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1 Introduction

The purpose of this document is to briefly explain the logic behind the implementation
of a free water elimination algorithm for single shell DTI, based on the work of
(Pasternak, Sochen, Gur, Intrator, & Assaf, 2009). The mathematical concepts
and the meaning of the metrics (from an image processing perspective) used
in this algorithm are explained in more detail in (Gur, Pasternak, & Sochen,
2009).

2 Algortihm Overview

The objective of the algortihm is to fit a bi-tensor model for each voxel, which
predicts that the signal attenuation of a dwMRI acquisition is given by:

[Abitensor]k = f [Atissue]k + (1− f)Awater (1)

Where 0 < f < 1 is the tissue volume fraction and (1 − f) is the free water
fraction. This model assumes that each voxel is composed by two compartments,
one which is responsible for anisotropic diffusion (tissue), and the other for
isotropic diffusion (free moving water in the extracellular space):

[Atissue]k = e−bq
T
k Dqk (2)

Awater = e−bd (3)

Where b reflects the strength and time duration of the applied gradients, qk is the
normalized direction of the kth applied gradient (a minimum of 6 non-colinear
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directions is needed), d = 3 × 10−3mm2 s−1 is the diffusion coefficient of free
water at body temperature, and D is the diffusion tensor, which is symmetric
positive definite (SPD).

D =

D1 D4 D5

D4 D2 D6

D5 D6 D3

 (4)

There are 7 independent parameters to be estimated, in theory, one can set a
fixed value for f and perform weighted linear least squares (similar to classic
DTI) to fit the best D, this process can be repeated for every value of f between
0 and 1. Therefore, there is an infinite number of viable solutions for the bi-
tensor model, choosing the best one is not trivial.

To stabilize the convergence, additional constraints are needed. The Beltrami
framework makes use of local information, namely the spatial derivatives of
each tensor component to construct a metric that measures distances between
tensors, this metric is used to enforce piece-wise smoothness (from voxel to
voxel) of the tensor components, which helps the convergence.

A good initialization of f is important, restricting f to a narrower interval also
helps:

0 < fmin < f < fmax < 1

After initializing f and D, gradient descent is performed, the tensor components
are parameterized into Iwasawa coordinates X and the fitting is performed
on these coordinates. There are 7 evolution equations, in each iteration 3
incrementals are computed for each Iwasawa parameter: the fidelity, laplace-
beltrami and levi-civita terms. A separate incremental is computed for f .

Xn = Xn−1 + dt× (∆F + ∆L+ ∆C) (5)

fn = fn−1 + dt×∆f (6)

Where Xn = [X1, X2, X3, X4, X5, X6]n is the vector of 6 independent Iwasawa
coordinates at the nth iteration, dt is the time step, F,L,C are the fidelity,
laplace and civita terms. At each iteration, if f becomes larger than fmax or
smaller than fmin, it is projected back. At the end of each iteration, X is
converted back to tensor form D. The following diagram gives an overview of
the Beltrami algorithm.
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Figure 1: Overview of the Beltrami algorithm.

The steps and metrics used in this algorithm are explained with more detail in
the following sections.

3 Initialization

The volume fraction f is initialized first, using only the S0 image, the initial f0
is then used to correct the observed attenuations for the presence of free water.
Regular DTI is applied to the corrected attenuations to obtain the initial guess
for the diffusion components.

3.1 Volume fraction f0, fmin and fmax

By taking equation 1 and solving with respect to :

f =
[Â]k −Awater

[Atissue]k −Awater

Where [Abitensor]k was replaced by [Â]k, to minimize the expression above, one
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must minimize the numerator and maximize the denominator.

fmin =
min([Â]k)−Awater
Atmax −Awater

fmax =
max([Â]k)−Awater
Atmin −Awater

Where min([Â]k) and max([Â]k) are the minimum and maximum observed
attenuations, Atmin = e−bλmax and Atmax = e−bλmin are the minimum and
maximum expected attenuations in tissue. The values fmin and fmax remain
fixed for the entire algorithm. Note that the equations above are different from
the ones provided in the article.

