRichness + ReptileRichness) * 0.25

model WildlifeSpeciesRichness as rank
aries.recreation:WildlifeSpeciesRichness observing
(im.ecology:AmphibianRichness as rank
im.ecology:AmphibianRichness) named amphibian-
richness, (im.ecology:BirdRichness as rank
im.ecology:BirdRichness) named bird-richness,
(im.ecology:MammalRichness as rank
im.ecology:MammalRichness) named mammal-richness,
(im.ecology:ReptileRichness as rank
im.ecology:ReptileRichness) named reptile-richness on
definition set to [(amphibian-richness + bird-richness
+ mammal-richness + reptile-richness) * 0.25];

geo:Elevation

Thinklab help - 19 March 2015 35 / 42

CODE ONLY
Creating a context

EPSG:4326 POLYGON((-70.8783850983603 -3.3045881369117316,-69.05465462961
-3.2661991868835875,-69.13155892648547 -4.575963434877864,-
70.91683724679801 -4.630717874946029,-71.15853646554768
-4.263784638927346,-70.8783850983603 -3.3045881369117316))"
observe im.geography:Region leticia-peru over space(
 grid = "500 m",
 shape = "EPSG:4326 POLYGON((-70.8783850983603 -3.3045881369117316,-
69.05465462961 -3.2661991868835875,-69.13155892648547
-4.575963434877864,-70.91683724679801 -4.630717874946029,-
71.15853646554768 -4.263784638927346,-70.8783850983603
-3.3045881369117316))"
);
observe im.hydrology:Watershed leticia-peru over space(
 grid = "500 m",
 shape = …
);

Module 2. Models as observations: subjects, qualities and traits.
Concepts and observables
The primary observable
Keeping ontologies simple

observe im:Annual im.hydrology:Watershed
 over space(...)
model ... as measure im.climate:Rainfall in mm;
model as measure im:Annual im:Average im.climate:Rainfall in mm;
model Elevation as classify (measure im.geography:Elevation in m) by
im:Level into
 im:Low if 0 to 350,
 im:Medium if 350 to 1000,
 im:High if 1000 to 8000;

Identities managed by authorities

<abstract observable> identified as “<key>” by <authority>
count im.ecology:Individual identified as "5212442" by GBIF

Inherent qualities and subjects

model ... as measure im.geography:Elevation within im.geography:Region in
m;

Module 3. Connecting data to models: semantic annotation and observation semantics.
Choosing a concept
Choosing the data or subject source
Values

model 100 as measure im.chemistry:Water im.physics:BoilingTemperature in
Celsius;
model false as presence of im.theology:Satan;
model im:High as classify (probability of im.climate:ClimateChange) by
im:Level;

Data sources

<function-name> (<argument-name> = “parameter_value”, …)
model wcs(urn=”im:global.geography:dem90m”, no-data = -32768.0) as
measure im.geography:Elevation in m;

model raster(file="data/landcover.tif") as
 classify im.landcover:LandCoverType into
 im.landcover:Urban if 200,
 im.landcover:Agricultural if 201,

 ;
model wfs(urn="im:af.tz.landcover:tanzanialandcover", attribute="luc_id")
as
 classify im.landcover:LandCoverType into
 im:Agricultural if "AG",

Thinklab help - 19 March 2015 36 / 42

 ;

Subject sources

model each wfs(urn = "im:global.infrastructure:global_rail_merge")
named railroad-global
as im.infrastructure:Railway;

Observation semantics for qualities

model
 as
 using
 (Elevation as measure im.geography:Elevation in m) named el,

 ... instructions to compute the result based on 'el';

Ranking

model wcs(...) as rank ...;

model wcs(...) as rank ...:PerceivedDanger 1 to 5;

Measurement

measure ...
model wcs(urn = "im:na.us.climate.annual:annualprecip")
 named precipitation-annual-2007-usa
 as measure im:Annual im.hydrology:PrecipitationVolume in mm
 over time (year = 2007)
 on definition change to [precipitation-annual-2007-usa * 0.01];

Count

model 1 as count Universe;
model wcs(urn="aries:global-populationdensity-2006") as
 count im.demography:HumanIndividual per km^2
 over time (year = 2006);

Value

model ... as value of ...:PropertyParcel in USD@2004;

Classification
Direct classification

model ManureType as
 classify im.agriculture:Manure into PigManure, CattleManure,
PoultryManure
 observing
 (PigManureProportion as proportion of im.agriculture:Pig in
im.agriculture:Manure im.core:Mass) named pig-manure,
 (CattleManureProportion as proportion of im.agriculture:Cattle in
im.agriculture:Manure im.core:Mass) named cattle-manure,
 (PoultryManureProportion as proportion of im.agriculture:Poultry
in im.agriculture:Manure im.core:Mass) named poultry-manure
 using rand.select(
 distribution = (pig-manure cattle-manure poultry-manure),
 values = (PigManure CattleManure PoultryManure)
);

Indirect classification

model data.wcs(id = "europe:corine2000", no-data = 255) named corine-2000
 as classify im.landcover:LandCoverType according to im:numeric-
encoding;
...
class LandCoverType
 has children
 ...
 (DiscontinuousUrbanFabric with metadata { im:numeric-encoding 112
})),
 (class IndustrialCommercialTransport
 has children
 (class IndustrialCommercialUnits with metadata
{ im:numeric-encoding 121 }),
 (class RoadRailNetwork with metadata { im:numeric-
encoding 122 }),

Thinklab help - 19 March 2015 37 / 42

 (class PortArea with metadata { im:numeric-encoding
123 }),
 ...

Classifying values into observables or traits

model wfs(urn = "im:af.tz.landcover:tanzanialandcover",
 attribute = "lc")
named tanzania-lulc
as classify im.landcover:LandCoverType into
 im.landcover:AgriculturalArea if "AG",
 im.landcover:ForestSeminaturalArea if "NVT",
 im.landcover:VegetatedStillWaterBody if "NVW",
 im.landcover:UrbanFabric if "UR",
 im.landcover:WaterBody if "WAT";
model wcs(...) as classify im.policy:Poverty of
im.demography:HumanPopulation by im:Level into
 im:High if 4,
 im:Moderate if 3,
 im:Low if 2,
 im:Minimal if 1;
model wcs(...elevation data...) as measure im.geography:Elevation in m
 discretized by im:Level into
 im:High if > 2000,
 (An INCORRECT example)
namespace my.namespace using im.geography;

(RIGHT, BUT STILL NOT PERFECT)

private model Elevation as
 classify im.geography:Elevation by im:Level
 im:High if > 2000,
 ;

Proportion and percentage

model ... as percentage of im.agriculture:Pig in im.agriculture:Manure
im.core:Mass;
model … as proportion im.ecology:CanopyCover;

Ratio

model … as ratio of im.ecology:Soil im.chemistry:Carbon im.core:Mass to
im.ecology:Soil im.chemistry:Nitrogen im.core:Mass;

Presence

model … as presence of im.infrastructure:Building;

Probability and uncertainty

model … as probability of im.physics:Fire within im.ecology:Forest;

Discretization

model wcs(...) as measure im:Length of im.ecology:Leaf in cm
 discretized by im:Level as
 im:Low if < 10,
 im:Medium if 10 to 30,
 im:High if > 30;

Note: spatial densities and temporal rates refer to observations, not observables

model as count im.demography:HumanIndividual per km^2;

De-reification of subject models

model each wfs(urn = "im:global.infrastructure:grand_reservoirs_v1_1")
named reservoirs-global
as im.hydrology:Reservoir
interpret
 GRAND_ID as im:name,
 AREA_SKM as measure im.core:Area in km^2;
model wfs(urn = “im:global.infrastructure:grand_reservoirs_v1_1”,
attr=”AREA_SKM”)
 named reservoirs-area-global
 as measure im.core:Area within im.hydrology:Reservoir in km^2;

Module 4. Computing deterministic and probabilistic observations.
Model syntax: observable, dependencies and computations.

stefano.balbi
Highlight

Thinklab help - 19 March 2015 38 / 42

namespace my.namespace using im, im.agriculture;

...