The f0 image is initialized by:

f0 = 1− log(S0/St)

log(Sw/St)
(7)

Where St is the typical intensity of a voxel containing only tissue and Sw for
a voxel with free water, usualy picked from the ventricles with CSF. The St
and Sw values are picked from S0 image and depend on the dataset. Voxels for
which f0 lies outside fmin and fmax, are replaced by fmin+fmax

2 .

3.2 Initial D

Having f0, and solving equation 1 with respect to [ ˆAtissue]k:

[Ât]k =
[Â]k − (1− f0)Awater

f0
(8)

The quantity above can be regarded as the observed tissue attenuation, corrected
for free water. Regular DTI is applied to this quantity to obtain the initial
diffusion tensor components.

4 Iwasawa decomposition

Let P3 denote the space of all 3×3 SPD matrices, anyD ∈ P3 can be decomposed
into a unique representation:

D = NTAN =

 1 0 0
X4 1 0
X5 X6 1

X1 0 0
0 X2 0
0 0 X3

1 X4 X5

0 1 X6

0 0 1

 (9)
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D =

 X1 X1X4 X1X5

X1X4 X2 +X1X
2
4 X1X4X5 +X2X6

X1X5 X1X4X5 +X2X6 X3 +X1X
2
5 +X2X

2
6

 (10)

Where X1, ...X6 are the 6 independent Iwasawa parameters. According to the
authors of the article, this parameterization is done to simplify the complicated
expressions of the metrics described further ahead, thus simplifying the numerical
implementation.

Taking equation 10 and solving with respect to X (with the help of a Wolfram
Mathematica script):

X1 = D1 X4 =
D4

D1

X2 = D2 −
D2

4

D1
X5 =

D5

D1

X3 =
D3D

2
4 +D5(D2D5 − 2D4D6) +D1(D2

6 −D2D3))

D2
4 −D1D2

X6 =
D1D6 −D4D5

D1D2 −D2
4

Where D1, ...D6 are the diffusion tensor components from equation 4. The
implementation can be simplified if the conversion from D to X is done in a
specific order:

X1 = D1

X4 =
D4

D1

X5 =
D5

D1

X2 = D2 −X1X
2
4

X6 =
D6 −X1X4X5

X2

X3 = D3 −X1X
2
5 −X2X

2
6

5 The induced metric γ

The Beltrami framework is heavily based on Riemannian geometry, which is
a field of mathematics that studies manifolds eqquiped with a metric that
measures distances between points on the manifold. A manifold is a topological
space that is locally euclidean. In computer vision, an image can be locally
regarded as the product of 2 spaces: E = B×F , where B is the base manifold,
F is the feature space and E is the total space. This concept is known as ”fiber
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bundle”, where the features (fibers) are attached to a base, thus the name. A
specific image is a section of the fiber bundle, defined by the unique mapping
X : B 7→ E. For example, the space of grayscale images can be locally described
by R3 = R2×R+, where the base manifold is the 2D image domain R2 and the
feature space is the intensity R+ (0 < I < 255). In this case, a specific grayscale
image is a section of the total space R3 (also called the spatial-feature manifold),
given by the mapping X : R2 7→ R3, (x, y) 7→ (x, y, I(x, y)), which assigns every
pixel in the image domain to a point in the spatial-feature manifold. In other
words, a grayscale image can be seen as a 2D surface embedded in 3D space.

Having defined the geometry of the spatial-feature manifold and the map X,
one can choose a metric h to measure distances on the manifold:

ds2 = hijdX
idXj (11)

Under the assumption that infinitesimal distances on the spatial-feature sapce
are equal to infinitesimal distances on the image space, the metric h induces a
metric γ on the image domain, this is also called the pullback metric:

ds2 = γµνdx
µdxν (12)

For the grayscale case, h and γ are 3×3 and 2×2 tensors, respectively, dx1 = dx
and dx2 = dy. By the chain rule:

dXi = ∂µX
idxµ =

∂Xi

∂x
dx+

∂Xi

∂y
dy (13)

Combining equations 11, 12 and 13, gives the expression for the pullback metric:

γµν = hij∂µX
i∂νX

j (14)

Where ∂µX
i = ∂Xi

∂xµ is the partial derivative of the ith component of the spatial-
feature manifold with respect to xµ.