model SummerCropYield as
 measure im:Summer im.core:Yield of im.agriculture:Crop in t/km^2
 observing
 (JunCropYield as measure im:June im.core:Yield of
im.agriculture:Crop in t/km^2) named jun-yield,
 (JulCropYield as measure im:July im.core:Yield of
im.agriculture:Crop in t/km^2) named jul-yield,
 (AugCropYield as measure im:August im.core:Yield of
im.agriculture:Crop in t/km^2) named aug-yield
 on definition set to [jun-yield + jul-yield + aug-yield];

The context of applicability for a model

model SummerCropYield as
 measure im:Summer im.core:Yield of im.agriculture:Crop in t/km^2
 observing
 (JunCropYield as measure im:June im.core:Yield of
im.agriculture:Crop in t/km^2) named jun-yield,
 (JulCropYield as measure im:July im.core:Yield of
im.agriculture:Crop in t/km^2) named jul-yield,
 (AugCropYield as measure im:August im.core:Yield of
im.agriculture:Crop in t/km^2) named aug-yield
 over space
 on definition set to [jun-yield + jul-yield + aug-yield];

The observable in computed models
Mediation

namespace my.namespace;

...

model ElevationLevel as
 classify (measure im.geography:Elevation in m) by im:Level into
 im:High if > 1000,
 im:Low if < 1000;
model ElevationLevel as
 classify ElevationLevel by im:Trait into im:High, im:Low
 observing
 (Elevation as measure im.geography:Elevation in m) named
elevation
 on definition set to [
 elevation < 1000 ? im:Low : im:High
];

Expression language
Using expressions in data models

 model wcs(...)
 named ghg-emissions-usa
 as measure im.policy:GreenhouseGasEmissions in t/ha*year
 on definition change to [ghg-emissions-usa * 0.0001];

Limitations
Dependencies in detail

…
observing
 (Elevation as measure im.geography:Elevation in m) for
im.geography:hasElevation named elevation

Quality dependencies

observing
 (Elevation as measure im.geography:Elevation in m) optional named
elevation
namespace my.namespace using im, im.geography;

private model SoilPH as
 classify (rank im.geography:Soil im.chemistry:PH) by im:Level into
 im:High if > 5,
 im:Low otherwise;

model SomethingDependentOnPH

Thinklab help - 19 March 2015 39 / 42

 as ...
 observing
 SoilPH named soil-ph
 ... ;
private model SoilPH named the-ph-we-want as
 classify (rank im.geography:Soil im.chemistry:PH) by im:Level into
 im:High if > 5,
 im:Low otherwise;

model SomethingDependentOnPH
 as ...
 observing
 the-ph-we-want named soil-ph
 ... ;
namespace my.namespace using im, im.geography, (the-ph-we-want) from
my.ph.models;

...

model SomethingDependentOnPH
 as ...
 observing
 the-ph-we-want named soil-ph
 ... ;
model SomethingDependentOnPH
 as ...
 observing
 (SoilPH as
 classify (rank im.geography:Soil im.chemistry:PH) by im:Level
into
 im:High if > 5,
 im:Low otherwise) named soil-ph
 ... ;
...
im.ecology:Forest by im.conservation:DegradationLevel
...

Subject models and dependencies

model ...
 observing im.infrastructure:Road;
model …
 observing im.demography:Family at each im.demography:Household;

Resolving dependencies vs. making observations in a context

model ...
 observing im.geography:Elevation;

Automatically resolved dependencies

 thing Watershed is im.geography:Region
 requires StreamNetwork;

Actions linked to transitions

model
 over time
 integrate population-size as [population-size + birth - death],
 change land-use to im.landcover:Urban if [population-size > 100];
model AdministrativeRegion
 observing
 Household at each HouseholdLocation,
 Administration at each CapitalCity;

....

model Household

 over time (step="1 day")
 ;

model AdministrativeRegion
 ...
 over time (step = "30 day")
 ...;

Bridging to external computations

Thinklab help - 19 March 2015 40 / 42

model SoilCarbonStored as
measure aries.carbon:SoilCarbonStored in t/ha
discretized by im:Level into
 im:VeryHigh if 200 to 520,
 im:High if 110 to 200,
 im:Moderate if 90 to 110,
 im:Low if 50 to 90,
 im:VeryLow if 0.01 to 50,
 im:Minimal if 0 to 0.01
observing
 im.geography:Slope by im:Level,
 im.soil:SoilPh by im:Level,

using bayesian(import="bn/madagascar/sink.xdsl");
model im.hydrology:Watershed,
 // pit-filled land elevation.
 (im.hydrology:Elevation as measure im.hydrology:Elevation in m),
 (im.hydrology:FlowDirection as measure im.hydrology:FlowDirection in
degree_angle),
 (im.hydrology:TotalContributingArea as measure
im.hydrology:TotalContributingArea in m^2)
 ...
 observing
 (Elevation as measure im.geography:ElevationSeaLevel in m)
 over space
 using hydrology.watershed();

Multiple observables
Module 5. How to make model choices depend on context.
Scale constraints for models and namespaces
Constraining a model

model wfs(urn = "im:af.tz.landcover:tanzanialandcover",
 attribute = "lc")
named tanzania-lulc
as classify im.landcover:LandCoverType into
 im.landcover:AgriculturalArea if "AG",
 im.landcover:ForestSeminaturalArea if "NVT",
 im.landcover:VegetatedStillWaterBody if "NVW",
 im.landcover:UrbanFabric if "UR",
 im.landcover:WaterBody if "WAT";
model wcs(id = "san_pedro:swregap_lulc")
named vegetation-type-swregap
as classify aries.carbon:VegetationType into
 ...
over space (shape = "EPSG:4326 POLYGON((-114.816209 42.002018,..))");
namespace aries.carbon.local.sw-north-american-deserts
 using im, im.hydrology
 covering space(shape = "....");
namespace aries.carbon.locations;

define COASTAL_CALIFORNIA as
 space(shape = "EPSG:4326 POLYGON((-122.01075303165209
38.46721456396898, ...))");

define MADAGASCAR as
 space(shape = "EPSG:4326 POLYGON((52.778320305152796
-27.644606378394307, ...))");

define NORTHERN_ROCKIES as
 space(shape = "EPSG:4326 POLYGON((-111.05 45.01, -104 45.01, ...))");

define ONTARIO as
 space(shape = "EPSG:4326 POLYGON((-95.35682310773775
50.520669204331895,...))");
namespace aries.carbon.local.northern-rockies
 using (NORTHERN_ROCKIES) from aries.carbon.locations,im.soil, im,
im.hydrology
 covering NORTHERN_ROCKIES;

Temporal coverage

model ...
over time(start = 1995)

Conditional choice of observer

Thinklab help - 19 March 2015 41 / 42

 model <quality observable>
 as <observer> ;
model <quality observable>
 [observing
 <model dependency> named <name>,]
 as
 (<observer 1>) [if <condition>],
 ;
model CrazyElevation

/*
 * model dependencies - used only to select observers..
 */
observing (Elevation as measure im.geography:Elevation in m) named el

/*
 * two observers with conditionals. Parentheses are not required in this
 * case but are good practice, as the condition for the observer could be
 * wrongly attributed to the preceding observer's action if the action
 * itself is unconditional.
 */
as
 (measure im.geography:Elevation in m
 observing
 (Slope as measure im.geography:Slope in degree_angle) named
pslope1
 on definition
 change to 0 if [pslope1 < 10])
 if [el < 1000],

 (measure im.geography:Elevation in m
 observing
 (Slope as measure im.geography:Slope in degree_angle) named
pslope2
 on definition
 change to 0 if [pslope2 > 10])
 otherwise;

Lookup tables

define EROSION_TABLE as table (landcover, slope, erosion-factor):
 Rock, *, 0.0,
 Sand, < 1, 0.2,
 Grassland, < 1, 0.04,
 Sand, 1 to 4, 0.4,
 Sand, 4 to 7, 0.6,
 Sand, > 7, 0.8;
model ErosionFactor as
 proportion ErosionFactor
 observing
 (LandCover as classify im.landcover:LandCoverType) named land-
cover,
 (Slope as measure im.geo:DegreeSlope in degree_angle) named slope
 using lookup (land-cover, slope) into EROSION_TABLE;
 model ErosionFactor as
 proportion ErosionFactor
 observing
 (LandCover as classify im.landcover:LandCoverType) named land-
cover,
 (Slope as measure im.geo:DegreeSlope in degree_angle) named slope
 using lookup (land-cover, slope) into table (landcover, slope,
erosion-factor):
 Rock, *, 0.0,
 Sand, < 1, 0.2,
 Grassland, < 1, 0.04,
 Sand, 1 to 4, 0.4,
 Sand, 4 to 7, 0.6,
 Sand, > 7, 0.8;