Similarly to the grayscale case, a specific DTI volume can be regarded as a
section of a fiber bundle, described by the embedding map X : R3 7→ R3 ×
P3, where R3 × P3 is the 9-dimensional spatial-feature space, and P3 is the
6-dimensional feature space of all SPD matrices.

From now on, let Σ denote the 3D image manifold, M is the 9D spatial-feature
manifold, γ and h the respective metrics, and X : Σ 7→M the embedding map.
Having the Iwasawa decomposition in mind, the embedding map is given by:

X : (x, y, z) 7→ (x, y, z,X1, X2, X3, X4, X5, X6) (15)

Xi will denote the ith component of this map.
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With this parameterization, the saptial-feature metric h is defined as:

h =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 β 1

X2
1

0 0 0 0 0

0 0 0 0 β 1
X2

2
0 0 0 0

0 0 0 0 0 β 1
X2

3
0 0 0

0 0 0 0 0 0 β
2X1(X3+X2X

2
6 )

X2X3
−β 2X1X6

X3
0

0 0 0 0 0 0 −β 2X1X6

X3
β 2X1

X3
0

0 0 0 0 0 0 0 0 β 2X2

X3


The parameter β is introduced to control the ratio between the feature space
and image space metrics. Expression 14 can be regarded as a multiplication of
3 matrices, let the quantity ∂µX

i ≡ dX be the matrix that holds all spatial
derivatives of the Iwasawa parameters, with µ = 1 : 3 rows and i = 1 : 9
columns:

∂µX
i ≡ dX =


1 0 0 ∂X1

∂x
∂X2

∂x
∂X3

∂x
∂X4

∂x
∂X5

∂x
∂X6

∂x

0 1 0 ∂X1

∂y
∂X2

∂y
∂X3

∂y
∂X4

∂y
∂X5

∂y
∂X6

∂y

0 0 1 ∂X1

∂z
∂X2

∂z
∂X3

∂z
∂X4

∂z
∂X5

∂z
∂X6

∂z

 (16)

Where the 1’s and 0’s appear because for i = 1 : 3, Xi are the spatial coordinates
x, y, z. The pullback metric is given in matrix form by:

[γ] = [dX][h][dX]T (17)

Which results in a 3×3 symmetric tensor. The 6 independent components were
computed with the help of a Wolfram Mathematica script:
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γ11 = 1 + β
( 9∑
i=4

hii

(∂Xi

∂x

)2
+ 2h78

∂X7

∂x

∂X8

∂x

)
γ22 = 1 + β

( 9∑
i=4

hii

(∂Xi

∂y

)2
+ 2h78

∂X7

∂y

∂X8

∂y

)
γ33 = 1 + β

( 9∑
i=4

hii

(∂Xi

∂z

)2
+ 2h78

∂X7

∂z

∂X8

∂z

)
γ12 = β

( 9∑
i=4

hii
∂Xi

∂x

∂Xi

∂y
+ h78

(∂X7

∂y

∂X8

∂x
+
∂X7

∂x

∂X8

∂y

))
γ13 = β

( 9∑
i=4

hii
∂Xi

∂x

∂Xi

∂z
+ h78

(∂X7

∂z

∂X8

∂x
+
∂X7

∂x

∂X8

∂z

))
γ23 = β

( 9∑
i=4

hii
∂Xi

∂y

∂Xi

∂z
+ h78

(∂X7

∂z

∂X8

∂y
+
∂X7

∂y

∂X8

∂z

))

To implement the equations above, the partial derivatives are discretized into
finite differences. In the work of (Pasternak et al., 2009), the difference scheme
was not specified, a forward difference scheme was used in this implementation.