Scenarios

scenario aries.ipcc.scenarios.hadley.b2
 using im.geography;

model wcs(id = "usa:sum_hi_wint_lo_hadley_B2")
 named summer-high-winter-low-hadley-b2-north-america

Thinklab help - 19 March 2015 42 / 42

 as measure im.geo:SummerHighWinterLow in Celsius;

...
scenario aries.ipcc.scenarios.hadley.b2
 disjoint with aries.ipcc.scenarios.hadley.a2,
aries.ipcc.scenarios.hadley.b1
 using im.geography;

...

Influencing the model ranking: subjective metrics of quality

 model
 (full model definition)
 with metadata {
 dc:originator "NCAR GIS Climate Change Scenarios"
 dc:url "http://www.gisclimatechange.org"
 im:reliability 75
 im:distribution "public"}
 ;
namespace my.namespace
 resolve using {
 im:lexical-scope 1
 im:evidence 3
 im:trait-concordance 2
 im:subjective-concordance 4
 im:scale-coverage 5
 im:scale-specificity 6
 im:inherency 7
 im:scale-coherency 8
 im:network-remoteness 0
 im:reliability 100
 };
 namespace picky.namespace1
 resolve from
 good.namespace1,
 good.namespace2

 namespace picky.namespace2
 resolve outside
 bad.namespace1,
 bad.namespace2;
 namespace my.namespace
 resolve from
 good.namespace1,
 good.namespace2
 using {
 im:lexical-scope 1
 im:evidence 3
 im:trait-concordance 2
 im:subjective-concordance 4
 im:scale-coverage 5
 im:scale-specificity 6
 im:inherency 7
 im:scale-coherency 8
 im:network-remoteness 0
 im:reliability 100
 };

	Introduction to semantic meta-modeling with Thinklab: a user’s guide.
	Semantic meta-modelling
	Structure of this document

	Component 1: the collaborative, web-based infrastructure
	Component 2: Semantic modeling and ontologies
	Component 3: The Thinklab modeling language and Thinkcap software environment
	A modeling workflow example
	Creating a context

	Observing concepts in the context.
	Qualities
	Subjects, processes and events.

	Module 2. Models as observations: subjects, qualities and traits.
	Concepts and observables
	The primary observable
	Keeping ontologies simple
	Identities managed by authorities
	Inherent qualities and subjects
	Putting everything together

	Module 3. Connecting data to models: semantic annotation and observation semantics.
	Choosing a concept
	Choosing the data or subject source
	Values
	Data sources
	Subject sources

	Observation semantics for qualities
	Ranking
	Measurement
	Count
	Value
	Classification
	Direct classification
	Indirect classification
	Classifying values into observables or traits

	Proportion and percentage
	Ratio
	Presence
	Probability and uncertainty
	Discretization
	Note: spatial densities and temporal rates refer to observations, not observables

	De-reification of subject models
	Module 4. Computing deterministic and probabilistic observations.
	Model syntax: observable, dependencies and computations.
	The context of applicability for a model
	The observable in computed models
	Mediation
	Expression language
	Using expressions in data models
	Limitations

	Dependencies in detail
	Quality dependencies
	Subject models and dependencies
	Resolving dependencies vs. making observations in a context
	Automatically resolved dependencies

	Actions linked to transitions
	Bridging to external computations
	Multiple observables

	Module 5. How to make model choices depend on context.
	Scale constraints for models and namespaces
	Constraining a model
	Temporal coverage

	Conditional choice of observer
	Lookup tables
	Scenarios
	Influencing the model ranking: subjective metrics of quality
	Thinklab naming conventions
	Supplemental material
	Guidelines for Bayesian modeling (following Marcot et al. 2006)
	1. Develop the causal graph
	2. Discretize each node
	3. Assign prior probabilities
	4. Assign conditional probabilities
	5. Peer review
	6. Test with data and train the Bayesian network
	Parting thoughts
	References
	Thinklab cookbook
	Computing states

	CODE ONLY