6 Evolution of X and f

Having the metric γ, a set of incrementals is computed to update the parameters.
There are 6 evolution equations for Xi, i = 4 : 9, because the image domain
coordinates (i = 1 : 3) are fixed. A separate incremental is computed for f .

6.1 The Fidelity term

The fidelity term maintains the fitted model close to the observed signal, and
its expresion is given by:

∆F i = −αb 1√
|γ|

( N∑
k=1

(
[Abitensor]k − [Â]k

)
[Atissue]k

(
qTk

∂D

∂Xi
qk

)
(18)

Where α controls the weight of the fidelity term, |γ| is the determinant of the
metric, [Abi−tensor]k and Atissue are given by equations 1 and 2, [Â]k is the
observed attenuation for the kth direction.
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The ∂D
∂Xi matrix is obtained by differentiating D with respect to the ith entry

of X elementwise:

∂D

∂X4
=

 1 X4 X5

X4 X2
4 X4X5

X5 X4X5 X2
5


∂D

∂X5
=

0 0 0
0 1 X6

0 X6 X2
6


∂D

∂X6
=

0 0 0
0 0 0
0 0 1


∂D

∂X7
=

 0 X1 0
X1 2X1X4 X1X5

0 X1X5 0


∂D

∂X8
=

 0 0 X1

0 0 X1X4

X1 X1X4 2X1X5


∂D

∂X9
=

0 0 0
0 0 X2

0 X2 2X2X6


Note that all the matrices above are symmetric.

6.2 The Laplace-Beltrami operator

The Laplace-Beltrami term acts as a denoising operator, regularizing the image
while maintaining important edges:

∆γX
i =

1√
|γ|
∂µ
(√
|γ|γµν∂νXi

)
(19)

Where γµν is the inverse of γ. If i is set to a fixed coordinate, then the quantity
∂µX

i is a column of the matrix dX from expression 16:

∂µX
i =


∂Xi

∂x

∂Xi

∂y

∂Xi

∂z

 (20)
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And the product γµν∂νX
i becomes:

γµν∂νX
i ≡ Ai =

γ11 γ12 γ13

γ12 γ22 γ23

γ13 γ23 γ33



∂Xi

∂x

∂Xi

∂y

∂Xi

∂z



=


γ11 ∂X

i

∂x + γ12 ∂X
i

∂y + γ13 ∂X
i

∂z

γ12 ∂X
i

∂x + γ22 ∂X
i

∂y + γ23 ∂X
i

∂z

γ13 ∂X
i

∂x + γ23 ∂X
i

∂y + γ33 ∂X
i

∂z

 (21)

The Laplace-Beltrami operator can be seen as the divergence of the vector field
A. Let Ain denote the nth entry of Ai, then:

∆γX
i =

1√
|γ|

(
∂

∂x
(
√
|γ|Ai1) +

∂

∂y
(
√
|γ|Ai2) +

∂

∂z
(
√
|γ|Ai3)

)
(22)

A backward difference scheme was used to compute the partial derivatives of A.

6.3 The Levi-Civita connection

Due to the Iwasawa parameterization and the choice of a non-euclidean metric h
over the spatial-feature manifold, a third term appears in the evolution equations,
the Levi-Civita term:

∆Ci = Γijkγ
µν∂µX

j∂νX
k (23)

Where Γijk are the Christoffel symbols, computed with respect to the h metric:

Γijk =
1

2
hil(∂jhlk + ∂khjl − ∂lhjk) (24)

Here, ∂j denotes the symbolic partial derivatives of h with respect to the
Iwasawa parameters, hil is the inverse of h and the indices i, j, k, l range from 4
to 9. Let ĥ be a sliced version of h, containing only the important indices, the
inverse is then:
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ĥil =



X2
1 0 0 0 0 0

0 X2
2 0 0 0 0

0 0 X2
3 0 0 0

0 0 0 X2

2X1

X2X6

2X1
0

0 0 0 X2X6

2X1

X3+X2X
2
6

2X1
0

0 0 0 0 0 X3

2X2


The parameter β is now omitted because it cancels out in the Christoffel computation.
Setting i = 2 for example, the only non-zero element of the inverse is for l = 2,
and equation 24 becomes:

Γ̂2
jk =

1

2
ĥ22(∂j ĥ2k + ∂kĥj2 − ∂2ĥjk)

By inspection, the only non-zero terms are those for which ĥ has a derivative
with respect to X2, (j, k) ∈

{
(2, 2), (4, 4), (6, 6)

}
:

∂2ĥ22 = − 2

X3
2

∂2ĥ44 = −2X1

X2
2

∂2ĥ66 = − 2

X3

The set of Christoffel symbols used to update X2 is then:

Γ̂2
jk =



0 0 0 0 0 0
0 − 1

X2
0 0 0 0

0 0 0 0 0 0
0 0 0 X1 0 0
0 0 0 0 0 0

0 0 0 0 0 −X
2
2

X3


The computation of Christoffel symbols by hand is cumbersome. Due to its
sparsity and symmetry (Γijk = Γikj), there are only 26 unique Christoffel symbols,
which were computed with a Mathematica script:
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Γ̂1
11 = − 1

X1
Γ̂1
44 = −X

2
1 (X3 +X2X

2
6 )

X2X3

Γ̂1
45 = − 1

X1
Γ̂1
55 = −X

2
1

X3

Γ̂2
22 = − 1

X2
Γ̂2
44 = X1

Γ̂2
66 = −X

2
2

X3
Γ̂3
33 = − 1

X3

Γ̂3
44 = X1X

2
6 Γ̂3

45 = −X1X6

Γ̂3
55 = X1 Γ̂3

66 = X2

Γ̂4
14 =

1

2X1
Γ̂4
24 = − 1

2X2

Γ̂4
46 =

X2X6

2X3
Γ̂4
56 = − X2

2X3

Γ̂5
24 = − X6

2X2
Γ̂5
34 =

X6

2X3

Γ̂5
15 =

1

2X1
Γ̂5
35 = − 1

2X3

Γ̂5
46 =

1

2

(X2X
2
6

X3
− 1
)

Γ̂5
56 = −X2X6

2X3

Γ̂6
44 = −X1X6

X2
Γ̂6
45 =

X1

2X2

Γ̂6
26 =

1

2X2
Γ̂6
36 = − 1

2X3

The Christoffel symbols introduce a coupling between the Iwasawa parameters
and maintain the diffusion tensor in SPD space during the evolution. Therefore,
if the initiallization of D is in P3, then the flow stays in P3. If the chosen metric
for h were euclidean, a separate mechanism would be needed to maintain the
positive definiteness of D.

Going back to equation 23, let Aµk ≡ γµν∂νXk and Biµk ≡ Γijk∂µX
j .

∆Ci = Γijk∂µX
j

Biµk

Aµk

γµν∂νX
k
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In matrix form:

[A] = [γ]−1[dX̂]

[B]i = [dX̂][Γ]i

Where dX̂ is a sliced version of dX from expression 16 (colums 4 : 9). The
ith Civita term is obtained by multiplying A and Bi elementwise and summing
over all the elements:

∆Ci =

3∑
µ=1

6∑
k=1

AµkB
i
µk

Note that the columns of Aµk are also used to compute the Laplace-Beltrami
terms in expression 22, this can be used to avoid repeating computations at the
expense of memory by storing matrix A at each iteration.

7 The free water incremental

The free water incremental does not depend on the metric γ and its expression
is similar to the fidelity term:

∆f = −b
N∑
k=1

(
[Abitensor]k − [Â]k

)(
[Atissue]k −Awater

)
(25)

Having defined all the incremental terms, the evolution equations are given by
5 and 6.

8 Tests and Results

8.1 Synthetic dataset

To test the algorithm, a synthetic dataset was used. To create the synthetic
dataset, multi-shell fwDTI was performed on the cenir multib dataset provided
by dipy. The free water map and diffusion measures were extracted and used in
the bi-tensor model in equation 1 to simulate a single-shell dataset with b = 1000
along 32 non colinear directtions, the mean of the original S0 images was added
as the new b0 volume. Rician noise was also added. A slice of the synthetic
dataset is shown below.

13



Figure 2: Synthetic dataset, b = 1000.

To initialize the tissue volume fraction, the St = 2000 and Sw = 9000 were
handpicked from the S0 image (maybe in the future, an automatic way to set
these values may be implemented). To set fmin and fmax, λmin = 0.1 × 10−3

and λmax = 1.1 × 10−3mm s−2. The following initialization was obtained for
the free water (note that fw = 1− f , f being from equation 7):

Figure 3: Initialization of fwmin, fw0 and fwmax

.

Note that fwmin = 0 for most voxels. Also, many voxels in the fw0 image
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were corrected because the initial guess (given by 7) missed the [fwmin, fwmax]
interval, hence the pixelated effect.

For some reason, using equation 8 did not provide a good initialization for the
diffusion components. Instead, the following quantity was used to apply regular
DTI:

St = Sk − S0(1− f0)Awater

This provided a ”smoother” initial guess for the diffusion tensor.

The main difficulty to get this algorithm to work is to keep the Iwasawa coordinates
X1...X6 in ”well behaved” values. Since this algortihm deals with data in the
order of 10−3 and the finite differences generate even smaller values, it is hard
to control the γ metric, which tends to explode in some voxels. The choice of
time step dt is also crucial, in the work of (Pasternak et al., 2009), the time step
used is not specified.

To get this algorithm to work, a rescaling was done to the the b values, e.g., b =
1000 becomes b = 1, and the rescaled gtab is provided as input to the algorithm,
consequentially, the constants Diso, λmin λmax also need to be rescaled to the
order of units. By doing this, it was much easier to discover the ideal dt and the
limits to clip the Iwasawa parameters along the iterations. With dt = 0.0006
and 300 iterations, the following results were obtained:

Figure 4: Free water map obtained with 300 iterations, dt = 0.0006.

.

The free water map obtained (right) appears to be close to the original map
(left) estimated with the multi-shell fwDTI.

To compare the diffusion components, the FA maps were extracted:
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Figure 5: FA map obtained with 300 iterations, dt = 0.0006.

.

The final FA map (right) seems smoother than the initial guess (center), although
the values look underestimated in comparison to the original (left), which is
brighter (is this a bug?). Also, some problematic bright voxels appear in the
final map, which is due to the exploding γ metric.

8.2 Real dataset

A small test was also performed on the stanford hardi dataset, also provided by
dipy, St = 300 and Sw = 3000 were used, with dt = 0.0006 and 100 iterations.
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Figure 6: Initialization of fwmin, fw0 and fwmax

.

Figure 7: Free water map obtained for stanford dataset, with 100 iterations, dt =
0.0006

For this dataset, it is not possible to compare with an original free water map,
since the fwDTI of dipy does not work with single-shell data.
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Figure 8: FA map obtained for stanford dataset, with 100 iterations, dt = 0.0006

Again, the final FA image is darker than the original.

Finally, the
√
|γ| maps are presented:

Figure 9:
√

|γ| map obtained for stanford dataset, with 100 iterations, dt = 0.0006

As seen in the figure above, the metric seems to be more intense on the contours
of the image, which supports the idea that γ is supposed to regularize while
maintaining important edges. As mentioned before, as the number of iterations
increases, the metric tends to explode (bright spot on the right image).
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9 Conclusions

Further testing with real datasets needs to be done to assess the algorithm.
Some modifications need to be done to increase efficiency. It would also be
good to come up with some startegies to avoid overflows and the exploding γ
metric.
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